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Genetic methods 
Biopsied individuals were genotyped based on 27 microsatellite markers (Tab. S1), following the 

protocols detailed in [1]. We obtained the allele frequency for each locus (Tab. S1; Tab. S2), as well as 

missing and error rates (Tab. S1) from empirical data, and used them as input parameters for 

simulations in COANCESTRY [2]. Error rates for each locus were based on 29 individuals that had been 

genotyped more than once (Tab. S1). To select the best performing relatedness estimator, we 

simulated 1,000 genotypes based on the empirical allele frequency in the population (Tab. S2). 

Subsequently, we simulated 100 dyads each for half siblings (relatedness (r) = 0.25), parent-offspring 

(r = 0.5), full siblings (r = 0.5), first cousins (r = 0.125) and unrelated individuals (r = 0). The estimator 

TrioML was chosen as the most accurate estimator, showing lowest variance and highest correlation 

with the true data (Tab. S3; Tab. S4). We then calculated dyadic biparental relatedness among 

individuals using TrioML [3].   
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Table S1: Microsatellite markers used to assign genotypes, including error and missing rates, for bottlenose dolphins in the 
western gulf of Shark Bay, Western Australia.  

Locus Missing rate Error rate Reference 

E12 0.003 0.000 [4] 

MK6 0.003 0.000 [5] 

Tur4_105 0.000 0.000 [4] 

Tur4_108 0.000 0.000 [4] 

Tur4_111 0.017 0.000 [4] 

Tur4_117 0.000 0.034 [4] 

Tur4_128 0.007 0.000 [4] 

Tur4_66 0.000 0.000 [4] 

Tur4_98 0.000 0.000 [4] 

D22 0.003 0.000 [6] 

D8 0.047 0.000 [4] 

F10 0.007 0.000 [4] 

Tur4_138 0.000 0.000 [4] 

Tur4_141 0.000 0.000 [4] 

Tur4_87 0.000 0.034 [4] 

Tur4_91 0.000 0.000 [4] 

Tur4_162 0.000 0.000 [4] 

MK9 0.007 0.000 [5] 

MK5 0.000 0.000 [5] 

Tur4_132 0.000 0.000 [4] 

KWM12 0.000 0.000 [7] 

EV37 0.041 0.000 [8] 

Tur4_80 0.000 0.000 [4] 

MK3 0.007 0.000 [5] 

Tur4_142 0.000 0.034 [4] 

Tur4_153 0.000 0.000 [4] 

MK8 0.007 0.000 [5] 
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Table S2: Allele frequencies for 27 microsatellite markers in the bottlenose dolphin population of the western gulf of Shark Bay, Western Australia.  

Marker                                 

E12 Alleles 260 276 280 264 272 256          

  Frq 0.1854 0.2007 0.051 0.1412 0.3793 0.0425          

MK6 Alleles 154 166 156 174 182 184 172 160 176 152 188 168 180 190 186 

  Frq 0.0969 0.0289 0.1156 0.0969 0.017 0.0714 0.1497 0.0697 0.1259 0.1803 0.0374 0.0034 0.0017 0.0017 0.0034 

Tur4_105 Alleles 391 367 395 399 387 403          

  Frq 0.1746 0.5458 0.1153 0.0915 0.039 0.0339          

Tur4_108 Alleles 270 258              

  Frq 0.7271 0.2729              

Tur4_111 Alleles 299 303 307 287 295           

  Frq 0.1052 0.7776 0.0672 0.0448 0.0052           

Tur4_117 Alleles 183 179 187 175            

  Frq 0.5915 0.3288 0.0661 0.0136            

Tur4_128 Alleles 303 307 295 299 311           

  Frq 0.5973 0.2031 0.1229 0.0751 0.0017           

Tur4_66 Alleles 201 193 197 205 189           

  Frq 0.7932 0.1644 0.0102 0.0237 0.0085           

Tur4_98 Alleles 192 196              

  Frq 0.4051 0.5949              

D22 Alleles 116 118 110 120            

  Frq 0.4031 0.4677 0.0731 0.0561            

D8 Alleles 326 342 322             

  Frq 0.4751 0.306 0.2189             

F10 Alleles 386 390 382 378            

  Frq 0.3549 0.07 0.43 0.1451            

Tur4_138 Alleles 223 215 207 219 227 211          

  Frq 0.2746 0.4102 0.0644 0.0915 0.1576 0.0017          

Tur4_141 Alleles 238 250 242 282 246 278 254 234 230 218      



4 
 

  Frq 0.0576 0.2746 0.2542 0.0458 0.1288 0.0254 0.1119 0.061 0.0136 0.0271      

Tur4_87 Alleles 186 178 190 182 194           

  Frq 0.6492 0.1305 0.178 0.0237 0.0186           

Tur4_91 Alleles 227 207 223 231 235 215 211 219        

  Frq 0.3932 0.239 0.0373 0.2085 0.0373 0.0254 0.0237 0.0356        

Tur4_162 Alleles 407 411 403             

  Frq 0.3542 0.5797 0.0661             

MK9 Alleles 168 174 172 170 176 178          

  Frq 0.4352 0.1177 0.2133 0.2116 0.0205 0.0017          

MK5 Alleles 205 213 211 215 219           

  Frq 0.1288 0.3356 0.2949 0.2322 0.0085           

Tur4_132 Alleles 330 334 326             

  Frq 0.9136 0.078 0.0085             

KWM12 Alleles 166 170 174 186 156 164 168 182 190 184 160 188 178 162 161 

  Frq 0.3576 0.1729 0.1763 0.0881 0.0712 0.0153 0.0136 0.039 0.0034 0.0475 0.0017 0.0017 0.0017 0.0085 0.0017 

EV37 Alleles 204 210 216 202 220 212 194 222 218 224 206 208    

  Frq 0.3339 0.3145 0.0901 0.0495 0.0389 0.0689 0.0477 0.03 0.0159 0.0053 0.0018 0.0035    

Tur4_80 Alleles 311 323 291 315 319 303 327         

  Frq 0.0458 0.3356 0.1305 0.2525 0.1831 0.0305 0.022         

MK3 Alleles 161 163 157 165 167 147 169         

  Frq 0.099 0.3567 0.0956 0.3891 0.0256 0.0034 0.0307         

Tur4_142 Alleles 330 342 334 338            

  Frq 0.1458 0.0492 0.1559 0.6492            

Tur4_153 Alleles 215 219              

  Frq 0.7271 0.2729              

Tur4_MK8 Alleles 103 109 111 107 113 105 87 115 97       

  Frq 0.1451 0.0939 0.4471 0.244 0.0119 0.0222 0.0256 0.0068 0.0034       
 

 



5 
 

Table S3: Summary statistics of seven relatedness estimators resulting from simulations in COANCESTRY 

n=600 TrioML Wang LynchLi LynchRd Ritland QuellerGt DyadML TrueValue 

Mean 0.267 0.268 0.265 0.269 0.278 0.262 0.289 0.271 

Variance 0.038 0.046 0.047 0.052 0.095 0.046 0.039 0.033 

MSE 0.010 0.015 0.015 0.019 0.060 0.015 0.011  
 

Table S4: Correlation matrix of seven relatedness estimators and the simulated true value 

Correlation 
Coef TrioML Wang LynchLi LynchRd Ritland QuellerGt DyadML TrueValue 

TrioML 1        
Wang 0.927 1       
LynchLi 0.927 0.969 1      
LynchRd 0.884 0.834 0.841 1     
Ritland 0.666 0.595 0.610 0.820 1    
QuellerGt 0.923 0.930 0.962 0.844 0.635 1   
DyadML 0.99 0.938 0.936 0.894 0.669 0.932 1  
TrueValue 0.860 0.820 0.822 0.790 0.610 0.821 0.859 1 

Maternity analyses 
To test for influences of vertical social learning on sponging, we created a network reflecting the 

mother-offspring relationship based on field observations of 278 mother-offspring pairs. To match 

additional mother-calf pairs, we ran maternity analyses in CERVUS 3.0.7 [9] for individuals with 

haplotype E and H (since 42 spongers with known haplotype carried haplotype E, and one sponger 

carried haplotype H) and with no more than three microsatellite loci missing. (Note that the single 

individual carrying haplotype H is a male sponger, who was only seen with a sponge twice out of 25 

observations. He is not a regular sponger, but rather appears that have picked up sponges that other 

individuals have dropped without necessarily using them as foraging tools, as has been observed in 

other individuals (unpublished data). We nevertheless decided to include him as a sponger in the 

analysis to be consistent with our definition of a ‘sponging’ individual [see manuscript]).   

First, in order to obtain critical values of likelihood ratios used for parentage analysis on empirical 

data, a maternity simulation was run for individuals with haplotypes E and H separately. As the 

mitochondrial haplotype is maternally inherited, candidate mother and offspring always carry the 

same haplotype. To determine the number of candidate mothers for all offspring in the E and H data 

set, respectively, we created a home range with all GPS locations of observations of individuals 

carrying haplotypes E and H, respectively (for details on calculating home ranges, see below). We then 

calculated home range overlap of all individuals who were either female or of unknown sex (i.e., 

excluding genetically known males) and who had any overlap with the E or H home range, respectively. 

This resulted in 355 candidate mothers for the haplotype E data set and 343 candidate mothers for 
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the H data set, both of which are likely a conservative over-estimate (since some individuals of 

unknown sex will be male). Other input parameters were set as following: the proportion of sampled 

individuals (calculated as the proportion of sampled females out of the total number of candidate 

mothers) was set to 0.44 (for both E and H), while the allele frequency (Tab. S2), the proportion of loci 

typed (= 0.995) and the proportion of loci mistyped (= 0.0038) were obtained from empirical data – 

the latter stemming from 29 individuals who had been genotyped more than once. The output of the 

simulations (run for 1,000 offspring) was then used to run the maternity analyses on empirical data. 

To match mother-offspring pairs reliably, we only considered matches with ‘logarithm of the odds’ 

(LOD) scores significantly higher (at 5% level) than the critical value obtained from simulations [9] and 

with dyadic relatedness estimates between 0.426 and 0.631, which corresponded to the range of 

relatedness estimates between known mother-offspring pairs. Furthermore, we only matched 

mother-offspring pairs where approximate birth date of both candidates (based on speckle levels [10], 

body size, and time of first offspring for females) was known and at least 10 years apart [11].  

In the network modelling vertical social transmission, we set entries between all mother and offspring 

pairs to 1, as dyadic association strength - which has been used in the network modelling horizontal 

and oblique learning (see main text) - would not capture vertical learning opportunities in cases where 

offspring have been weaned and no longer associate with their mothers. Therefore, entries of 1 better 

reflect our knowledge that mother and offspring have spent several years in close association, during 

which vertical learning could have occurred.  

Calculation of home range overlaps 
Diffusion of a foraging skill, like sponging, might follow an association network simply because 

individuals who spend a lot of time together also experience the same ecological conditions. Being 

subject to the same ecological conditions, individuals might therefore tend to learn the same foraging 

skills asocially. If this were the case, we would expect a network of similarity in habitat usage to be a 

better predictor of the pattern of diffusion, since individuals who do not spend time together but 

utilise the same environments would be similarly predisposed to learn the skill. Therefore, unless 

environmental usage and the social network are highly correlated, one could distinguish between 

these alternatives and/or quantify the relative influence of each. We used dyadic home range overlap 

as a proxy for the extent to which two individuals experience the same ecological conditions. For each 

individual with at least seven sightings, a home range was defined using 95% Epanechnikov kernel 

density estimates (R package adehabitatHR [12]). When calculating kernel densities, the choice of a 

smoothing factor greatly influences the accuracy of the estimated home range and should thus be 
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carefully considered [13]. The commonly used smoothing factor href (reference bandwidth), which is 

defined as  

 ℎ𝑟𝑒𝑓 = 𝜎 ∗ 𝑛−1 6⁄       

where 𝜎 = 0.5(𝜎𝑥 + 𝜎𝑦)  

assumes that the true distribution of observations follows a normal distribution [14]. If this 

assumption is violated, href tends to over-smooth and therefore overestimate home ranges [15]. 

Nevertheless, it is often preferred over alternative methods, such as least-square cross validation 

(LSCV), which makes no assumption about the true distribution but tends to under-smooth and cannot 

be estimated in many cases [12]. Visual inspection, which can aid in finding an appropriate smoothing 

factor [13], of 12 different dolphin home ranges revealed that href tended to over-smooth home 

ranges, particularly in cases where relocations were far apart, but under-smooth home ranges with 

only a few relocations that were close together. We therefore selected a subjective smoothing 

parameter by setting a lower limit of 1,000 and an upper limit of 4,000 for href, and then calculated a 

new smoothing factor for each individual as 

ℎ = 0.5(ℎ𝑟𝑒𝑓) + 1,500  

where 1,000 ≤ href ≤ 4,000, 

which appeared to more accurately reflect the 12 inspected home ranges, given the number and 

distribution of the sightings (Fig. 1).   

In order to remove land from the estimated kernel densities (the land boundaries in our study area 

were too complex to implement the ‘boundary’ parameter provided in adehabitatHR [12]), each 

individual’s utilisation distribution was multiplied with a grid (100 m resolution) with values of 1 (for 

grid cells on water) and 0 (for grid cells on land). We then re-weighted each grid cell within an 

individual’s home range to ensure that, overall, the kernel density added up to 1 again [16]. We then 

calculated dyadic home range overlap (95%) using the ‘utilisation distribution overlap index’ (UDOI) 

(adehabitatHR [12]), which is considered most accurate when quantifying space-use sharing [17].  



8 
 

 

Figure 1: Contours (95%) of home ranges with reference bandwidth (href; dark grey) and customised smoothing factor after 
land removal (light grey) for a) a home range with small smoothing factor (href: 632; custom: 2,000; 29 sightings); b) a 
home range with an average smoothing factor (href: 3,181; custom: 3,090; 12 sightings); and c) a home range with large 
smoothing factor (href: 5,703; custom: 3,500; 11 sightings).   

Selecting a threshold for including individuals to maximise the power 

of NBDA 
Since NBDA infers social learning if a behaviour follows the social network, there is a trade-off between 

sample size and data quality. Only considering individuals above a certain threshold of sightings (i.e., 

dropping individuals with few sightings) can increase certainty about the strengths of connections 

within the network but, at the same time, decrease the power of NBDA to reliably detect social 

learning, especially if linking individuals are removed [18]. To select a threshold that maximises the 

power of NBDA to detect social learning, we ran a simulation approach [18]  – for computational 

reasons only considering individuals that had been seen at least five times (N = 538 individuals). A 

social learning process is simulated though the population assuming learning follows the NBDA model 

[19]. The resulting order of acquisition is then used in an NBDA which uses a social network with 

introduced observational error that varies with the number of times each dyad has been seen together 

or apart. Low numbers of sightings may result in greater error, while a large number of sightings results 

in a value that is closer to the real strength of association between individuals. The power of NBDA is 

then calculated as the percentage of models where social learning correctly outperforms asocial 

models. We ran the simulations with parameters s = 20 (selected through trial and error) and number 

of learners = 9, and tested for cut-off points of 5-20 sightings (while dropping all individuals below the 

cut-off point regardless of whether they were informed or not). The social learning parameter s 

estimates the strength of social transmission per unit of association with informed individuals relative 

to the rate of asocial learning [19]. The number of individuals that learned sponging between 2007 

and 2018 in our empirical data set was 18. However, maternity data was unavailable for nine 

individuals and they were thus excluded from the NBDA analysis as learners (see manuscript), which 
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is why we set the number of learners in the simulation to nine instead of 18. A threshold of seven 

sightings resulted in highest statistical power, with an acceptable (though slightly conservative) level 

of a false positive error rate (1.2%), i.e., when s was set to 0. The simulation approach is set up to 

simulate learning among associated individuals and does not take different pathways into account. 

Therefore, the threshold of seven maximises the power of NBDA to detect horizontal social learning 

in the sponging data set.  

Applying NBDA 
Since exact dates of the acquisition of sponging were not known, we applied the ‘order-of acquisition 

diffusion analysis’ (OADA) [19]. In OADA, social learning is inferred if the order with which individuals 

learn the behaviour follows the social network. Unlike the alternative ‘time of acquisition diffusion 

analysis’ (TADA), OADA does not make any assumptions about the baseline rate of acquisition, which 

may have fluctuated over time as changing prey availability and environmental conditions made 

sponging more or less likely to be learned, across the population.  

Nine spongers with no maternity data available were removed from the diffusion using the 

filteredNBDAdata function provided in the NBDA package v0.6.1 [20].  

Previous studies using NBDA with the inclusion of individual-level variables (ILVs) have selected 

between an ‘additive’ model, in which the ILVs affect only the rate of asocial learning, and a 

‘multiplicative’ model, in which the ILVs all affect both asocial learning and social transmission in the 

same way. Here, we used an approach suggested by [21] and fit a more general ‘unconstrained’ model, 

in which the effects of each ILV on asocial and social learning are estimated as independent 

parameters. Thus, we allow for the fact that i) some variables might influence social learning without 

forcing the model to assume that all variables do so; and ii) variables might have a different effect on 

asocial and social learning. 

We found that standard errors for transmission parameters s and for the ILVs could not be reliably 

obtained, because of highly asymmetrical profile likelihood. This also makes standard errors a 

misleading measure of precision. Therefore, we derived 95% confidence intervals for parameters using 

profile likelihood techniques [22] based on the best predictive model. 

Influence of ILVs on social and asocial learning rates 
Results suggested an increase in vertical social learning of sponging when being female. None of the 

other ILVs were associated with the learning rate of sponging (socially or asocially) (Tab. S5).   
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Table S5: Support for ILVs and model average estimates for ILVs with relative support >0.5. 

ILV Sex (females 
to males) 

Average water 
depth 

Average group 
size 

Haplotype 

Relative support for effect on social 
learning 

0.975 0.167 0.110 0.069 

Model averaged estimate * (back-
transformed) 

126 - - - 

Profile likelihood confidence 
interval conditional on the best 
model 

[9.5; 2897] - - - 

Relative support for effect on 
asocial learning 

0.056 0.017 0.060 0.056 

Model averaged estimate - - - - 

Profile likelihood confidence 
interval conditional on the best 
model 

- - - -  

*Model averaged estimates are weighted medians across the set of values. In OADA, extreme values 

can badly skew weighted means, even in models with a very small model weighting. Thus, we used 

medians as a more robust estimate.   
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