## Supplementary Information

# TonEBP/NFAT5 promotes obesity and insulin resistance by epigenetic suppression of white adipose tissue beiging

Lee et al.

## Supplementary Table 1. Primers used for real time PCR

| Species | Gene                | Forward primer (5'-3')       | Reverse primer (5'-3')      |
|---------|---------------------|------------------------------|-----------------------------|
| Mouse   | 36B4                | TGGCCAATAAGGTGCCAGCTGCTG     | CTTGTCTCCAGTCTTTATCAGCTGCAC |
|         | Acadm               | AGGATGACGGAGCAGCCAATGA       | GCCGTTGATAACATACTCGTCAC     |
|         | ACC1                | CTGACGTATACTGAACTGGTGTTGGATG | TTTCCAGGCTACCATGCCAATCTC    |
|         | Acox1               | GCCATTCGATACAGTGCTGTGAG      | CCGAGAAAGTGGAAGGCATAGG      |
|         | Adiponectin         | TGGAATGACAGGAGCTGAAGG        | ACACTGAACGCTGAGCGATACACA    |
|         | ,<br>Adrb3          | AGGCACAGGAATGCCACTCCAA       | GCTTAGCCACAACGAACACTCG      |
|         | CD137               | CCAAGTACCTTCTCCAGCATAGG      | GCGTTGTGGGTAGAGGAGCAAA      |
|         | CD36                | GAACCACTGCTTTCAAAAACTGG      | TGCTGTTCTTTGCCACGTCA        |
|         | Cidea               | GGTGGACACAGAGGAGTTCTTTC      | CGAAGGTGACTCTGGCTATTCC      |
|         | $CPT1\alpha$        | GGCATAAACGCAGAGCATTCCTG      | CAGTGTCCATCCTCTGAGTAGC      |
|         | CyclophilinA        | CTGCTGTCTTTGGAACTTTGTCTG     | CAGCCATGGTCAACCCCACCG       |
|         | Dio2                | GGTGGTCAACTTTGGTTCAGCC       | AAGTCAGCCACCGAGGAGAACT      |
|         | F4/80               | CTTTGGCTATGGGCTTCCAGTC       | GCAAGGAGGACAGAGTTTATCGTG    |
|         | Fasn                | CCAGACAGAGAAGAGCCATGGAGG     | CCAATGAGGTTGGCCCAGAACTCC    |
|         | HSL                 | GCTGGGCTGTCAAGCACTGT         | GTAACTGGGTAGGCTGCCAT        |
|         | Leptin              | GGGCTTCACCCCATTCTGA          | TGGCTATCTGCAGCACATTTTG      |
|         | Lipe                | GCTCATCTCCTATGACCTACGG       | TCCGTGGATGTGAACAACCAGG      |
|         | LPL                 | GCGTAGCAGGAAGTCTGACCAA       | AGCGTCATCAGGAGAAAGGCGA      |
|         | $PGC1\alpha$        | GAGAATGAGGCAAACTTGCTAGCG     | TGCATGGTTCTGAGTGCTAAGACC    |
|         | $PPAR\alpha$        | AAGACTACCTGCTACCGAAATG       | AACATTGGGCCGGTTAAGA         |
|         | ΡΡΑΠγ               | TTCGCTGATGCACTGCCTATGA       | AAGGAATGCGAGTGGTCTTCCA      |
|         | PPAR <sub>7</sub> 2 | TCTTAACTGCCGGATCCACAA        | GCCCAAACCTGATGGCATT         |
|         | Scd1                | TTCTTGCGATACACTCTGGTGC       | CGGGATTGAATGTTCTTGTCGT      |
|         | Slc27a1             | TGCCACAGATCGGCGAGTTCTA       | AGTGGCTCCATCGTGTCCTCAT      |
|         | Slc2a4              | GGTGTGGTCAATACGGTCTTCAC      | AGCAGAGCCACGGTCATCAAGA      |
|         | SREBP1c             | GCCGTGGTGAGAAGCGCACAGCCC     | CAAGACAGCAGATTTATTCAGCTTTGC |
|         | TMEM26              | TGGTCCTGGATACAGTGCTCAC       | GGTGCATTTCAAGAAGCCACAGG     |
|         | $TNF\alpha$         | TGGGACAGTGACCTGGACTGT        | TTCGGAAAGCCCATTTGAGT        |
|         | TonEBP              | AAGCAGCCACCACCAAACATGA       | AAATTGCATGGGCTGCTGCT        |
|         | UCP-1               | GTGAACCCGACAACTTCCGAA        | TGAAACTCCGGCTGAGAAGAT       |
| Human   | 36B4                | TGGTCATCCAGCAGGTGTTCGA       | ACAGACACTGGCAACATTGCGG      |
|         | Adrb3               | ATTGCTTGGGTTGGTCAAATG        | AAGGTGAGTGGGAAGGTAGA        |
|         | CyclophilinA        | TTCATCTGCACTGCCAAGAC         | TCGAGTTGTCCACAGTCAGC        |
|         | TonEBP              | AGCTGTTGTTGCTGCTGATGCT       | TCCACTTGCATAGCCTTGCTGT      |



## Supplementary Figure 1. Effects of diet and miR on TonEBP, and thermogenic and beige marker genes in adipose tissues and adipocytes.

**a** TonEBP expression in db/db mice. *TonEBP* mRNA levels in iWAT from 10 weeks old +/db or db/db mice on C57BL/6J background (+/db, n = 5; db/db, n = 7). Data are representative of two independent experiments and presented as mean + s.e.m. \* p < 0.05 vs. db/+. **b**, **c** Thermogenic (**b**) and beige marker (**c**) gene expression in iWAT. mRNA levels in iWAT from C57BL/6J mice fed a CD (chow diet, n = 5) or HFD (high fat diet, n = 7) for 16 weeks. All data are representative of four independent experiments and presented as mean + s.e.m. \* p < 0.05 vs. CD. **d** - **f** miR30-b and miR30-c promotes thermogenic gene expression. (**d**) Potential sites of miR-30b and miR-30c hybridization on TonEBP 3'-UTR. (**e**) Thermogenic gene mRNA levels in 3T3-L1 adipocytes transfected with miR-negative control (NC), miR-30b or miR-30c (n = 4). (**f**) HEK293 cells were transfected miR-NC, miR-30b or miR-30c followed by transfection of a reporter construct (312-318 or 5939-5945) containing 3'-UTR of TonEBP with putative miR-30b and miR-30c-binding sites (n = 4). All data are representative of three independent experiments and presented as mean + s.e. and presented as mean + s.d. \* p < 0.05 vs. miR-NC. AU, arbitrary unit



**Supplementary Figure 2. Effects of TonEBP haplo-deficiency on food intake and obesity. a** Food intake was not affected by TonEBP haplo-deficiency. Food intake was measured in animals fed with CD (n = 5) or HFD (n = 7). All data are representative of four independent experiments and presented as mean + s.e.m. \* p < 0.05 vs. +/+. Values of s.e.m. were all smaller than the size of circles for mean values. **b**, **c** TonEBP haplo-deficiency decreases whole body and fat pad weights in db/db mice (TonEBP +/+, n = 7; TonEBP +/ $\Delta$ , n = 10). (**b**) Body weight of TonEBP haplo-insufficient (*TonEBP* +/ $\Delta$ , n = 7) mice on +/db or db/db background and their WT (*TonEBP* +/+, n = 10) littermates. (**c**) Weight of iWAT and eWAT. All data are representative of two independent experiments and presented as mean + s.e.m. # p < 0.05 vs. +/db and \* p < 0.05 vs. TonEBP +/+.



Supplementary Figure 3. Effects of TonEBP haplo-deficiency on thermogenesis and beiging. **a** RER was not affected by TonEBP haplo-deficiency. HFD-fed animals were analyzed by indirect calorimetry to obtain RER (VCO<sub>2</sub>/VO<sub>2</sub>) (n = 4). Data are representative of three independent experiments. **b** Higher rectal temperature and resistance to cold in TonEBP haplo-deficiency. Rectal temperature (temp.) measured in HFD-fed animals at room temperature (RT) and after exposure to 4°C (Cold) for 6 h (n = 5). **c** Elevated iWAT *UCP-1* mRNA expression in TonEBP haplo-deficiency. *UCP-1* mRNA levels in iWAT, eWAT and BAT from WT (+/+) and TonEBP haplo-deficient mice (+/ $\Delta$ ) (n = 8). **d** Elevated expression of thermogenic genes in TonEBP haplo-deficiency. mRNA abundance of thermogenic genes in iWAT of CD-fed animals exposed to RT or 4°C (cold) (n = 10). Data are presented as mean + s.e.m. # p < 0.05 vs. RT (**d**), \* p < 0.05 vs. +/+ (**b-d**). (**a-c**) An unpaired t-test was used for comparisons between two conditions. (**d**) A 1-way ANOVA was used for comparisons between more than two conditions. Tukey's post-hoc test was used for multiple comparisons. AU, arbitrary unit.



#### Supplementary Figure 4. Role of TonEBP on thermogenesis and beiging in vitro.

**a** Higher thermogenic protein expression and adrenergic signaling in adipocytes with TonEBP haplodeficiency. Immunoblots of PGC1 $\alpha$ , p-CREB, Adrb3, UCP-1 and Hsc70 in primary adipocytes differentiated from SVF of WT (+/+) and TonEBP haplo-deficient mice (+/ $\Delta$ ). **b**, **c** TonEBP suppresses thermogenic gene expression in 3T3-L1 adipocytes. (**b**) 3T3-L1 cells transfected with siRNA were cultured in adipogenesis inducing medium (AIM) followed by treatment with isoproterenol (Iso) as indicated. (**c**) 3T3-L1 cells cultured in AIM were infected with adenovirus followed by treatment with Iso as indicated. All data are representative of four independent experiments. Data are presented as mean + s.d. (**b**, **c**). # *p* < 0.05 vs. scr siRNA (**b**) or Ad-Empty (**c**), \* *p* < 0.05 vs. corresponding scr siRNA (**b**) or Ad-Empty (**c**). (**b**, **c**) A 1-way ANOVA was used for comparisons between more than two conditions. Tukey's post-hoc test was used for multiple comparisons. AU, arbitrary unit.



#### Supplementary Figure 5. Effects of TonEBP deficiency on metabolic dysfunction.

**a** TonEBP haplo-deficiency decreases fasting blood glucose level in db/db mice. Fasting blood glucose levels of animals shown in Supplementary Figure S2b and c (TonEBP +/+, n = 7; TonEBP +/ $\Delta$ , n = 10). Data are representative of two independent experiments and presented as mean + s.e.m. # p < 0.05 vs. +/db, \* p < 0.05 vs. +/+. **b**, **c** Suppressed lipid metabolism-related genes in response to HFD were restored by TonEBP haplo-deficiency. (**b**) mRNA level of genes involved in lipid metabolism in eWAT from C57BL/6J mice fed CD (n = 5) or HFD (n = 7). (**c**) mRNA level of genes involved in lipid metabolism in eWAT from HFD-fed animals (TonEBP +/+, n = 7; TonEBP +/ $\Delta$ , n = 10). All data are representative of three independent experiments and presented as mean + s.e.m. \* p < 0.05 vs. CD (**b**) or TonEBP +/+ (**c**). **d** TonEBP haplo-deficiency decreases liver weight in db/db mice. Weight of liver from animals shown in Supplementary Figure 2b and c (TonEBP +/+, n = 7; TonEBP +/ $\Delta$ , n = 10). All data are representative of four independent experiments and presented as mean + s.e.m. \* p < 0.05 vs. +/db, \* p < 0.05 vs. TonEBP +/+, n = 7; TonEBP +/ $\Delta$ , n = 10). All data are representative of three independent experiments and presented as mean + s.e.m. \* p < 0.05 vs. CD (**b**) or TonEBP +/+ (**c**). **d** TonEBP haplo-deficiency decreases liver weight in db/db mice. Weight of liver from animals shown in Supplementary Figure 2b and c (TonEBP +/+, n = 7; TonEBP +/ $\Delta$ , n = 10). All data are representative of four independent experiments and presented as mean + s.e.m. # p < 0.05 vs. +/db, \* p < 0.05 vs. TonEBP +/+.



#### Supplementary Figure 6. Role of TonEBP on Adrb3 gene expression.

a, b TonEBP suppresses Adrb3 mRNA expression in 3T3-L1 adipocytes. Adrb3 mRNA levels in 3T3-L1 adipocytes with siRNA-mediated TonEBP knockdown (a) or adenovirus-mediated TonEBP overexpression (b) were treated with isoproterenol (Iso) or not (Con) (n = 4). All data are representative of three independent experiments. c Adipocyte cAMP levels after treatment with an Adrb3 agonist were elevated in TonEBP haplo-deficiency. Intracellular cAMP levesl in CL 316,243 stimulated primary adipocytes differentiated from SVF of WT (+/+) and TonEBP haplo-deficient mice  $(+/\Delta)$  (n = 3). d TonEBP haplo-deficiency enhances UCP-1 mRNA expression. UCP-1 mRNA levels in primary adjpocytes from WT (+/+) and TonEBP haplo-deficient mice (+/ $\Delta$ ) after treatment with CL 316,243 (n = 3). Data are representative of two independent experiments. **e**, **f** TonEBP binds to the Adrb3 promoter. (e) Nuclear extracts were prepared from 3T3-L1 cells treated with Iso or Con. EMSA was performed using a biotin labeled TonE probe. Where indicated, anti-TonEBP serum ( $\alpha$ -TonEBP) or normal serum (Serum) were added for supershift of TonE-TonEBP complex. (f) ChIP assays targeting the B region in (e) for TonEBP on the Adrb3 promoter (n = 4) using primary adipocytes from WT (+/+) and TonEBP haplo-deficient mice (+/ $\Delta$ ). Data are representative of two independent experiments. Data are presented as mean + s.d. (a, b) or s.e.m. (c, d, f). # p < 0.05 vs. Con (b), corresponding vehicle (d) or serum (f), \* p < 0.05 vs. corresponding scr siRNA (a), Ad-Empty (b), corresponding +/+ (c, d, f).



Supplementary Figure 7. Role of TonEBP on epigenetic changes in gene promoters. **a** RNA polymerase II binding to the *Adrb3* promoter was elevated by TonEBP deficiency. ChIP assays targeting the B region in (Supplementary Figure 6e) for RNA polymerase II (Pol II) were performed using 3T3-L1 cells transfected with Scr and TonEBP siRNA. Data are representative of two independent experiments. **b** As a control, epigenetic changes in H3K4me1, H3K4me3, H3K27me3 and H3K27ac at the GA*PDH* promoter were performed using 3T3-L1 cells transfected with Scr and TonEBP siRNA. Data are representative of two independent experiments. **c** Epigenetic changes of the *Adrb3* promoter in response to TonEBP haplo-deficiency. ChIP assays for H3K27me3, H3K4me3 and H3ac on the B region in (Supplementary Figure 6e) of *Adrb3* promoter (*n* = 4) were performed in primary adipocytes from WT (+/+) and TonEBP haplo-deficient mice (+/ $\Delta$ ). Data presented as the mean + s.d. (**a**, **b**) or s.e.m. (**c**). # *p* < 0.05 vs. corresponding IgG (**a-c**), \* *p* < 0.05 vs. corresponding scr siRNA (**a**, **b**), or +/+ (**c**).





+236 CTGACTTGGTAGTGGGACTCCTCGTAATGCCACC Reverse primer of C region

#### Supplementary Figure 8. Role of TonEBP in DNA methylation of Adrb3 promoter.

**a** Nucleotide sequence of the mouse *Adrb3* promoter region. Nucleotides are numbered from the first codon (ATG). The 12 CpG sites targeted by bisulfite sequencing are marked with greed boxes. A, B, and C regions are indicated with distinct colors with PCR primers used. The TonEBP binding site (TonE) in A region is underlined. **b**, **c** DNA methylation of the *Adrb3* promoter was reduced by TonEBP deficiency. DNA methylation analyses were performed on the *Adrb3* promoter using bisulfite sequencing using iWAT (**b**; A, B, and C regions) and primary adipocytes differentiated from SVF (**c**, B region). Data are presented as the mean + s.e.m. \* p < 0.05 vs. +/+. **d** *Adrb3* mRNA levels in 3T3-L1 cells (n=10), iWAT(n=6) and SVF (n=6). Mean + s.e.m. \* p < 0.05 vs. 3T3-L1 cells. **e**, **f** *Adrb3* DNA methylation correlates with *Adrb3* mRNA expression and BMI. Correlation of DNA methylation levels of *Adrb3* promoter in human subcutaneous adipocytes with *Adrb3* mRNA expression (**e**) and BMI (**f**) (n = 7).



Supplementary Figure 9. Role of TonEBP in the recruitment of DNMT1 to the *Adrb3* promoter. **a** ChIP assays for DNMT1 on the *Adrb3* promoter (B region in Supplementary Figure 5e) (n = 4) using primary adipocytes from WT (+/+) and TonEBP haplo-deficient mice (+/ $\Delta$ ). **b**, **c** TonEBP and DNMT1 bind to the A, B and C regions but not D region, a negative control region (Supplementary Figure 5e) of the *Adrb3* promoter in a manner dependent on TonEBP. ChIP assays were performed for TonEBP (**b**) and DNMT1 (**c**) in 3T3-L1 cells transfected with scrambled (Scr) and TonEBP siRNA. **d** TonEBP and DNMT1 suppress *UCP-1* mRNA expression. *UCP-1* mRNA abundance was measured in 3T3-L1 adipocytes transfected with various siRNA's as indicated. (**a-d**) Data are representative of two independent experiments and presented as the mean + s.d. # p < 0.05 vs. corresponding IgG (**a**, **c**) or serum (**b**). \* p < 0.05 vs. +/+ (**a**) or Scr siRNA (**b-d**). N.S., not significant (**d**).



### Supplementary Figure 10. Higher rectal temperature and insulin sensitivity in adipocytespecific TonEBP deficiency.

**a** Respiratory exchange ratio (RER) was not affected by adipocyte-specific TonEBP deficiency. HFDfed animals were analyzed by CLAMS to obtain RER (VCO<sub>2</sub>/VO<sub>2</sub>) (n = 4). Data are representative of three independent experiments and presented as mean + s.e.m. **b** Rectal temperature (temp.) measured in HFD-fed animals at room temperature (RT) and after exposure to 4°C (Cold) for 6 h (n= 7). **c** Glucose tolerance test (GTT, left) and insulin tolerance test (ITT, right) after 9 weeks on HFD. Data are presented as mean + s.e.m. \* p < 0.05 vs. TonEBP +/+.



## Supplementary Figure 11. Role of TonEBP and DNMT1 in the regulation of adipocyte physiologyrelated genes.

**a** PCR array (Qiagen) data on TonEBP or DNMT1 knockdowned 3T3-L1 adipocytes. Data are representative of three independent experiments. **b** The number (top) and list (bottom) of genes regulated by TonEBP or DNMT1 on PCR array.

#### Fig. 1b

Fig. 1e





Fig. 2h



Supplementary Figure 12. Uncropped blots of Western blots in Figures 1-3. Original uncropped blots corresponding to Western blots in Figures 1-3 in the manuscript.



**Supplementary Figure 13. Uncropped blots of Western blots in Figure 4.** Original uncropped blots corresponding to Western blotting of immunoprecipitated proteins in Figure 4n in the manuscript.