Supporting Information

Mononuclear Manganese(III) Superoxo Complexes: Synthesis, Characterization and Reactivity

Yen-Hao Lin,[†] Hanna Hinrika Cramer,[‡] Maurice van Gastel,[⊥] Yi-Hsuan Tsai,[†] Chi-Yi Chu,[†] Ting-Shen Kuo,[#] I-Ren Lee,^{*,†} Shengfa Ye,^{*,⊥} Eckhard Bill,^{*,‡} and Way-Zen Lee^{*,†}

[†]Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan

[‡]Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr D-45470, Germany

[⊥]Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr D-45470, Germany

[#]Instrumentation Center, Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan

*Corresponding author. Email: wzlee@ntnu.edu.tw (W.-Z.L); shengfa.ye@kofo.mpg.de (S.Y.); eckhard.bill@cec.mpg.de (E.B.); irenlee@ntnu.edu.tw (I.-R.L)

Contents	
Figures S1-S18	
Tables S1-S5	
References 1-16	

Figure S1. ORTEP presentation of Mn(BDPP) (1) and $Mn(BDP^{Br}P)$ (1'). Hydrogen atoms are omitted for clarity.

Figure S2. EPR spectrum of **1** (1 mM) in MeTHF recorded at 10 K. (Frequency 9.65629 GHz, power 0.2 mW, modulation 100 kHz/0.75 mT)

Figure S3. EPR spectrum of **1'** (1 mM) in MeTHF recorded at 10 K. (Frequency 9.65864 GHz, power 0.2 mW, modulation 100 kHz/0.75 mT)

Figure S4. UV-vis spectra of **1** (black, 0.4 mM) reacting with O_2 forming **2** (orange, 0.4 mM) in THF at -80 °C.

Figure S5. (a) The trace of formation of **2'** (0.4 mM) by bubbling O_2 into a THF solution of **1** from the monitoring for the absorption band at 450 nm; (b) The trace of retention of **2'** in THF (0.4 mM) from purging the solution with argon for 10 mins at -80 °C.

Figure S6. EPR spectrum of **2** (1 mM) recorded at 10 K. (Frequency 9.655 GHz, power 0.2 mW, modulation 100 kHz/0.75 mT). The simulation was obtained by the following parameter, $g_{iso} = 1.997(10)$, D = -5.4(5) cm⁻¹, E/D = 0.05(1), and $|A_{x,y,z}| = 237(10)$, 223(10), 158(10) MHz. The spin concentration of the superoxo complex with S = 3/2 was determined two different samples to be ca. 95 and 99 % of the chemical concentration (2 mM), with ca. ±10% error. To this end, the prominent subspectrum from the 'allowed' transitions within the excited Kramers doublet (m_s = ±1/2) with effective g values at 4 and 2 was numerically double-integrated in the field range 130 – 380 mT, and compared with the integrated spectrum of a 1mM Cu(II) standard measured at non-saturating conditions (30 K, 0.05 mW). Both spectra were corrected for different Aasa-Vanngard factors for field-swept spectra, arising from different (effective) g values.¹ In addition, the m_s = ±1/2 subspectrum of the target compound 2 was corrected for the corresponding Boltzmann factor of the excited state by using D = -5.2 cm⁻¹ taken form the analysis of the temperature variation described in the main text.

Figure S7. UV-vis spectra of **2** (orange line, 1 mM) reacting with 10 equivalents of TEMPOH in THF at -90 °C. Purple line represents Mn^{III}(BDPP)(OOH) (**5**) with four absorption bands at 410, 495, 515 and 720 nm.

Figure S8. (a) EPR signal (g = 2.006, 77K) of the produced TEMPO radical (integrated area: 6.5×10^8 , 86% vs calibration) obtained from the reaction of **2** (1.0×10^{-3} M) with 10 equivalents of TEMPOH at -90 °C; (b) the calibration curve of TEMPO radical.

Figure S9. (a) EPR signal (g = 2.006, 77K) of the produced TEMPO radical (integrated area: 3.8×10^8 , 93% vs calibration) obtained from the reaction of **2'** (1.0×10^{-3} M) with 10 equivalents of TEMPOH at -90 °C; (b) the calibration curve of TEMPO radical.

Figure S10. EPR spectrum of **6'** (1 mM) recorded at 10 K. (Frequency 9.388 GHz, power 0.2 mW, modulation 100 kHz/0.75 mT).

Figure S11. (a) Reaction of **5** with one equiv of HOTf in THF forming [Mn(BDPP)(H₂O)]OTf (**6**), which was subsequently warmed up. (b) 100 μ L of the resulting solution was added into an acetone solution of excess NaI to examine the yield of the produced H₂O₂. The theoretical concentration of the in situ generated I₃⁻ solution is 3.2×10^{-5} M. The amount of the formed I₃⁻ was then quantified using its visible spectrum ($\lambda_{max} = 361$ nm, $\epsilon = 2.5 \times 10^4$ M⁻¹ cm⁻¹).

Figure S12. (a) Reaction of **5'** with one equiv of HOTf in THF forming $[Mn(BDP^{Br}P)(H_2O)]OTf$ (**6'**), which was subsequently warmed up. (b) 100 µL of the resulting solution was added into an acetone solution of excess NaI to examine the yield of the produced H₂O₂. The theoretical concentration of the in situ generated I₃⁻ solution is 3.2×10^{-5} M. The amount of the formed I₃⁻ was then quantified using its visible spectrum ($\lambda_{max} = 361$ nm, $\epsilon = 2.5 \times 10^4$ M⁻¹ cm⁻¹).

Figure S13. UV-vis spectra change monitored from the reaction of $[Mn(BDPP)(H_2O)]OTf(6)$ (green line, 1 mM) with excess H_2O_2/NEt_3 2:1 mixture in THF at -90 °C. The purple line represents Mn(BDPP)(OOH) (5).

Figure S14. Computed structure of S = 3 Fe^{III}-superoxo **3** with key geometric parameters and its schematic molecular orbital diagram.

Figure S15. Computed structure of $S = \frac{1}{2}$ Co^{III}-superoxo **4** with key geometric parameters and its schematic molecular orbital diagram.

For most transition metal complexes, the zero-field splitting arises from 2^{nd} order spin-oribit coupling between the ground and excited states. A negative *D* value is usually found for a high spin d⁴ center in a elongated octahderal coordination environment, because

$$D = -\frac{1}{4} \frac{Z^2}{D({}^5B_{2g})} + \frac{1}{16} \frac{Z^2}{D({}^5E_g)} - \frac{1}{4} \frac{Z^2}{D({}^3E_g)}$$

here ζ is the effective spin-orbit coupling constant of the metal center, Δ is the excitation energy of a given excited state.

The hyperfine coupling constant (HFC) is predicted to display a pattern of $|A_{x,y}| > |A_z|$, because

$$A_{z} = A^{FC} + \frac{4}{7}kP$$
$$A_{x,y} = A^{FC} - \frac{2}{7}kP$$

here A^{FC} is the Fermi-contact contribution to the HFC and is always negative for mononuclear transition metal complexes, $\kappa < 1$ is the orbital reduction factor and P is the proportional constant of the nucleus and is negative for ⁵⁵Mn. Because the intrinsic g values of **2** and **2'** are very close to 2, the orbital contribution to the HFC is negligible.

Figure S16. Correlation of the coordination geometry of **2'** with its spin Hamiltonian parameters. The ground state of a high spin d^4 center in a elongated octahderal coordination environment and low-lying excited states in D_{4h} symmetry.

A kinetic titration with $\sim 2 \times 10^{-4}$ M of 2' and TEMPOH at 1.0, 1.5, 2.0, 2.5 equivalent concentrations was performed. All these numbers are based on a 100% yield in their preparation processes. The concentration of 2' was corrected to 1.86×10^{-4} M using the EPR data (~93% yield, Figure S10), while the concentrations of TEMPO-H remained unknown. We then performed a titration with the nominal 1.0, 1.5, 2.0, 2.5 equiv of TEMPO-H and fitted to the kinetic model to obtain the actual value of *n* and rate constant, *k*. The actual value of *n* against the nominal *n* was plotted and we found that the yield of TEMPO-H generation was ~80%, which is consistent with the value extracted from the ¹H NMR spectrum (Figure S18). Therefore, the actual amount of the employed TEMPO-H is 0.8, 1.2, 1.6, and 2.0 equivalents, respectively.

Figure S17. The linear plot of the actual value of *n* against the nominal *n*.

Figure S18. ¹H NMR spectrum of the prepared TEMPO-H in CD₃CN.

Complex	Mn-O (Å)	ref.
$[Mn(O_2)(TPP)]^-$	1.888/1.901	2
$[Mn(O_2)(Tp^{iPr2})(pz^{iPr2})]$	1.850/1.851(brown) 1.841/1.878(blue)	3
$Tp^{iPr2}Mn(\eta^2-O_2)(im^{Me}H)$	1.872 /1.838	4
$[Mn(O_2)(TMC)]^+$	1.884	5
$[Mn(O_2)(13-TMC)]^+$	1.855 / 1.863	6
$[Mn(O_2)(12-TMC)]^+$	1.853	7
$[Mn^{III}(OO^tBu)(S^{Me2}N_4(QuinoEN))]^+$	1.861	8
$[Mn^{III}(OOCm)(S^{Me2}N_4(QuinoEN))]^+$	1.841	8
$[Mn^{III}(OO^tBu)(S^{Me2}N_4(QuinoPN))]^+$	1.840	9
$[Mn^{III}(OO^tBu)(S^{Me2}N_4(6\text{-}Me\text{-}DPEN))]^+$	1.853	9
$[Mn^{III}(OOCm)(S^{Me2}N_4(6\text{-}Me\text{-}DPEN))]^+$	1.848	9
$[Mn^{III}(OO^tBu)(S^{Me2}N_4(6\text{-}Me\text{-}DPPN))]^+$	1.843	9
$[Mn_2^{III}(trans-1,2-O_2)(S^{Me2}N_4(6-Me-DPEN))_2]^{2+}$	1.832	10
$[Mn^{III}(S^{Me2}N_4(tren)(OPh-^pNO_2))]^+$	1.901	11
$[Mn^{III}(S^{Me2}N_4(tren)(OPh))]^+$	1.867	11
$[Mn^{III}(S_{Me2}N_4(tren)(OMe))]^+$	1.836	11
$[Mn^{III}(S_{Me2}N_4(tren))(OH)]^+$	1.854	11

Table S1. Mn-O bond distances of Mn-(O₂), Mn-OOR, and Mn-OR (R = H, Me, Ph, Ph-^{*p*}NO₂) complexes.

Table S2. The O-O bond length of metal-superoxo complexes.

complex	O-O (Å)	ref.
$[Cu^{II}(TMG_{3}tren)(\eta^{1}-O_{2}^{\bullet})]^{+}$	1.280(3)	12
$[Cr^{III} (14-TMC)(O_2)(Cl)]^+$	1.231(6)	13
$[Fe^{III}(TAML)(O_2)]^{2-}$	1.323(3) / 1.306(7)	14
$Co^{III}(Tp^{Me2})(L^{Ph})(O_2^{\bullet})$	1.301(5)	15

Table S3. Computed Spectroscopic Parameters for 2' and 5'.

	2'	5'
$D ({\rm cm}^{-1}), E/D$	-3.1, 0.08	-2.8, 0.11
$A_{\rm x,y,z}$ (MHz)	-194, -183, -60	-166, -164, -47

Table S4. Metal-superoxo bond lengths of mononuclear metal superoxo complexes by the

 B3LYP calculations

Complex	Metal-O (Å)
$Mn^{III}(BDPP)(O_2^{\bullet}) (2) S = 3/2$	1.932
$Mn^{III}(BDP^{Br}P)(O_2^{\bullet}) (2') S = 3/2$	1.937
$Fe^{III}(BDPP)(O_2^{\bullet})(3) S = 3$	2.038
$Fe^{III}(BDPP)(O_2) S = 2$	1.927
$Co^{III}(BDPP)(O_2^{\bullet})$ (4) $S = 1/2$	1.904

For 2, 2' and 4, the strongly antibonding σ^* orbital with respect to the metal-superoxo interaction is vacant (Fig. 2, S15 and S16), but it is singly occupied for 3 (S15). In fact, the computed Fe-superoxo bond distance for the quintet state of 3, which contains a high spin ferric center antiferromagnetic coupled to a superoxo radical, is comparable to those estimated for 2, 2' and 4. This observation reflects the tradeoff between the enhanced Lewis acidity of Fe^{III} relative to Mn^{III} and the different occupation of the σ^* orbital. Thus, the weaker metal-superoxo bonding in 3 arises from the synergistic effect of its high spin center and the ferromagnetic coupling between the metal center and the superoxo ligand.¹⁶

 Table S5. Coordinates of the optimized structures:

Mn^{III}(BDPP)(O₂[•]) (**2**):

Mn	-1.49310707853518	10.62070401636536	8.32599976055327
Η	-0.84052727955616	17.89033641991843	10.90627631645225
Η	5.01857969650649	11.26080589118739	10.73402742227351
Η	2.07503813535693	4.69710544057160	7.17726564893587
Η	-6.52629979160194	5.68105357315492	5.16186779040529
0	-3.24166978381150	11.38799509030409	8.02900524329407
0	-3.67414027267409	12.38540561576013	8.73889422220261
С	0.14622534588044	12.91909531175147	8.89420317066122
С	-0.10175819939280	14.32777139554240	9.48067608502189
С	-1.25039677166967	14.56342102057798	10.24525422320290
Η	-1.93956318762866	13.73466405363135	10.40731447700653
С	-1.51079762708346	15.83900015954261	10.75611094238972
Η	-2.41295124351058	16.01080940148165	11.34932715597300
С	-0.63111416155302	16.89485978040468	10.50572522119420
С	0.51685892349555	16.66620033960102	9.74001798282374
Η	1.21463140476065	17.48265789959905	9.53463229871925
С	0.78122712437718	15.38973374736062	9.23787936590845
Η	1.68990679752214	15.22651825550652	8.65561492712120
С	1.54887194262492	12.46969719222107	9.36596705764002
С	2.73958683059272	12.79531667872422	8.70057964326542
Η	2.71500331928337	13.37736517287429	7.77844432724151
С	3.97994414641610	12.36899942252690	9.18659308766635
Η	4.88957689851170	12.63625731700067	8.64209549326547
С	4.05404321691218	11.60804093254889	10.35443668331921
С	2.87486989710584	11.29685339035780	11.04027114237799
Η	2.92024551233145	10.70946489236244	11.96124903998786
С	1.64258364048388	11.73112271640251	10.55379545548812
Η	0.71758323045842	11.49274445394469	11.07828216750919
С	0.03054424875374	13.01350794885808	7.33871011130346
Η	0.92560174913585	13.49914005568553	6.91415736805470
С	-1.22935184923215	13.78141861355586	6.88475407665857
Н	-1.97189364236985	13.79093638171272	7.69038637713665

Η	-0.97223894775023	14.82627823552659	6.66723557592898
С	-1.77725422560312	13.02753657281822	5.65407694949191
Η	-2.75641374083611	12.58670119431629	5.88264408708293
Н	-1.89349957099467	13.67868948992305	4.77560516984310
С	-0.75659811348951	11.92502328627028	5.39325748774536
Н	0.01636172848060	12.26694458237399	4.67525449574295
Η	-1.19829923760710	10.99144994844540	5.01360615265501
С	1.06911767983923	10.84907647110080	6.56677054854184
Η	1.95803285176790	11.45646027571068	6.31653191108363
Η	0.89929909586749	10.17687255315494	5.70992296512588
С	1.37718178772157	9.94743723234859	7.73670328778378
С	2.63036273687908	9.35639310753699	7.89098221968994
Η	3.44894682225362	9.63872870375137	7.22748523312434
С	2.80255281499032	8.40870985846851	8.89768697164028
Η	3.76845122084391	7.91949326496361	9.03974231178131
С	1.73067134844477	8.09084462052730	9.72844525722570
Η	1.82770650367504	7.34300276009553	10.51720185330483
С	0.52183339522911	8.76020374383102	9.54559777832321
С	-0.62042152643410	8.60130967639636	10.51590417775830
Η	-0.66663788248012	7.55661159889587	10.87325597294391
Η	-0.35694430627211	9.21816904305559	11.39034391872744
С	-2.74101448079485	9.55216783923231	11.17267865456405
Η	-2.35186068527505	10.52434641557261	11.50887011882127
Η	-2.65827114126878	8.83461371509353	12.01292500613640
С	-4.17621664612315	9.60827754301264	10.64886547286976
Η	-4.44157906791470	10.63166304101441	10.35420249288793
Η	-4.88441878685141	9.28416969140637	11.42500795408573
С	-4.18950268671887	8.67571007509249	9.42026330828641
Η	-4.43180365654426	9.24320804804754	8.51485526213079
Η	-4.92545405682129	7.86561554583102	9.50545123073820
С	-2.77069760270976	8.08653454225467	9.30624534264463
Η	-2.73621451277729	7.12167837903978	9.83941099533761
С	-2.31040895284103	7.90001149803476	7.82128606759063
С	-1.07750853439159	6.97291040085040	7.68970790982256
С	-0.17128687132606	7.21511137761188	6.64631592956467

Η	-0.36474146799768	8.06470797694014	5.99178428969691
С	0.95143468263482	6.40845123817842	6.46143894261341
Η	1.64565259605728	6.62661718534472	5.64537207714192
С	1.19475073916931	5.32914432652405	7.31853980673017
С	0.29061294423970	5.06106776063986	8.34797061782119
Η	0.45851731829559	4.21467797376120	9.01920607693330
С	-0.83338430907712	5.87509834869954	8.52874505418955
Η	-1.52070652810445	5.64004213160069	9.34287847250619
С	-3.47360557149796	7.23740549304771	7.04698724005872
С	-3.94687175692993	5.96061622361439	7.38178550972141
Η	-3.46126792055097	5.38588801440165	8.17257289458921
С	-5.04258777707580	5.40654561529835	6.71644512752867
Η	-5.40984463131399	4.41920776592237	7.00850828330096
С	-5.67193196848414	6.11499857852955	5.68738552998992
С	-5.19788026001982	7.38186899170038	5.33982568349371
Η	-5.68621831426943	7.94838012985158	4.54232610685194
С	-4.11182467742997	7.94251536066904	6.02026925654814
Η	-3.74931301861282	8.94133408108303	5.77955364122230
Ν	-0.13031332963904	11.67191750508400	6.70888526860159
Ν	0.37594260786863	9.65378823960454	8.56720800832749
Ν	-1.92108157411194	9.06864407721198	10.03754111049954
0	-0.83880228711981	12.04660752668565	9.35677533812856
0	-2.04512742008841	9.15377754296478	7.27301730742646

 $Mn^{III}(BDP^{Br}P)(O_2^{\bullet})(2')$:

Mn	-1.51895213447833	10.63764487741676	8.38349320521501
Br	-0.69886924630518	18.67328640191320	11.34082736319431
Br	5.83028820189951	11.36773456966083	11.04635755294360
Br	2.56450232421277	4.10185962226560	6.86817348804085
Br	-7.04650463447380	5.32476516131998	4.52275941149838
0	-3.25046321243856	11.46928666281454	8.13180343235474
0	-3.70563578810636	12.23377387734376	9.07203661888293
С	0.16403311485209	12.98555612225928	8.84722230288068
С	-0.07967251569240	14.41405533912043	9.40893584770970

С	-1.14945432086786	14.65182633004714	10.28131256437410
Η	-1.82859676885991	13.82872577998237	10.50831593980150
С	-1.34886562116418	15.91552360797323	10.84999674238523
Η	-2.18025612174042	16.08700596102225	11.53671489706009
С	-0.47157408926745	16.95524776419527	10.53618233400430
С	0.58395009786854	16.75192216605784	9.64282181859021
Н	1.25928086704623	17.57127996901351	9.38945836919177
С	0.77557710807385	15.48289661721714	9.09433367005859
Η	1.62491870271034	15.33539653698615	8.42407692688164
С	1.58896229011548	12.59263542189372	9.33945946164418
С	2.77233638691858	12.90972316384025	8.65343135039126
Η	2.73877140470569	13.43117095736294	7.69547177903210
С	4.03164490604418	12.56340866797068	9.15513013643115
Η	4.93424262047361	12.81643446378240	8.59591219812835
С	4.12056971861702	11.89000717167201	10.37276009886100
С	2.96332172004586	11.59097211465942	11.09806655048970
Η	3.03874811976159	11.07961871509721	12.05948095232366
С	1.71680208039033	11.94723493165507	10.57986661930432
Η	0.80930801088285	11.71676691565925	11.13995191228821
С	0.03915535867764	13.01807686338296	7.28430485676101
Η	0.93392518274367	13.48158333401761	6.83245170734228
С	-1.21792363020898	13.77610768830851	6.79106910805497
Η	-1.97154596558760	13.82366672656190	7.58641731724972
Η	-0.95650898762018	14.81123195254483	6.53254665537519
С	-1.75507939939716	12.98006021293985	5.57936828791997
Η	-2.73844916999840	12.54759768381982	5.81040592321553
Η	-1.86396403763088	13.60179200678189	4.67842686101875
С	-0.72959721525393	11.86969403675116	5.36723571121618
Η	0.05678616732264	12.19402589379667	4.65513599591034
Η	-1.16526075428505	10.92927984698939	4.99670449383439
С	1.06456732236963	10.80229164895816	6.60948810095341
Η	1.96510751655431	11.38854198747787	6.34802322656000
Η	0.89775089738668	10.10765300890686	5.76953491118417
С	1.35690506111960	9.92536409352627	7.81073801149918
С	2.61400521721329	9.34588580703825	7.99504132921536

Η	3.43755478309707	9.60684445798512	7.32763960927968
С	2.78905786223767	8.43842633039606	9.03964476958529
Н	3.76115559140527	7.97116587299995	9.21234661463829
С	1.70944611929002	8.13387575382380	9.86716390001944
Η	1.81094277550215	7.41776407882897	10.68539352730576
С	0.48770589893565	8.77217970270913	9.64109699885035
С	-0.67704941577576	8.58453665479576	10.58838263871250
Η	-0.70106651169894	7.53703303114839	10.94380607193627
Η	-0.44322248354237	9.19857143792281	11.47409081902687
С	-2.82894904484766	9.43686618944339	11.26576831970328
Η	-2.50068100016645	10.42788558044328	11.61231037992928
Н	-2.67910689732079	8.71703005504197	12.09432528065135
С	-4.28317353294754	9.40310568190992	10.78605524801321
Η	-4.66293109921776	10.41753699631108	10.60648219931047
Η	-4.92761456753490	8.93523755851250	11.54522614532995
С	-4.25137465425307	8.59519255547742	9.47272899061343
Η	-4.46709505971736	9.24928168863843	8.61901106359643
Η	-4.98745001341148	7.78032947671982	9.45261854915960
С	-2.82204722955437	8.03287118155913	9.34379760153004
Η	-2.77193805417610	7.05851950951650	9.86221153172001
С	-2.36899017132657	7.88158179381403	7.84438629947087
С	-1.15015452108834	6.92807294256801	7.66505992698906
С	-0.29887676309092	7.13137539814572	6.56569279557274
Η	-0.50574296367005	7.97239482930868	5.90219469883847
С	0.79096877956919	6.29654688387751	6.31348472205533
Η	1.44155309388061	6.47991672329246	5.45600937915007
С	1.04948024773455	5.22483895923977	7.17481211930087
С	0.20552291674337	4.97418191488065	8.25721393078768
Η	0.39535545874947	4.12868671469919	8.92097426299395
С	-0.88317966505510	5.82384762614396	8.49076087158757
Η	-1.52543088192492	5.59776636220494	9.34434093633718
С	-3.52991698724387	7.23409099348480	7.03331364605176
С	-4.00338240857447	5.94261230991513	7.31682230478371
Η	-3.55285075377401	5.35180342299150	8.11747270517795
С	-5.04901918301018	5.37268180070748	6.58701894684947

Η	-5.41233656423509	4.37268829902008	6.83092442008144
С	-5.62508382597893	6.09723013056092	5.53905436694107
С	-5.17122740896267	7.38067065068941	5.23323664242497
Η	-5.63006793937309	7.94465116644820	4.41885126476371
С	-4.13235311616938	7.94154370325136	5.98483328970997
Η	-3.77763327829933	8.94864361278806	5.76512122999060
Ν	-0.12927467238321	11.64914899284981	6.70523673792535
Ν	0.34548613162024	9.64321773996093	8.63886387226109
Ν	-1.99276732827259	9.02274485528116	10.10428925422039
0	-0.80063127784808	12.11167705041748	9.34577880317703
0	-2.09516616894922	9.14875864727107	7.33209727237414

Fe^{III}(BDPP)(O_2^{\bullet}) (**3**) (*S* = 3):

Fe	1.951648	3.352647	18.365824
0	0.285517	4.462169	18.745998
0	-0.876834	4.759570	19.116170
0	2.833465	4.863863	17.547830
0	1.052787	1.817025	19.106950
Ν	1.653766	2.798412	16.170781
Ν	3.669333	2.136842	17.951469
Ν	3.020375	3.255953	20.393969
С	3.042481	4.906006	16.174129
С	2.997345	6.366250	15.668693
С	2.936758	7.410335	16.596526
Η	2.896584	7.152372	17.655029
С	2.919853	8.742954	16.171503
Η	2.876557	9.546315	16.911940
С	2.952216	9.051074	14.809845
Η	2.936610	10.091720	14.474851
С	3.003469	8.013182	13.874669
Η	3.027005	8.240881	12.805231
С	3.032844	6.684384	14.302147
Η	3.088284	5.893503	13.551646
С	4.454263	4.384669	15.804342

С	4.795061	3.908142	14.529605
Η	4.042074	3.845946	13.742822
С	6.100729	3.504588	14.233239
Η	6.340118	3.126322	13.235452
С	7.097121	3.577918	15.207811
Η	8.116343	3.257351	14.976144
С	6.773102	4.066065	16.478105
Η	7.545431	4.138159	17.248550
С	5.467992	4.464441	16.768845
Η	5.201173	4.849526	17.753066
С	1.897733	4.097529	15.479969
Η	2.140652	3.889842	14.423606
С	0.540784	4.819309	15.562749
Η	0.550594	5.520788	16.405916
Η	0.370903	5.411265	14.654557
С	-0.525014	3.722580	15.777061
Η	-1.071251	3.895062	16.712317
Η	-1.267050	3.691865	14.965672
С	0.260156	2.411271	15.839734
Н	-0.104990	1.710130	16.604147
Н	0.247036	1.898581	14.858410
С	2.582778	1.703648	15.849439
Η	2.030040	0.761840	15.998436
Н	2.891602	1.733006	14.789673
С	3.794725	1.605775	16.740032
С	4.942230	0.897190	16.386978
Η	5.059221	0.495760	15.379724
С	5.925482	0.708761	17.357336
Η	6.825974	0.139606	17.116403
С	5.751541	1.244894	18.633604
Η	6.498195	1.093230	19.415130
С	4.601447	1.994393	18.885812
С	4.392502	2.768175	20.167098
Η	5.040078	3.656274	20.092044
Η	4.757724	2.185440	21.030630

С	3.055264	4.540085	21.137136
Η	3.417279	5.334204	20.467785
Η	3.758516	4.451924	21.988932
С	1.628745	4.749664	21.636718
Η	1.055628	5.350918	20.920507
Η	1.618684	5.281096	22.598995
С	1.038065	3.327979	21.735414
Η	0.775763	3.045185	22.763629
Η	0.121751	3.257080	21.141224
С	2.109070	2.364306	21.182042
Η	2.682118	1.934540	22.021312
С	1.487167	1.234272	20.289767
С	2.475360	0.081993	19.998586
С	2.332752	-0.604720	18.783724
Η	1.542683	-0.279014	18.106028
С	3.181924	-1.656780	18.444243
Η	3.053287	-2.170806	17.487793
С	4.195135	-2.058416	19.322282
Η	4.865068	-2.879456	19.054820
С	4.331964	-1.403157	20.546736
Η	5.108321	-1.711114	21.252251
С	3.475098	-0.348176	20.881859
Η	3.607946	0.141041	21.847862
С	0.281219	0.630910	21.046256
С	0.435500	-0.184631	22.175498
Η	1.432901	-0.452694	22.528199
С	-0.679293	-0.685683	22.852910
Η	-0.536486	-1.323716	23.729311
С	-1.968730	-0.374115	22.411408
Η	-2.839526	-0.767652	22.941745
С	-2.130114	0.439420	21.285979
Η	-3.131925	0.697205	20.930614
С	-1.013508	0.934236	20.607039
Η	-1.122109	1.566035	19.725039

Fe^{III}(BDPP)(O_2^{\bullet}) (S = 2):

Fe	1.909703	3.383413	18.376237
0	0.365561	4.489157	18.699610
0	-0.775402	4.154883	19.184275
0	2.855915	4.850910	17.555327
0	1.064975	1.824708	19.099184
Ν	1.624922	2.818869	16.190800
Ν	3.635978	2.161124	17.956186
Ν	2.994223	3.289285	20.382581
С	3.057850	4.895736	16.179487
С	3.028399	6.358998	15.681632
С	2.955700	7.400104	16.611682
Н	2.896735	7.139749	17.668638
С	2.949081	8.733844	16.189768
Н	2.896020	9.535270	16.931631
С	3.003313	9.045495	14.829583
Н	2.995790	10.087052	14.497154
С	3.066519	8.010149	13.892279
Н	3.107961	8.240761	12.824021
С	3.086481	6.680305	14.316728
Н	3.153008	5.890655	13.565919
С	4.460140	4.359650	15.797812
С	4.781836	3.864446	14.525222
Н	4.017817	3.792817	13.749899
С	6.082439	3.453914	14.216279
Н	6.306620	3.061223	13.220597
С	7.092637	3.538265	15.175512
Н	8.107864	3.212537	14.933786
С	6.787497	4.044507	16.443488
Н	7.570732	4.125974	17.201879
С	5.487657	4.450676	16.746652
Н	5.236587	4.853051	17.728181
С	1.895054	4.109164	15.490955
Н	2.134642	3.886594	14.437121

С	0.552013	4.858120	15.564311
Η	0.571297	5.563782	16.403378
Η	0.397664	5.445519	14.650277
С	-0.535150	3.783476	15.784442
Η	-1.076674	3.968451	16.720033
Η	-1.275500	3.760239	14.971228
С	0.223178	2.457556	15.860604
Η	-0.157561	1.771430	16.630926
Η	0.204900	1.935079	14.884896
С	2.532405	1.705075	15.873799
Η	1.967993	0.774067	16.043928
Η	2.827492	1.716177	14.809946
С	3.751115	1.611064	16.752705
С	4.894203	0.895293	16.400344
Η	5.001310	0.478532	15.398320
С	5.886942	0.722309	17.363638
Н	6.784936	0.149119	17.123241
С	5.725277	1.280048	18.632230
Н	6.479040	1.141520	19.409309
С	4.577521	2.032918	18.882970
С	4.374404	2.826839	20.150752
Н	5.001652	3.726626	20.049876
Н	4.758331	2.267881	21.021797
С	3.006639	4.578652	21.119923
Н	3.339640	5.376598	20.440144
Н	3.725146	4.511091	21.960286
С	1.583243	4.755027	21.639440
Н	0.985005	5.332924	20.924514
Η	1.573450	5.293312	22.597790
С	1.028515	3.320278	21.754222
Η	0.796101	3.033274	22.788421
Η	0.102146	3.237236	21.178057
С	2.107280	2.378690	21.179253
Η	2.701095	1.953579	22.005685
С	1.499398	1.242843	20.285375

С	2.496316	0.097079	19.999847
С	2.350764	-0.605683	18.794396
Η	1.554673	-0.293946	18.117198
С	3.202836	-1.658084	18.463693
Η	3.071792	-2.184479	17.514337
С	4.221305	-2.045072	19.342381
Η	4.892561	-2.867430	19.082480
С	4.361469	-1.373626	20.557605
Η	5.141820	-1.670082	21.263589
С	3.502485	-0.317337	20.883231
Η	3.637635	0.183907	21.842728
С	0.290294	0.628915	21.029212
С	0.445036	-0.210528	22.140753
Η	1.442463	-0.486426	22.487161
С	-0.669547	-0.724859	22.808882
Η	-0.526039	-1.380910	23.671841
С	-1.958927	-0.404069	22.374225
Η	-2.829803	-0.808474	22.896323
С	-2.120158	0.434090	21.266907
Η	-3.121594	0.701590	20.917752
С	-1.004508	0.943683	20.597569
Н	-1.117489	1.600593	19.735024

 $Co^{III}(BDPP)(O_2^{\bullet})$ (4):

Co	-0.077080	-0.177359	0.993453
0	-0.258990	-0.663318	2.825244
0	0.231315	0.093113	3.758649
0	0.078293	1.674319	1.353370
0	-0.272041	-2.020381	0.611320
Ν	-2.045306	0.158401	0.719370
Ν	0.049713	0.153122	-0.875805
Ν	1.911880	-0.452879	0.870809
С	-1.027034	0.498075	-2.939850
С	-1.075789	0.261718	-1.568966

С	-2.299792	0.006411	-0.741522
С	-2.968079	-0.754285	1.458675
С	-3.137321	-0.168425	2.860228
С	-2.615563	1.280236	2.762915
С	-2.299512	1.537725	1.281785
С	-2.018398	4.701516	1.835953
С	-2.072141	5.769419	2.736160
С	-1.218165	5.797305	3.844148
С	-0.320714	4.744283	4.045219
С	-0.273970	3.672399	3.147912
С	-1.119333	3.643014	2.031497
С	-2.072400	3.311356	-1.183422
С	-1.911451	3.887715	-2.448854
С	-0.637357	4.206072	-2.919519
С	0.473364	3.954795	-2.106519
С	0.306002	3.381221	-0.847160
С	-0.966518	3.034074	-0.368043
С	-1.047054	2.438184	1.060376
С	0.227444	0.586037	-3.548015
С	1.390635	0.445190	-2.787853
С	1.256681	0.236266	-1.418835
С	2.356138	0.182643	-0.401260
С	2.668343	0.133956	2.035445
С	3.094036	-1.040969	2.920565
С	2.294273	-2.241512	2.408708
С	2.106140	-1.955461	0.920723
С	1.753827	-5.120935	0.427691
С	1.689050	-6.406919	0.970038
С	0.698522	-6.727022	1.904817
С	-0.219133	-5.748385	2.296256
С	-0.147967	-4.460343	1.757300
С	0.836478	-4.133365	0.816617
С	2.245045	-2.874162	-1.972223
С	2.277359	-3.022655	-3.363558
С	1.088383	-3.114240	-4.087316

С	-0.132188	-3.065853	-3.404858
С	-0.157185	-2.916869	-2.019181
С	1.028859	-2.804197	-1.277907
С	0.896127	-2.689463	0.262207
Η	-1.944984	0.611657	-3.517540
Η	-2.575937	-1.045427	-0.905548
Η	-3.150784	0.629479	-1.058651
Η	-3.935408	-0.764591	0.926515
Η	-2.534163	-1.761571	1.430604
Η	-4.192881	-0.215113	3.166958
Η	-2.548948	-0.735646	3.590016
Η	-3.337759	2.022058	3.127366
Η	-1.704361	1.392765	3.357224
Н	-3.192894	1.944081	0.781375
Н	-2.671487	4.710510	0.961404
Η	-2.775134	6.588976	2.560871
Η	-1.249429	6.637883	4.543177
Η	0.345218	4.751842	4.912726
Η	0.405171	2.832740	3.297710
Η	-3.082415	3.081797	-0.840790
Η	-2.790306	4.095896	-3.064732
Η	-0.508451	4.660272	-3.905043
Η	1.474739	4.217039	-2.459677
Η	1.160917	3.186191	-0.198020
Η	0.300512	0.767580	-4.622339
Η	2.377449	0.500495	-3.248944
Η	2.622678	1.222591	-0.166717
Η	3.254972	-0.317153	-0.795133
Η	3.536333	0.690365	1.653816
Η	1.996805	0.834895	2.545026
Η	4.175123	-1.226990	2.808452
Η	2.890453	-0.835621	3.980220
Η	2.813207	-3.196335	2.560821
Η	1.318017	-2.302976	2.901074
Η	3.047406	-2.188242	0.397801

Η	2.518641	-4.894414	-0.317914
Η	2.409504	-7.165734	0.652668
Η	0.640582	-7.734002	2.326067
Η	-0.993565	-5.988359	3.030075
Η	-0.843165	-3.677578	2.059632
Η	3.193321	-2.815657	-1.436063
Η	3.239202	-3.073881	-3.881112
Η	1.110989	-3.239610	-5.172953
Η	-1.070497	-3.153870	-3.958976
Η	-1.101134	-2.884801	-1.473712

References

- 1. Aasa, R.; Vänngård, T. EPR Signal Intensity and Powder Shapes: A Reexamination. *J. Magn. Reson.* **1975**, *19* (3), 308–315.
- VanAtta, R. B.; Strouse, C. E.; Hanson, L. K.; Valentine, J. S. Peroxo(tetraphenylporphinato)manganese(III) and chloro(tetraphenylporphinato)manganese(II) Anions. Synthesis, crystal Structures, and electronic Structures. *J. Am. Chem. Soc.* 1987, *109*, 1425-1434.
- Brown, P. M.; Caradoc-Davies, T. T.; Dickson, J. M. J.; Cooper, G. J. S.; Loomes, K. M.; Baker, E. N. Crystal Structure of a Substrate Complex of Myo-inositol Oxygenase, a Di-Iron Oxygenase with a Key Role in Inositol Metabolism. *Proc. Natl. Acad. Sci. U. S. A.* 2006, *103*, 15032-15037.
- Singh, U. P.; Sharma, A. K.; Hikichi, S.; Komatsuzaki, H.; Moro-oka, Y.; Akita, M. Hydrogen Bonding Interaction between Imidazolyl N–H Group and Peroxide: Stabilization of Mn(III)-Peroxo Complex TpiPr₂Mn(η²-O₂)(imMeH) (imMeH=2-methylimidazole). *Inorg. Chim. Acta* 2006, *359*, 4407-4411.
- Seo, M. S.; Kim, J. Y.; Annaraj, J.; Kim, Y.; Lee, Y.-M.; Kim, S.-J.; Kim, J.; Nam, W. [Mn(tmc)(O₂)]⁺: A Side-On Peroxido Manganese(III) Complex Bearing a Non-Heme Ligand. *Angew. Chem. Int. Ed.* 2007, 46, 377-380.
- Annaraj, J.; Cho, J.; Lee, Y. M.; Kim, S. Y.; Latifi, R.; de Visser, S. P.; Nam, W. Structural Characterization and Remarkable Axial Ligand Effect on the Nucleophilic Reactivity of a Nonheme Manganese(III)-Peroxo Complex. *Angew. Chem. Int. Ed.* 2009, *48*, 4150-4153.
- Kang, H.; Cho, J.; Cho, K. B.; Nomura, T.; Ogura, T.; Nam, W. Mononuclear Manganese-Peroxo and Bis(mu-oxo)dimanganese Complexes Bearing a Common N-Methylated Macrocyclic Ligand. *Chem. Eur. J.* 2013, *19*, 14119-14125.
- Coggins, M. K.; Kovacs, J. A. Structural and Spectroscopic Characterization of Metastable Thiolate-Ligated Manganese(III)-Alkylperoxo Species. J. Am. Chem. Soc. 2011, 133, 12470-12473.
- Coggins, M. K.; Martin-Diaconescu, V.; DeBeer, S.; Kovacs, J. A. Correlation Between Structural, Spectroscopic, and Reactivity Properties Within a Series of Structurally Analogous Metastable Manganese(III)-Alkylperoxo Complexes. *J. Am. Chem. Soc.* 2013, *135*, 4260-4272.
- Coggins, M. K.; Sun, X.; Kwak, Y.; Solomon, E. I.; Rybak-Akimova, E.; Kovacs, J. A. Characterization of Metastable Intermediates Formed in the Reaction Between a Mn(II) Complex and Dioxygen, Including a Crystallographic Structure of a Binuclear Mn(III)-Peroxo Species. *J. Am. Chem. Soc.* 2013, *135*, 5631-5640.

- Coggins, M. K.; Brines, L. M.; Kovacs, J. A. Synthesis and Structural Characterization of a Series of Mn^{III}OR Complexes, Including a Water-Soluble Mn^{III}OH That Promotes Aerobic Hydrogen-Atom Transfer. *Inorg. Chem.* 2013, *52*, 12383-12393.
- Schatz, M.; Raab, V.; Foxon, S. P.; Brehm, G.; Schneider, S.; Reiher, M.; Holthausen, M. C.; Sundermeyer, J.; Schindler, S. Combined Spectroscopic and Theoretical Evidence For a Persistent End-On Copper Superoxo Complex. *Angew. Chem. Int. Ed.* 2004, *43*, 4360-4363.
- Cho, J.; Woo, J.; Nam, W. An "End-On" Chromium(III)-Superoxo Complex: Crystallographic and Spectroscopic Characterization and Reactivity in C–H Bond Activation of Hydrocarbons. *J. Am. Chem. Soc.* 2010, *132*, 5958-5959.
- Hong, S.; Sutherlin, K. D.; Park, J.; Kwon, E.; Siegler, M. A.; Solomon, E. I.; Nam, W. Crystallographic and Spectroscopic Characterization and Reactivities of a Mononuclear Non-Haem Iron(III)-Superoxo complex. *Nat. Commun.* 2014, *5*, 5440-5447.
- Oddon, F.; Chiba, Y.; Nakazawa, J.; Ohta, T.; Ogura, T.; Hikichi, S. Characterization of Mononuclear Non-heme Iron(III)-Superoxo Complex with a Five-Azole Ligand Set. *Angew. Chem. Int. Ed.* 2015, 54, 7336-7339.
- Stout, H. D.; Kleespies, S. T.; Chiang, C. W.; Lee, W. Z.; Que, L., Jr.; Munck, E.; Bominaar, E. L., Spectroscopic and Theoretical Study of Spin-Dependent Electron Transfer in an Iron(III) Superoxo Complex. *Inorg. Chem.* 2016, 55, 5215-5226.