
Supplementary file:

Age-structure and transient dynamics in epidemiological systems

S1 Plotting Figures 2–3

The trajectory shown in Figure 2 is that of a model with two age classes (M = 2) with birth and
death rate µ = 1

50yr−1, incubation rate σ = 365
8 yr−1, recovery rate γ = 365

5 yr−1, aging rate of
ν1 = 1

12 and infection from outside ι = 10−4 yr−1. Using these values, the younger age class N1 has
an average age of 9.7 years old. We set the transmission rate within the N1 class to be high and
seasonal due to school-term forcing, β1,1(t) = bT (t) where T (t) is the corrected term-time forcing
function (Keeling and Rohani, 2008), given by

T (t) =

{
1+s

(1+s)0.773+(1−s)(1−0.773) , if mod(t, 1) ∈
(

7
365 ,

100
365

]
∪
(
115
365 ,

199
365

]
∪
(
252
365 ,

300
365

]
∪
(
308
365 ,

365
365

]
1−s

(1+s)0.773+(1−s)(1−0.773) , otherwise.

Here t is assumed to be in years and mod(t, 1) is the decimal part of t. From this definition, the
average of bT (t) over a one-year period is b.

The parameter values for Figures 2–3 were chosen so that the pre-vaccine era dynamics display
a biennial cycle similar to what we see for measles in London. In particular, we chose parameters
of the homogeneous model used in Figure 3 that are close to the values of the best homogeneous
model fit that we found for the 1945–1990 data in Section 4. The homogeneous model in Figure 3
has a transmission rate magnitude of b = bhom = 1750 yr−1 and amplitude of seasonality of s =
shom = 0.23. We assumed that the age-structured model had contact rates of the form β1,1 = bT (t)
and β2,2 = β1,2 = β2,1 = 1

2b. We then calculated the values of b and s so that the age-structured
model has a magnitude and amplitude that coincides with the homogeneous model in Figure 3 before
vaccination. We found that this required b = bage = 435 and the amplitude of seasonality for children
to be s = sage = 0.257. Using the next-generation matrix method (Heesterbeek and Diekmann,
2000; van den Driessche and Watmough, 2008), we computed that the basic reproduction numbers
of the models are about 7.8 for the age-structured model and about 24 for the homogeneous model
(computed under the simplifying assumption that school-aged children transmission is constant at
b).

The mean age of the infected class in Figure 2 was calculated by first finding the two-year-
averaged forces of infection for both the younger and older age classes. The reciprocals of these were
estimated to be the two-year-averaged mean age at which these different classes get infected. The
overall mean age of infection were then calculated from these by multiplying age classes’ mean age
of infected by its two-year-averaged fraction of contributions to the total infections, and adding the
results.

S2 Calculation of sage

The age-structured model does not have the exact same bifurcation diagram as a homogeneous model
due to the overall effective transmission rate β̂(t) not necessarily having the same form of the term-
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time forcing function. However our tests using simulations of the model show that the age-structured
model often has similar dynamics as a homogeneous model when the magnitude and amplitude of
the effective transmission rate β̂(t) is about the same. Thus it is informative, if not exact, to plot
the change in the magnitude and amplitude of β̂(t) on the two-dimensional bifurcation diagram of
the homogeneous model (as in Figure 3).

The effective transmission rate β̂(t) magnitude for the age-structured model was computed by
taking the moving average value of β̂(t) over two years. The amplitude is more complicated due
to the form of the term-time forcing function. We approximate it in the following manner: Let
p = 0.773 (the fraction of time that school is in session) and let q(t) be the absolute value of the
difference between β̂(t) and the magnitude. Then, the amplitude can be calculated from:

q(t) = p

(
1 + sage

(1 + sage)p+ (1− sage)(1− p)
− 1

)
+ (1− p)

(
1− 1− sage

(1 + sage)p+ (1− s)(1− p)

)
. (S2.1)

This yields,

sage(t) =
q(t)

1− (2p− 1)(q + 2p− 1)
. (S2.2)

We computed the changing amplitude sage(t) from the two-year moving average of q(t). We then
plotted the two-year moving average of the amplitude against the magnitude (using the two-year
moving average value of β̂(t)) in Figure 3.

S3 Bifurcation diagrams

We first conducted a search for different periodic solutions (one-year period to 16-year periods) of
the homogeneous and age-structured models using long-term numerical integration. We did this by
solving the systems of equations in the natural log scale and using MATLAB’s ode23, starting and
stopping the numerical integrator at all time points for which the transmission rates changed. This
was followed by using numerical continuation to solve for both the periodic solutions, the monodromy
matrix and the Floquet multipliers to determine the stability of periodic solutions with periods of
one, two and three. The results are shown in Figure S3.1. Plots of some of these periodic solutions
are shown in Figure S3.2. A comparison of the pre-vaccine era dynamics is shown in Figure S3.3 and
a comparison of the vaccine era dynamics is shown in Figure S3.4. A comparison of the behaviour
of the different Floquet multipliers are shown in Figure S3.5.

S4 Details on fitting the models to the London data

All data and code required to reproduce the results of Section 5 are available via the Dryad Digital
Repository (DOI:10.5061/dryad.vj645q8).

We obtained the annual number of births and population sizes for greater London from 1944 to
1994 (Grenfell et al., 2001). By adding up the births and population sizes from for all the boroughs
that comprise inner London, we also obtained the corresponding demographic information from inner
London from borough-specific data from 1939 to 1964 (Grenfell et al., 2001). These two sets of data
were compared during the overlapping period from 1944–1964. We found that during this period,
the ratio of births from inner London to that from greater London ranged from 0.373 to 0.445, and
the ratio of population sizes ranged from 0.386 to 0.411. Thus we made the assumption that we
could use the complete data from greater London to infer the demographics in inner London, by
multiplying both the number of births and population sizes by 0.4.
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(a) Homogeneous model, computed using long-
term numerical simulations
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(b) Homogeneous model, computed using numer-
ical continuation

(c) Age-structured model, computed using long-
term numerical simulation
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(d) Age-structured model, computed using nu-
merical continuation

Figure S3.1: Bifurcation diagrams showing the existence of one-year, two-year and three-year periodic solutions for
fixed amplitudes (s = 0.23 for the homogeneous case). The vertical axes shows the log-transformed values of the
states. In (b) and (d), blue represents a one-year periodic solution, green represents a two-year periodic solution and
red represents a three-year periodic solution. Solid lines indicate stable and dashed lines indicate unstable solutions
(determined using numerically computed Floquet multipliers).
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(a) Homogeneous, Period 1
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(b) Homogeneous, Period 2
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(c) Homogeneous, Period 3
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(d) Age-structured, Period 1
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(e) Age-structured, Period 2

Figure S3.2: Plots of some of the stable periodic orbits from Figure S3.1 as b changes from its minimum (thin coloured
line) to maximum value (thick coloured line). The vertical axes show the log-transformed values of the indicated
infected class.
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(d) Orbits (age-structured)
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(e) Poincare map (age-structured)
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(f) Initializations (age-structured)

Figure S3.3: Pre-vaccine era dynamics. The first row shows dynamics from the homogeneous model. The second row
shows dynamics from the age-structured model. All figures show the log-transformed values of the states.
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(a) Orbits (homogeneous)
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(b) Poincare map (homogeneous)
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(c) Initializations (homogeneous)
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(d) Orbits (age-structured)
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(e) Poincare map (age-structured)
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(f) Initializations (age-structured)

Figure S3.4: Steady-state dynamics at 60% vaccination coverage. The first row shows dynamics from the homogeneous
model. The second row shows dynamics from the age-structured model. All figures show the log-transformed values of
the states.
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(a) Homogeneous model, no vaccine
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(b) Age-structured model, no vaccine
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(c) Age-structured model, 60% vacci-
nation

Figure S3.5: Characteristics of the Floquet multipliers for the different models. The imaginary part of the Floquet
multipliers indicates the occurrence of a second frequency in the system, which explains the appearance of longer
inter-epidemic periods after the start of vaccination.
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To fit the models to data, we used time-varying functions µB(t) and N(t) using the linear
interpolations of the data on birth rates and total population size. A time-varying death and net
migration rate µd(t) was calculated using the birth rates and the population size (note that µd(t)
can be negative). The constant vaccine coverage p was also replaced by linear interpolations p(t) of
the national vaccine estimates for England.

The age-structured model fitted to the London data consisted of three age classes (M = 3). The
first age class corresponded to very young children with aging rate of ν1 = 1

4 yr−1. The second age
class corresponded to older children who are in school with aging rate of ν2 = 1

12 yr−1. The last age
class corresponded to adults. Assuming a mean lifetime of 70 years (µ = 1

70) and using (2.1), the
mean age of individuals in the first age class is 1

µ+ν1
≈ 3.8 years and the mean age in the second age

class is 1
µ+ν1

+ 1
µ+ν2

≈ 14 years.
To initialize the models, we used the steady state age-distributions of the different compartments

and age classes assuming a constant birth and death rate of µ = 1
70 yr−1. Here we use the subscripts

Y , C and A to denote the young children, older children and adult age classes. The initial number
of individuals in each age class values were initialized using an approximately steady state age-
distribution for the young children (NY (a)), children (NC(a)) and adults (NA(a)) where,

NY (a) = µe−(µ+ν1)a,

NC(a) =
µν1

ν1 − ν2
[
e−(µ+ν2)a − e−(µ+ν1)a

]
, (S4.1)

NA(a) =
µν1ν2
ν1 − ν2

[1− e−ν2a

ν2
− 1− e−ν1a

ν1

]
e−µa.

Under the assumption of constant birth and death rates, the equilibrium fractions of each age class
is,

N∗Y =

∫ ∞
0

NY (a) =
µ

µ+ ν1
,

N∗C =

∫ ∞
0

NC(a) =
µν1

(µ+ ν1)(µ+ ν2)
, (S4.2)

N∗A =

∫ ∞
0

NA(a) =
ν1ν2

(µ+ ν1)(µ+ ν2)
.

To determine the fraction of susceptible S∗i within each subpopulation i (i = Y,C,A), we used the
following formula,

S∗i =

∫∞
0 (1− F (a))Ni(a)da∫∞

0 Ni(a)da
.

The function F (a) is the age-specific susceptibility to measles which can be computed for different
regions and time periods using either age-stratified measles notification data or sero-prevalence data.
An estimate of the number of susceptibles S∗i within each subpopulation Ni for different time periods
is given in Table S4.1.

We note that Grenfell and Anderson (1985) included a susceptibility function for England and
Wales based on age-stratified notification data from 1948–1968 (pre-vaccine era) in their paper.
However, we were unable to use this to compute the susceptible fractions since this function yielded
values much larger than one.

Since our model simulations start in the year 1945, we decided to initialize the fraction of
susceptible young children at S∗Y = 0.863 and fraction of susceptible adults at S∗A = 0.0173 (using
the function derived from sero-prevalence data from small families New Haven, CT in the pre-vaccine
era). All other initial states of the model were fitted. We did not fix the susceptible fractions for older
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Table S4.1: Comparison of susceptible fractions using different sources of susceptibility functions F (a) given in Grenfell
and Anderson (1985)

Data used to produce
susceptibility function

Young children
susceptible
fraction, S∗Y

Older children
susceptible
fraction, S∗C

Adult susceptible
fraction, S∗A

New Haven, CT
(sero-prevalence in small
families in 1959)

0.863 0.34 0.0173

New Haven, CT
(sero-prevalence in big
families in 1959)

0.723 0.214 0.00915

England and Wales
(age-stratified case
notification from 1969–1982)

0.666 0.198 0.0088

children in case this strongly affects the phase of the epidemics. For the same reason, we did not fix
the initial susceptible fraction for the homogeneous model that was compared to the age-structured
model.

All transmission rates except for the transmission rate among older children were set to be
constant. Here we again use the subscripts Y , C and A to denote the young children, older children
and adult age classes. We set β1,1(t) = βY Y , β1,2(t) = β2,1(t) = βY C , β1,3(t) = β3,1(t) = βY A
β2,3(t) = β3,2(t) = βCA and β3,3 = βAA. The transmission rate with the age class of older children
β2,2(t) was set to be a seasonal B-spline with six basis functions (with six corresponding parameters
to be fitted). These were generated using the periodic.bspline.basis function in pomp with degree
equal to three and period of one year.

The exposed and infected compartments of each age class were each subdivided into K = 3
subcompartments

Ei =
K∑
k=1

E
(k)
i , Ii =

K∑
k=1

I
(k)
i

in order to allow for Erlang-distributed latent and infectious periods. The models were solved as
discrete time, discrete state systems with small stepsize ∆t = 0.005 year.

We use the notation ∆X,Y (t) to denote a transition from compartment/subcompartment X to
Y over time interval t to t + ∆t. For i = 1, . . . ,M , the we first calculate the transitions due to the
disease process:

∆
Si,E

(1)
i

(t) =
(

1− exp(−λi∆t)
)
Si(t),

∆
E

(k)
i ,E

(k+1)
i

(t) =
(

1− exp(−Kσ∆t)
)
E

(k)
i (t), for k = 1, . . . ,K − 1,

∆
E

(K)
i ,I

(1)
i

(t) =
(

1− exp(−Kσ∆t)
)
E

(K)
i (t),

∆
I
(k)
i ,I

(k+1)
i

(t) =
(

1− exp(−Kγ∆t)
)
I
(k)
i (t), for k = 1, . . . ,K − 1,

∆
I
(K)
i ,Ri

(t) =
(

1− exp(−Kγ∆t)
)
I
(K)
i (t).

(S4.3)
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where the force of infection on age class i is given by,

λi(t) =
M∑
j=1

βi,j(t)

∑K
k=1 I

(k)
j

Nj
+

ι∑M
j=1Nj(t)

(S4.4)

and Ni = Si+Ei+Ii+Ri. Each compartment were updated using these transitions. For i = 1, . . . ,M ,

Si(t+ ∆t) = Si(t)−∆
Si,E

(1)
i

(t),

E
(1)
i (t+ ∆t) = E

(1)
i (t) + ∆

Si,E
(1)
i

(t)−∆
E

(1)
i ,E

(2)
i

(t),

E
(k)
i (t+ ∆t) = E

(k)
i (t) + ∆

E
(k−1)
i ,E

(k)
i

(t)−∆
E

(k)
i ,E

(k+1)
i

(t), for k = 2, . . . ,K − 1,

E
(K)
i (t+ ∆t) = E

(K)
i (t) + ∆

E
(K−1)
i ,E

(K)
i

(t)−∆
E

(K)
i ,I

(1)
i

(t),

I
(1)
i (t+ ∆t) = I

(1)
i (t) + ∆

E
(K)
i ,I

(1)
i

(t)−∆
I
(1)
i ,I

(2)
i

(t),

I
(k)
i (t+ ∆t) = I

(k)
i (t) + ∆

I
(k−1)
i ,I

(k)
i

(t)−∆
I
(k)
i ,I

(k+1)
i

(t), for k = 2, . . . ,K − 1,

I
(K)
i (t+ ∆t) = I

(K)
i (t) + ∆

I
(K−1)
i ,I

(K)
i

(t)−∆
I
(K)
i ,Ri

(t),

Ri(t+ ∆t) = Ri(t) + ∆
I
(K)
i ,Ri

(t).

(S4.5)

The compartments were then updated to reflect aging from one age class to the next. For i =
1, . . . ,M − 1,

∆Vi,Vi+1(t) =
(

1− exp(−νi∆t)
)
Vi(t),

∆Si,Si+1(t) =
(

1− exp(−νi∆t)
)
Si(t),

∆
E

(k)
i ,E

(k)
i+1

(t) =
(

1− exp(−νi∆t)
)
E

(k)
i (t), for k = 1, . . . ,K,

∆
I
(k)
i ,I

(k)
i+1

(t) =
(

1− exp(−νi∆t)
)
I
(k)
i (t), for k = 1, . . . ,K,

∆Ri,Ri+1(t) =
(

1− exp(−νi∆t)
)
Ri(t).

(S4.6)

For i = M , we set the transition terms in (S4.6) to zero. Then, for i = 1,

Vi(t+ ∆t)← Vi(t+ ∆t)−∆Vi,Vi+1(t) + p(t)µB(t)∆t,

Si(t+ ∆t)← Si(t+ ∆t)−∆Si,Si+1(t) + (1− p(t))µB(t)∆t,

E
(k)
i (t+ ∆t)← E

(k)
i (t+ ∆t)−∆

E
(k)
i ,E

(k)
i+1

(t), for k = 1, . . . ,K,

I
(k)
i (t+ ∆t)← I

(k)
i (t+ ∆t)−∆

I
(k)
i ,I

(k)
i+1

(t), for k = 1, . . . ,K,

Ri(t+ ∆t)← Ri(t+ ∆t)−∆Ri,Ri+1(t).

(S4.7)

and for i = 2, . . . ,M ,

Vi(t+ ∆t)← Vi(t+ ∆t)−∆Vi,Vi+1(t) + ∆Vi−1,Vi(t),

Si(t+ ∆t)← Si(t+ ∆t)−∆Si,Si+1(t) + ∆Si−1,Si(t),

E
(k)
i (t+ ∆t)← E

(k)
i (t+ ∆t)−∆

E
(k)
i ,E

(k)
i+1

(t) + ∆
E

(k)
i−1,E

(k)
i

(t), for k = 1, . . . ,K,

I
(k)
i (t+ ∆t)← I

(k)
i (t+ ∆t)−∆

I
(k)
i ,I

(k)
i+1

(t) + ∆
I
(k)
i−1,I

(k)
i

(t), for k = 1, . . . ,K,

Ri(t+ ∆t)← Ri(t+ ∆t)−∆Ri,Ri+1(t) + ∆Ri−1,Ri(t).

(S4.8)
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After this, every compartment was multiplied by exp(−µd(t)∆t) (to correct for changes in population
size due to death or migration) and then rounded off to the nearest integer value.

In order to fit this model to data, the number of transitions ∆
I
(K)
i ,Ri

(t) were counted between

each successive time points ti where there is data on weekly measles reports. The number of true
cases Ci is the number of transitions from the infected class to the recovered class from time ti−1 to
ti. We assumed a negative binomial reporting model (to allow for overdispersion) to get the number
of reported cases from the number of true cases. The mean number of reported cases at time ti is
equal to a reporting probability ρ times Ci, and the size parameter is assumed to be equal to 1

τ2

where τ is a parameter that is fitted. The full set of parameters and covariates used for the model
is given in Tables S4.2–S4.3.

Table S4.2: Description of parameters and covariates used in fitting both the homogeneous and age-structured models
to London data

Symbol Parameter/Covariate Fitted/Fixed

M Number of age classes
M = 1 (homogeneous) or
M = 3 (age-structured)

p(t) Time-varying fraction of newborns vaccinated Computed

µB(t) Time-varying per capita birth rates Computed

µd(t)
Time-varying per capita combined death and
immigration rates

Computed

σ Incubation rate 365
8 yr−1

γ Recovery rate 365
5 yr−1

ι
Constant transmission rate from outside the
population

Fitted

ρ Constant reporting probability Fitted

τ Overdispersion parameter in reporting Fitted

b1, . . . , b6
Coefficients of the seasonal transmission rate. Fitted

We fit the model to different lengths of data within 1945–1990 on measles for London. The model
trajectories were computed using (S4.5)–(S4.8) and parameter fitting was conducted using trajectory
matching in the R package pomp (King et al., 2015).

A summary of the results, including the maximum likelihood estimates for the parameters, the
maximum log-likelihood values and Akaike information criterion (AIC) values are given in Table 2.
AIC is calculated using,

AIC = 2(no. of estimated parameter)− 2 log(L) (S4.9)

where L is the likelihood of the model. From Tables S4.2–S4.3, we see that the homogeneous models
in Section 5 have 12 free parameters (six spline coefficients for the seasonal transmission rates, ι,
ρ, τ and three free initial conditions). The age-structured models have nine more parameters than
the homogeneous models (βY Y , βY C , βY A, βCA, βAA and four additional initial conditions). Model
selection is done by choosing the model with lowest AIC.

The maximum likelihood point estimates and confidence intervals of the model parameters are
presented in Table 3 in the main text. The confidence intervals were computed using profile likelihood.
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Table S4.3: Description of parameters and covariates used in fitting the homogeneous or age-structured models to
London data

Symbol Parameter/Covariate Fitted/Fixed

Parameters specific to the homogeneous model

S1(0),
E1(0),
I1(0)

Initial number of susceptible, exposed and infected
individuals in the population respectively

Fitted

R1(0)
Initial number of recovered individuals in the
population

Computed using R1(0) =
N(0)− S1(0)− E1(0)− I1(0)

β1,1(t)
β1,1(t) = exp

(∑6
`=1 b`s`(t)

)
where s`(t) are seasonal

B-splines with period of one year.
Computed using b1, . . . , b6

Parameters specific to the age-structured model

ν1 Aging rate from young children to older children 1
4 yr−1

ν2 Aging rate from older children to adults 1
12 yr−1

S1(0) Initial number of young children susceptible S∗YN
∗
YN(0)

S2(0) Initial number of older children susceptible Fitted

S3(0) Initial number of adults susceptible S∗AN
∗
AN(0)

Ei(0)

Initial number of individuals in the exposed
compartment of age class i. Each subcompartment
of Ei was assumed to have Ei(0)

K individuals
(rounded off to the nearest integer.

Fitted

Ii(0)

Initial number of individuals in the infected
compartment of age class i. Each subcompartment
of Ii was assumed to have Ii(0)

K individuals (rounded
off to the nearest integer.

Fitted

Ri(0)
Initial number of individuals in the recovered
compartment of age class i.

Computed using
Ni(0)− Si(0)− Ei(0)− Ii(0)

β1,1(t)
Transmission rate among young children, constant
value of βY Y ,

Fitted

β1,2(t),
β2,1(t)

Transmission rate between young and older children,
constant value of βY C

Fitted

β1,3(t),
β3,1(t)

Transmission rate between young children and
adults, constant value of βY A

Fitted

β2,2(t)
β2,2(t) = exp

(∑6
`=1 b`s`(t)

)
where s`(t) are seasonal

B-splines with period of one year.
Computed using b1, . . . , b6

β2,3(t),
β3,2(t)

Transmission rate between older children and adults,
constant value of βCA

Fitted

β3,3(t)
Transmission rate among adults, constant value of
βAA

Fitted
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Figure S4.6: (a)–(c) Trajectories of the best fitting model to different lengths of data. The first row is the data. The
second row shows sample simulations (deterministic model + measurement noise) for the homogeneous model and the
third row shows a sample simulation for the age-structured model.
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(a) Homogeneous model fitted to 1945–1968 data
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(b) Age-structured model fitted to 1945–1968 data
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(c) Homogeneous model fitted to 1945–1978 data
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(d) Age-structured model fitted to 1945–1978 data

Figure S4.7: The infected fraction, susceptible fraction and average transmission rate over time in the (a) homogeneous
and (b) age-structured models at their maximum likelihood estimate parameter values when fitted to different lengths
of data. Simulations of the models are shown until 1990.

13



Infected
S

usceptible
A

vg. transm
ission rate

1960 1980 2000

0

1000

2000

3000

4000

50000

60000

70000

80000

90000

1500

1750

2000

Time

   
   

   
   

   
   

   
   

   
   

   
   

   
F

ra
ct

io
n 

of
 th

e 
po

pu
la

tio
n

(a) Homogeneous model fitted to 1945–1990 data
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(b) Age-structured model fitted to 1945–1990 data

Figure S4.8: The infected fraction, susceptible fraction and average transmission rate over time in the (a) homogeneous
and (b) age-structured models at their maximum likelihood estimate parameter values when fitted to 1945–1990 data.
This is the same as Figure 9 in the main text and is added her for completeness and comparison with Figure S4.7.
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Figure S4.9: (a) Comparison of the best fit transmission rates between different age classes for the age-structured model
fitted to 1945–9168 data, 1945–1978 and 1945–1990 data. Here betaCC represents the time-averaged transmission rate
between older children. (b) The seasonal transmission rates between older children, plotted over a one-year period.
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Figure S4.10: Comparison of the log-likelihoods corresponding to each data point (number of reported measles cases
each week) for each model fitted to data from 1945–1990. We note that (c) is the same as Figure 7 in the main text
and is included here for completeness.
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S5 Estimates of the basic reproduction numbers for measles

Here we present the basic reproduction numbers for the measles models that we fitted to the
London data. These were all computed using the next-generation matrix method (Heesterbeek and
Diekmann, 2000; van den Driessche and Watmough, 2008). To simplify the calculation, we assumed
constant transmission rates. For the age-structured model with M = 3, we define the matrices F
and V by

F =



0 0 0 0 0 0

0
βY Y N

∗
Y

N∗
Y

0
βY CN

∗
Y

N∗
C

0
βY AN

∗
Y

N∗
A

0 0 0 0 0 0

0
βY CN

∗
C

N∗
Y

0
βCCN

∗
C

N∗
C

0
βCAN

∗
C

N∗
A

0 0 0 0 0 0

0
βY AN

∗
A

N∗
Y

0
βCAN

∗
A

N∗
C

0
βAAN

∗
A

N∗
A


and

V =



σ + µ+ ν1 0 0 0 0 0
−σ γ + µ+ ν1 0 0 0 0
−ν1 0 σ + µ+ ν2 0 0 0

0 −ν1 −σ γ + µ+ ν2 0 0
0 0 −ν2 0 σ + µ 0
0 0 0 −ν2 −σ γ + µ


Using the maximum likelihood point estimates for each length of data (with βCC being the geometric
mean of βCC(t), same as in Table 3) and assuming µ = 1

70 yr−1, the basic reproduction number can
be found by computing the spectral radius of the next-generation matrix K = FV −1,

R0 = ρ
(
FV −1

)
.

The computed values of R0 are shown in Table S5.4. We note that we see a big difference between the
R0 values for the homogeneous and age-structured models, as has already been noted in Section S1.
The values computed for the homogeneous models are smaller than those found for London in He
et al. (2010) where the infectious and latent periods were not fixed. They are closer to the value of
10.2 found by Edmunds et al. (2000) from age-stratified force of infection estimates.

Table S5.4: Basic reproduction numbers at the maximum likelihood parameter estimates of the models fitted to the
London data.

Model type Years of data
Basic reproduction

number at MLE

Age-structured
1945–1968 8.6
1945–1978 26.9
1945–1990 7.9

Homogeneous
1945–1968 22.6
1945–1978 24.7
1945–1990 24.5

S6 Age-specific forces of infection

In Edmunds et al. (2000), the age-specific forces of infection of measles were estimated using
notification data from 1956–1965 in the UK. They estimated 0.1 yr−1 (for 0–1 year olds), 0.21
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yr−1 for (2–4 year olds and 11–17 year olds), 0.48 yr−1 (for 5–10 year olds) and 0.11 yr−1 for adults
(18+).

Although the age-structured model in this paper only had three age classes, it is possible to do
a rough comparison of the forces of infection experienced by the three age classes at the MLEs of
this model. The forces of infection of the age-structured models at its different MLEs (corresponding
to fits using different lengths of data) were computed using (S4.4) and their values from 1956–1965
were averaged and plotted in Figure S6.11. Here we see that the forces of infection experienced by
older children is much higher than that of the other age classes. Our models’ estimated values for the
older children are also higher than the maximum values computed in Edmunds et al. (2000) while
our values for young children are lower. Our estimated force of infection for adults are similar to
those found in Edmunds et al. (2000).
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Figure S6.11: Comparison of the average forces of infection from 1956–1965 of the age-structured models at its different
MLEs (corresponding to fits to different lengths of data).
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