Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Materials and Methods	S2
Experimental Procedures and analytical data	S3
General procedure for gold-catalyzed direct arylation of 1,3,5-trimethoxybenzene wi	ith
Characterization of biaryl products	S8
Competition experiments	S10
General procedure for competition experiments (oxidative addition step)	S10
General procedure for competition experiments (catalytic cross-coupling)	S12
State of the art for Au-catalyzed arylation of indoles	S13
Synthesis of the starting materials (numbered SX with respect to the deriving C3-aryl indole X).	ated S16
General Procedure for <i>N</i> -Phenylation of indoles	S16
General Procedure for <i>N</i> -methylation of indoles	S16
Characterization of starting materials	S17
General procedure for gold-catalyzed direct arylation of indoles with iodoarenes	S19
Characterization of biaryl products	S19
Functional group compatibility	S26
NMR spectra	S27
Crystallographic data collection and structure determination	S36
Computational Details	S37
References	

Materials and Methods

Unless otherwise stated, all reactions and manipulations were carried out under an atmosphere of dry argon using standard Schlenk techniques or in a glovebox under an inert atmosphere. Dry, oxygen-free solvents were employed. Melting points were determined with a Stuart SMP40 apparatus and are uncorrected. Solution ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra were recorded on Bruker Avance 300, 400 or 500 spectrometers at 298K unless otherwise stated. Chemical shifts (δ) are expressed with a positive sign, in parts per million. Chemical shifts (δ) are expressed with a positive sign, in parts per million. ¹H and ¹³C chemical shifts are referenced internally to residual protio (¹H) or deutero (¹³C) solvent, while ³¹P and ¹⁹F chemical shifts are relative to 85% H₃PO₄ and CFCl₃ respectively. The following abbreviations and their combinations are used: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. GC-MS analyses were performed on a MS Perkin Elmer Clarus MS560, GC PerkinElmer Clarus 500 and Agilent HP6890. All commercial starting materials were used as received unless otherwise stated. 4-Tert-butyliodobenzene, 1-methylindole, 1,2-dimethylindole, 4-methylindole, 5-methylindole, 6-methylindole, 7-methylindole, 5-bromo-1-methylindole, 5-methoxyindole and methylindole-6-carboxylate were purchased from Fluorochem. Indole, 1-acetylindole, 1-bromo-4-iodobenzene, 1-iodo-4-nitrobenzene. 4-iodoacetophenone, 2-iodonaphthalene and 1-iodonaphthalene were purchased from Aldrich. 1-Benzylindole. 1-(p-toluenesulfonyl)indole and 2-iodoanisole were purchased from Alfa Aesar. 4-lodoanisole and 4-iodobenzotrifluoride were purchased from Acros.

Experimental Procedures and analytical data

<u>General Procedure for Oxidative Addition of Iodoarenes to the (P,N) Gold</u> <u>Complex</u>

In a glovebox, a screw-cap NMR tube was charged with silver hexafluoroantimonate (8.0 mg, 0.023 mmol) in CD_2Cl_2 (0.3 mL). (MeDalphos)AuCl Complex **Au1** (15 mg, 0.023 mmol) was transferred into a small glass vial and dissolved in CD_2Cl_2 (0.3 mL). The iodoarene (0.023 mmol) was added to the solution of **Au1**. The prepared solution was loaded into a plastic syringe equipped with stainless steel needle. The syringe was closed by blocking the needle with a septum. Outside the glovebox, the NMR tube was cooled down to -80°C (Ethanol/N₂ cold bath). At this temperature, the solution of complex **Au1** and iodoarene was added. The tube was gently shaken and allowed to warm to RT. The formation of the gold(III) complex was confirmed by ¹H and ³¹P NMR spectroscopy as well as high-resolution mass spectrometry (Electrospray ionization, positive mode). Iodine to chloride exchange reaction from aryl gold(III) complexes was systematically observed with all substrates. In the following examples, only the mass peak corresponding to the aryl gold(III) chloride derivatives is indicated.

Reaction of Complex Au1 with 4-lodobenzonitrile (Au2)

¹H NMR (300 MHz, CD₂Cl₂): δ 7.88 (m, 3H), 7.69 (m, 1H), 7.48 (m, 4H), 3.46 (s, 6H), 2.05 (m, 18H), 1.67 (m, 12H). ³¹P{¹H} NMR (300 MHz, CD₂Cl₂): δ 78.7 (s). HRMS (ESI⁺): calculated for [M⁺] = C₃₅H₄₄N₂PCIAu⁺: 755.26. Found: 755.2603.

Figure S2. ³¹P{¹H} NMR spectrum of (Au2) in CD_2Cl_2 .

Reaction of Complex Au1 with 4-lodobenzotrifluoride (Au3)

¹**H NMR** (300 MHz, CD_2Cl_2): δ 8.06 – 7.22 (m, 8H), 3.45 (s, 6H), 2.41 – 1.84 (m, 18H), 1.69 (m, 12H). ³¹**P**{¹**H**} **NMR** (300 MHz, CD_2Cl_2): δ 77.7 (s). **HRMS (ESI**⁺): calculated for [M⁺] = C₃₅H₄₄NPF₃ClAu⁺: 798.25. Found: 798.2537.

Figure S4. ${}^{31}P{}^{1}H$ NMR spectrum of (Au3) in CD₂Cl₂.

Reaction of Complex Au1 with p-Bromoiodobenzene (Au4)

¹H NMR (300 MHz, CD_2Cl_2): δ 8.03 – 7.79 (m, 3H), 7.79 – 7.14 (m, 5H), 3.50 (s, 6H), 2.54 – 1.89 (m, 18H), 1.71 (s, 12H). ³¹P{¹H} NMR (300 MHz, CD_2Cl_2): δ 74.7 (s). HRMS (ESI⁺): calculated for [M⁺] = $C_{34}H_{44}NPBrClAu^+$: 808.17. Found: 808.1742.

Figure S6. ³¹P{¹H} NMR spectrum of (Au4) in CD₂Cl₂.

Reaction of Complex Au1 with 4-lodo-*N*,*N*-dimethylaniline

Figure S7. ³¹P{¹H} NMR spectrum of the crude mixture.

General procedure for gold-catalyzed direct arylation of 1,3,5–trimethoxybenzene with iodoarenes

In a glovebox, a flame dried Schlenk equipped with a magnetic stirrer bar was charged with silver hexafluoroantimonate (130.0 mg, 0.38 mmol) and potassium phosphate tribasic (76.0 mg, 0.36 mmol) in *o*-dichlorobenzene (1.8 mL). The (P,N)AuCl complex **Au1** (12.0 mg, 0.018 mmol) was transferred into a small glass vial and dissolved in *o*-dichlorobenzene (1.8 mL). Iodoarene (0.36 mmol, 1 eq.), 1,3,5–trimethoxybenzene (0.36 mmol, 1 eq.) and methanol (72 μ L) were added to the gold complex solution. This solution was loaded into a plastic syringe equipped with stainless steel needle. The syringe was closed by blocking the needle with a septum. Outside the glovebox, the Schlenk was cooled down to -10°C (Ethanol/N₂ cold bath). At this temperature, the solution of (P,N)AuCl complex, iodoarene and 1,3,5–trimethoxybenzene was added. The reaction mixture was then stirred at 75°C. After complete conversion, silver salts were filtrated, and the solvent evaporated. Isolated yields were determined after column chromatography (pentane/dichloromethane). The fractions containing the biaryl product were then concentrated under vacuum to yield the pure product.

Characterization of biaryl products

See A. Zeineddine, L. Estévez, S. Mallet-Ladeira, K. Miqueu, A. Amgoune, D. Bourissou, *Nat. Commun.* **2017**, *8*, 565.

2',4',6'-trimethoxybiphenyl-4-benzonitrile was prepared according to the general procedure described above using 4-iodobenzonitrile with 1,3,5–trimethoxybenzene, and purified by column chromatography (pentane/dichloromethane 100:0 to 95:5) to afford a white solid (65% isolated yield). Analytical data are consistent with that previously reported in the literature.ⁱ ¹H NMR (300 MHz, CD₂Cl₂): δ 7.59 (d, *J* = 8.2 Hz, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 6.18 (s, 2H), 3.83 (s, 3H), 3.69 (s, 6H).

2',4',6'-trimethoxybiphenyl-4-benzotrifluoride was prepared according to the general procedure described above using 4-iodobenzotrifluoride with 1,3,5–trimethoxybenzene, and purified by column chromatography (pentane/dichloromethane 100:0 to 95:5) to afford a white solid (65% isolated yield). Analytical data are consistent with that previously reported in the literature.ⁱ ¹H NMR (300 MHz, CD₂Cl₂): δ 7.57 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 6.19 (s, 2H), 3.81 (s, 3H), 3.67 (s, 6H).

2',4',6'-trimethoxybiphenyl-4-bromobenzene was prepared according to the general procedure described above using 1-bromo-4-iodobenzene with 1,3,5–trimethoxybenzene, and purified by column chromatography (pentane/dichloromethane 100:0 to 95:5) to afford a white solid (65% isolated yield). Analytical data are consistent with that previously reported in the literature.ⁱ ¹H NMR (300 MHz, CDCl₃): δ 7.47–7.37 (m, 2H), 7.17–7.08 (m, 2H), 6.14 (s, 2H), 3.79 (s, 3H), 3.65 (s, 6H).

Competition experiments

General procedure for competition experiments (oxidative addition step)

• Competition reactions between EDG and EWG *p*-substituted iodoarenes

In a glovebox, a screw-cap NMR tube was charged with AgSbF₆ (8.0 mg, 0.023 mmol) in CD₂Cl₂ (0.3 mL). Complex **Au1** (15 mg, 0.023 mmol) was transferred into a glass vial and dissolved in CD₂Cl₂ (0.3 mL). EDG *p*-substituted iodoarene (0.23 mmol) and EWG *p*-substituted iodoarene (0.23 mmol) were added to the solution of **Au1**. The prepared solution was loaded into a plastic syringe equipped with stainless steel needle. The syringe was closed by blocking the needle with a septum. Outside the glovebox, the NMR tube was cooled down to -80°C (Ethanol/N₂ cold bath). At this T, the solution of complex **Au1** and the two iodoarenes was added. The tube was gently shaken and allowed to warm to RT. The relative ratios of oxidative addition products **P**₁ and **P**₂ were determined by ³¹P{¹H} NMR spectroscopy.

• <u>Competition reactions between iodobenzene and *p*-substituted iodoarenes for Hammett correlation construction (oxidative addition)</u>

In a glovebox, a screw-cap NMR tube was charged with AgSbF₆ (8.0 mg, 0.023 mmol) in CD₂Cl₂ (0.3 mL). Complex **Au1** (15 mg, 0.023 mmol) was transferred into a glass vial and dissolved in CD₂Cl₂ (0.3 mL). Iodobenzene (0.23 mmol) and the corresponding *p*-substituted iodoarene (0.23 mmol) were added to the solution of **Au1**. The prepared solution was loaded into a plastic syringe equipped with stainless steel needle. The syringe was closed by blocking the needle with a septum. Outside the glovebox, the NMR tube was cooled down to -80°C (Ethanol/N₂ cold bath). At this T, the solution of complex **Au1** and the two iodoarenes was added. The tube was gently shaken and allowed to warm to RT. The relative ratios of oxidative addition products **P**₁ and **P**₂ were determined by ³¹P{¹H} NMR spectroscopy.

	Ratio P ₁ / P ₂
$R = CF_3$	77 / 23
R = Br	70 / 30
R = Me	47 / 53
R = OMe	43 / 57

Table S1. Relative ratios of oxidative addition products P_1 and P_2 as obtained from competition experiments.

General procedure for competition experiments (catalytic cross-coupling)

In a glovebox, a flame dried Schlenk equipped with a magnetic stirrer bar was charged with AgSbF₆ (130.0 mg, 0.38 mmol) and K₃PO₄ (76.0 mg, 0.36 mmol) in dichlorobenzene (1.8 mL). Complex **Au1** (12.0 mg, 0.018 mmol) was transferred into a small glass vial and dissolved in dichlorobenzene (1.8 mL). Iodobenzene (3.6 mmol, 10 eq), *p*-substituted iodoarene (3.6 mmol, 10 eq), 1,3,5–trimethoxybenzene (0.36 mmol, 1 eq) and methanol (72 μ L) were added to the gold complex solution. This solution was loaded into a plastic syringe equipped with stainless steel needle. The syringe was closed by blocking the needle with a septum. Outside the glovebox, the Schlenk was cooled down to -10°C (Ethanol/N₂ cold bath). At this temperature, the solution of complex **Au1**, the two iodoarenes and 1,3,5–trimethoxybenzene was added. The reaction mixture was then stirred at 75°C. Yields were determined using calibrated GC-MS analysis vs. *n*-dodecane as internal standard.

	Yield P ₁	Yield P ₂
$R = CF_3$	83%	16%
R = Br	75%	24%
R = Me	46%	53%
R = OMe	45%	55%

Table S2. Yields in coupling products P_1 and P_2 as obtained from competition experiments.

State of the art for Au-catalyzed arylation of indoles

A few examples have been reported for the gold-catalyzed oxidative arylation of indoles (Scheme S1), all of them resulting in C3 selectivity. In 2015, Itami and coworkersⁱⁱ described the first, single example, of gold-mediated arylation of *N*-tosyl indole with p-bromo trimethylsilylbenzene (Scheme S1a). Later on, Lloyd-Jones et al., iii reported the first room temperature, gold-mediated arylation of indoles (Scheme S1b).^{iv} This methodology has been applied to arenes bearing a 3-hydroxypropyldimethylsilyl group. It works well with N-tosyl indoles, it tolerates electron-withdrawing as well as electron-donating groups on both partners and it does not require inert conditions. In 2015, Larrosa et al. reported a gold-catalyzed arylation of indoles via double C-H activation (Scheme S1c).^v The reaction involves perfluorinated arenes and N-protected indoles and does not require prefunctionalization nor directing groups. In 2017, Nevado's group^{vi} described an isolated example of perfluoroarylation of an *N*-methyl indole with an aryl boronate (Scheme S1d). Despite these advances, the requirement for a stoichiometric oxidant to access the Au(I)/Au(III) cycle represents a limitation regarding functional group tolerance and requires the protection of the indole with an electron-withdrawing group (such as TIPS, Ts or Piv).

Scheme S1. Recently developed approaches for the direct gold-catalyzed C3 arylation of indoles.

It is also worth noting that the dual gold/photoredox route developed by Lee and coworkers^{vii} for oxidant-free Au(I)/Au(III) catalytic cross-coupling does not work with very electron-rich arenes, such as 1,3,5-trimethoxybenzene. Moreover, the reaction does not proceed with *N*-methyl indole due to competing azo coupling (Scheme S2).

Scheme S2. Competing azo coupling in the gold/photoredox route developed by Lee.

C3-arylated indoles have been prepared through an intramolecular aminoarylation of alkynes catalyzed by a dual gold/photoredox system. N-tosylindoles are obtained in moderate to good yields under mild and base-free conditions.^{viii} Gold-catalyzed cascade reactions starting from *ortho*-azido alkynyl arenes leading to substituted indoles have also been reported.^{ix}

Other metals, such as Pd, Cu or Ir have also been shown to promote the C3 arylation of indoles, but they generally require high temperatures (140 °C or more), long reaction times and inert conditions.^x To the best of our knowledge, the methods for the C3 arylation of indoles under mild conditions (T <100 °C) are limited to a Cucatalyzed protocol with diaryliodonium salts (35 °C)^{xi} and a dual Pd/Fe-catalysed process with arylboronic acids (80 °C) (Scheme S4).^{xii} The Cu-catalyzed protocol works with a broad scope of substrates (21 examples), but requires the use of diaryliodonium salts that need to be synthesized for each particular arylation.

Scheme S4. Reported examples of metal-catalyzed C3 arylation of indoles under mild conditions.

Transition-metal-free processes have also been reported; however, some drawbacks, such as the need for highly reactive arylating agents (e.g., hypervalent iodine reagents^{xiii} and diazonium salts^{xiv}) and low regioselectivity due to aryne intermediates,^{xv} limit their synthetic application.

Synthesis of the starting materials (numbered SX with respect to the deriving C3-arylated indole X).

General Procedure for N-Phenylation of indolesxvi

A mixture of indole (0.82 g, 7.0 mmol), iodobenzene (1.02 g, 5.0 mmol), Cul (191 mg, 1.0 mmol) and Cs₂CO₃ (3.26 g, 10 mmol) in DMF (10 mL) was vigorously stirred at 120 °C under nitrogen atmosphere for 16 h. After cooling the mixture to ambient temperature, the reaction mixture was diluted with EtOAc (40 mL) and washed with H₂O (2×30 mL). The aqueous phase was extracted with EtOAc (2×30 mL), and the combined organic phases were dried over Na₂SO₄. After filtration and evaporation of the solvents under vacuum, the crude product was purified by column chromatography on silica gel (pentane) to afford a yellowish oil (77% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xvi} ¹H **NMR** (300 MHz, CDCl₃): δ 7.77-7.74 (m, 1H), 7.63-7.60 (m, 1H), 7.47-7.42 (m, 4H), 7.31-7.22 (m, 4H), 6.72 (d, *J* = 4.0 Hz, 1H).

General Procedure for *N*-methylation of indoles^{xvii}

NaH (1.7–2.0 eq., 60 % dispersion in mineral oil) was added in four separate portions to a stirring solution of indole (1.0 eq.) in anhydrous THF at 0 °C. The resulting mixture was allowed to warm to room temperature over 30 min, cooled to 0 °C and Mel (1.04 eq.) was added dropwise over 5 min. The resulting mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched with H_2O (3 mL) and diluted with EtOAc (5 mL). The phases were separated and the aqueous phase was washed with EtOAc (3 x 10 mL), followed by washing of the combined organic phase with brine (1 x 20 mL). Combined organic phases were dried over MgSO₄, filtered and concentrated under vacuum. The crude product was purified by column chromatography using the specified eluent to afford products **S24-S30**.

Characterization of starting materials:

(3.75

mL),

and

THF

1H),

(3.75

mL).

S24

S25

Hz, 1H), 6.83-6.74 (m, 3H), 6.28 (d, J = 3.1 Hz, 1H), 3.90 (s, 3H), 2.63 (s, 3H). 1,6-dimethylindole (S25) was prepared according to the general procedure described above using iodomethane (247 µL, 3.97 mmol) with 6-methyl-1H-indole (500 mg, 3.8 mmol) and NaH (156 mg, 6.5 mmol) in THF (3.75)mL), and purified by column chromatography (pentane/dichloromethane 90:10 to 70:30) to afford a colorless oil (11%) isolated yield). Analytical data are consistent with those previously reported in the literature.^{xviii} ¹**H** NMR (500 MHz, CD_2CI_2): δ 7.38 (d, J = 8.0 Hz, 1H), 7.05 (s, 1H), 6.92 (d, J = 3.0 Hz, 1H), 6.84 (d, J = 8.0 Hz,

1,5-dimethylindole (S26) was prepared according to the general procedure described above using iodomethane (247 μ L, 3.97 mmol) with 5-methylindole (500 mg, 3.8 mmol) and NaH (156 mg, 6.5 mmol) in THF

by

column

1,7-dimethylindole (S24) was prepared according to the general procedure described above using iodomethane (247 μ L, 3.97 mmol) with 7-methyl-1*H*-indole (500 mg, 3.8 mmol) and NaH (156 mg, 6.5 mmol) in

(pentane/dichloromethane 90:10 to 70:30) to afford a white solid (35% isolated vield). Analytical data are consistent with those previously

reported in the literature.^{xx} ¹**H NMR** (300 MHz, CD_2Cl_2): δ 7.29 (d, J = 7.5

by

column

chromatography

chromatography

purified

6.31 (d, J = 2.3 Hz, 1H), 3.66 (s, 3H), 2.40 (s, 3H).

and

S26

S27

purified

1,4-dimethylindole (S27) was prepared according to the general procedure described above using iodomethane (247 µL, 3.97 mmol) with 4-methylindole (500 mg, 3.8 mmol) and NaH (156 mg, 6.5 mmol) in THF (3.75 mL), and purified by column chromatography (pentane/dichloromethane 90:10 to 70:30) to afford a yellow oil (42% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xx} ¹H NMR (300 MHz, CD₂Cl₂): δ 7.03 (m, 3H), 6.79 (d, *J* = 6.9 Hz, 1H), 6.39 (d, *J* = 3.1 Hz, 1H), 3.68 (s, 3H), 2.44 (s, 3H).

S28

1-methyl-6-carboxyindole methyl ester (S28) was prepared according to the general procedure described above using iodomethane (247 μ L, 3.97 mmol) with methylindole-6-carboxylate and NaH (156 mg, 6.5 mmol) in THF (3.75 mL), and purified by column chromatography (pentane/dichloromethane 90:10 to 70:30) to afford a yellow solid (43% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xviii} ¹**H NMR** (300 MHz, CD₂Cl₂): δ 7.98 (s, 1H), 7.65 (d, *J* = 8.3 Hz, 1H), 7.51 (d, *J* = 8.3 Hz, 1H), 7.11 (d, *J* = 2.8 Hz, 1H), 6.41 (d, *J* = 2.5 Hz, 1H), 3.80 (s, 3H), 3.70 (s, 3H).

S30

5-methoxy-1-methylindole (S30) was prepared according to the general procedure described above using iodomethane (247 µL, 3.97 mmol) with 5-methoxy-1*H*-indole and NaH (156 mg, 6.5 mmol) in THF (3.75 mL), and purified by column chromatography (pentane/dichloromethane 90:10 to 70:30) to afford a white solid (56% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xix} ¹H **NMR** (300 MHz, CD₂Cl₂): δ 7.13 (d, *J* = 8.9 Hz, 1H), 6.99 – 6.91 (m, 2H), 6.75 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.28 (d, *J* = 3.0 Hz, 1H), 3.73 (s, 3H), 3.67 (s, 3H).

General procedure for gold-catalyzed direct arylation of indoles with iodoarenes

In a glovebox, a flame dried Schlenk equipped with a magnetic stirrer bar was charged with silver trifluoromethanesulfonate (98.0 mg, 0.38 mmol) and potassium phosphate tribasic (76.0 mg, 0.36 mmol) in o-dichlorobenzene (1.8 mL). Complex Au1 (12.0 mg, 0.018 mmol) was transferred into a small glass vial and dissolved in o-dichlorobenzene (1.8 mL). lodoarene (0.36 mmol, 1 eq.), indole (0.72 mmol, 2 eq.) and methanol (72 µL) were added to the gold complex solution. This solution was loaded into a plastic syringe equipped with stainless steel needle. The syringe was closed by blocking the needle with a septum. Outside the glovebox, the Schlenk was cooled down to -10°C (Ethanol/N₂ cold bath). At this temperature, the solution of (P.N)AuCl complex, iodoarene and indole was added. The reaction mixture was then stirred at 75°C. After complete conversion, silver salts were filtrated, and the solvent evaporated. Isolated yields were determined after column chromatography (pentane/dichloromethane). The fractions containing the biaryl product were then concentrated under vacuum to vield the pure product. Known products were characterized by ¹H NMR and authenticated by comparison with literature data. New products were characterized by ¹H, ¹³C NMR spectroscopy and mass spectrometry (electronic impact).

Characterization of biaryl products:

1-methyl-3-phenyl-1*H***-indole (1)** was prepared according to the general procedure described above using iodobenzene with 1-methyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 100:0 to 95:5) to afford a colorless oil (87% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xxi} ¹H NMR (300 MHz, CDCl₃): δ 7.93 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 7.7 Hz, 2H), 7.44-7.33 (m, 3H), 7.28-7.15 (m, 4H), 3.80 (s, 3H).

For NMR data of the C2-arylated product, see ref. xix. Comparison of the ¹H NMR spectra allows unambiguous identification of the C3-arylated product.

2

1,3-diphenyl-1*H***-indole (2)** prepared according to the general procedure described above using iodobenzene with 1-phenyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 90:10) to afford a yellow oil (31% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xxii} ¹**H NMR** (300 MHz, CDCl₃): δ 8.01 (d, *J* = 7.7 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 2H), 7.64-7.47 (m, 8H), 7.42-7.24 (m, 4H).

OMe

Bu

3-phenyl-1-benzyl-indole (3) was prepared according to the general procedure described above using iodobenzene with 1-benzyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 95:5 to 90:10) to afford a light yellow solid (21% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xxiii} ¹H NMR (300 MHz, CD₂Cl₂): 7.95 (d, *J* = 7.1 Hz, 1H), 7.67 (d, *J* = 7.5 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.37 – 7.24 (m, 6H), 7.24 – 7.13 (m, 4H), 5.33 (s, 2H).

3-phenyl-1*H***-indole (4)** was prepared according to the general procedure described above using iodobenzene with 1*H*-indole, and purified by column chromatography (pentane/dichloromethane 95:5 to 90:10) to afford a light yellow solid (30% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xi} 1**H NMR** (300 MHz, CDCl₃): δ 8.17 (br. s, 1H), 7.97 (d, *J* = 7.7 Hz, 1H), 7.69 (d, *J* = 7.5 Hz, 2H), 7.49-7.41 (m, 3H), 7.35-7.19 (m, 4H).

3-(4-methoxyphenyl)-1-methyl-1*H***-indole (8)** was prepared according to the general procedure described above using 4-iodoanisole with 1-methyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 85:15) to afford a white crystalline solid (37% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xxi} ¹H NMR (300 MHz, CDCl₃): δ 7.91 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 8.7 Hz, 2H), 7.37 (d, *J* = 8.3 Hz, 1H), 7.31-7.26 (m, 1H), 7.21-7.17 (m, 2H), 7.00 (d, *J* = 8.7 Hz, 2H), 3.87 (s, 3H), 3.84 (s, 3H).

3-(4-(tert-butyl)phenyl)-1-methyl-1*H***-indole (9)** prepared according to the general procedure described above using 4-tert-butyliodobenzene with 1-methyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 90:10) to afford a yellow oil (31% isolated yield). ¹H NMR (500 MHz, CD_2CI_2): δ 7.84-7.80 (m, 1H), 7.52-7.48 (m, 2H), 7.40-7.35 (m, 2H), 7.29-7.27 (m, 1H), 7.18-7.14 (m, 2H), 7.10-7.04 (m, 1H), 3.73 (s, 3H), 1.28 (s, 9H). ¹³C NMR (500 MHz, CD_2CI_2): δ 147.88 (Cq), 136.84 (Cq), 132.02 (Cq), 126.00 (CH), 125.76 (CH), 125.38 (Cq), 124.95 (CH), 121.04 (CH), 119.01 (CH), 118.95 (CH), 115.40 (Cq), 108.82 (CH), 33.64 (Cq), 32.04 (CH₃), 30.44 (CH₃). MS (m/z): Calcd. for C₁₉H₂₁N: 263.2. Found: 263.0.

1-methyl-3-(4-nitrophenyl)-1*H***-indole (10)** was prepared according to the general procedure described above using 1-iodo-4-nitrobenzene with 1-methyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 90:10) to afford a yellow solid (52% isolated yield). Crystals suitable for X-ray diffraction analysis were obtained by layering a DCM solution with pentane. Analytical data are consistent with those previously reported in the literature.^{xi} **Mp**: 152-155 °C. ¹**H NMR** (300 MHz, CDCl₃): δ 8.27 (d, *J* = 9.0 Hz, 2H), 7.96 (d, *J* = 7.9 Hz, 1H), 7.78 (d, *J* = 9.0 Hz, 2H), 7.43-7.26 (m, 4H), 3.88 (s, 3H).

15 BPin

1-(4-(1-methyl-1*H***-indol-3-yl)phenyl)ethan-1-one (11)** was prepared according to the general procedure described above using 4'-iodoacetophenone with 1-methyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 80:20) to afford a yellow solid (71% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xxi} ¹H NMR (300 MHz, CDCl₃): δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.90 (d, *J* = 8.3 Hz, 1H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.34-7.27 (m, 2H), 7.25-7.13 (m, 2H), 3.81 (s, 3H), 2.58 (s, 3H).

1-methyl-3-(4-(trifluoromethyl)phenyl)-1*H***-indole (12)** was prepared according to the general procedure described above using 4-iodobenzotrifluoride with 1-methyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 90:10) to afford a yellow solid (84% isolated yield). Analytical data are consistent with that previously reported in the literature.^{xxiv} ¹H NMR (300 MHz, CD₂Cl₂): δ 7.90 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.1 Hz, 1H), 7.33 (s, 1H), 7.26 (t, J = 7.2 Hz, 1H), 7.18 (dd, J = 11.0, 4.0 Hz, 1H), 3.80 (s, 3H).

1-methyl-3-(4-bromo)-1*H***-indole (13)** was prepared according to the general procedure described above using 1-bromo-4-iodobenzene with 1-methyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 90:10) to afford a white solid (38% isolated yield). Crystals suitable for X-ray diffraction analysis were obtained by layering a DCM solution with pentane. Analytical data are consistent with those previously reported in the literature.^{xxiv} **Mp**: 89-93 °C. ¹**H NMR** (300 MHz, CD₂Cl₂): δ 7.78 (d, *J* = 8.0 Hz, 1H), 7.46 (s, 4H), 7.30 (d, *J* = 8.2 Hz, 1H), 7.14 (m, 3H), 3.74 (s, 3H).

4-(1-methyl-1H-indol-3-yl)phenyl trifluoromethanesulfonate (14) was prepared according to the general procedure described above using 4-iodophenyl trifluoromethanesulfonate with 1-methyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 80:20) to afford a yellow solid (71% isolated yield). ¹H NMR (500 MHz, CD₂Cl₂): δ 7.80 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.68–7.61 (m, 2H), 7.32 (dt, *J* = 8.3, 1.0 Hz, 1H), 7.28–7.24 (m, 2H), 7.23 (s, 1H), 7.21 (ddd, *J* = 8.2, 7.0, 1.2 Hz, 1H), 7.11 (ddd, *J* = 8.0, 7.0, 1.1 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (500 MHz, CD₂Cl₂): δ 146.64 (Cq), 136.85 (Cq), 135.71 (Cq), 127.59 (CH), 126.58 (CH), 124.91 (Cq), 121.41 (CH), 120.84 (CH), 119.49 (CH), 118.99 (CF₃, q, *J* = 125.3 Hz), 118.49 (CH), 113.65 (Cq), 109.05 (CH), 32.14 (CH₃). ¹⁹F NMR (500 MHz, CD₂Cl₂): δ -73.20 (s). MS (m/z): Calcd. for C₁₆H₁₂F₃NO₃S: 355.1. Found: 355.0.

1-methyl-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-

1H-indole (15) was prepared according to the general procedure described above using 4-iodophenylboronic acid pinacol ester with 1-methyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 20:80) to afford a white solid (51% isolated yield). ¹H NMR (500 MHz, CD_2Cl_2): δ 7.86 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.75 – 7.70 (m, 2H), 7.61 – 7.57 (m, 2H), 7.30 (dt, *J* = 8.2, 1.0 Hz, 1H),

7.26 (s, 1H), 7.18 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.09 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 3.74 (s, 3H), 1.26 (s, 12H). ¹³**C** NMR (500 MHz, CD_2Cl_2): 137.83 (Cq), 136.91 (Cq), 134.38 (CH), 126.45 (CH), 125.32 (CH), 125.12 (Cq), 121.16 (CH), 119.21 (CH), 119.00 (CH), 115.25 (Cq), 108.89 (CH), 82.89 (Cq), 32.08 (CH₃), 23.92 (CH₃). **MS** (m/z): Calcd. for $C_{21}H_{24}BNO_2$: 333.2. Found: 333.1.

1-methyl-3-(naphthalen-1-yl)-1H-indole (16) was prepared according to the general procedure described above using 1-iodonaphthalene with 1-methyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 95:5 to 90:10) to afford a yellow oil (37%) isolated yield). ¹H NMR (500 MHz, CD₂Cl₂): δ 8.03-7.98 (m, 1H), 7.86-7.82 (m, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.53-7.29 (m, 6H), 7.22-7.17 (m, 2H), 7.03-6.98 (m, 1H), 3.81 (s, 3H). ¹³C NMR (500 MHz, CD₂Cl₂): δ 137.06 (Cq), 134.10 (Cq), 133.09 (Cq), 132.47 (Cq), 128.46 (CH), 128.21 (CH), 128.00 (Cq), 127.59 (CH), 126.80 (CH), 126.46 (CH), 125.68 (CH), 125.62 (CH), 125.61 (CH), 121.84 (CH), 120.07 (CH), 119.49 (CH), 114.59 (C_a), 109.48 (CH), 32.82 (CH₃). **MS** (m/z): Calcd. for C₁₉H₁₅N: 257.1. Found: 257.3.

1-methyl-3-(naphthalen-2-yl)-1*H***-indole (17)** was prepared according to the general procedure described above using 2-iodonaphthalene with 1-methyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 95:5 to 90:10) to afford a yellow oil (34% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xxv} ¹H NMR (300 MHz, CD₂Cl₂): δ 8.15 (s, 1H), 8.09 (d, *J* = 7.8 Hz, 1H), 7.94-7.78 (m, 4H), 7.55-7.19 (m, 6H), 3.79 (s, 3H).

3-(2-methoxyphenyl)-1-methyl-1*H***-indole (18)** was prepared according to the general procedure described above using 2-iodoanisole with 1-methyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 95:5) to afford a white solid (50% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xxi} ¹**H NMR** (300 MHz, CDCl₃): δ 7.80 (d, *J* = 8.0 Hz, 1H), 7.65 (dd, *J* = 7.4, 1.7 Hz, 1H), 7.40-7.37 (m, 1H), 7.36 (br. s, 1H), 7.32-7.23 (m, 2H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.10-7.02 (m, 2H), 3.88 (s, 3H), 3.85 (s, 3H).

3-(4-methoxyphenyl)-1*H***-indole (19)** was prepared according to the general procedure described above using 4-iodoanisole with 1*H*-indole, and purified by column chromatography (pentane/diethyl ether 80:20) to afford a white solid (33% isolated yield). Analytical data are consistent with that previously reported in the literature.^{xiii,a} ¹H NMR (300 MHz, CD₂Cl₂): δ 8.24 (br s, 1H), 7.78 (d, *J* = 8.2 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.37 – 7.30 (m, 1H), 7.23 (d, *J* = 2.5 Hz, 1H), 7.10 (m, 2H), 6.95 – 6.87 (m, 2H), 3.75 (s, 3H).

S22

21

22

3-(4-(trifluoromethyl)phenyl)-1*H***-indole (20)** was prepared according to the general procedure described above using 4-iodobenzotrifluoride with 1*H*-indole, and purified by column chromatography (pentane/diethyl ether 80:20) to afford a white solid (37% isolated yield). Analytical data are consistent with that previously reported in the literature.^{xxvi} 1H NMR (300 MHz, CD₂Cl₂): δ 8.48 (br s, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.73 (m, 2H), 7.61 (m, 2H), 7.41 (m, 2H), 7.16 (m, 2H).

1-methyl-3-(pyridin-2-yl)-1H-indole (21) was prepared according to the described using general procedure above 2-iodopyridine with 1-methyl-1*H*-indole, and purified column chromatography by (pentane/dichloromethane 80:20) to afford a yellowish solid (16% isolated yield). Analytical data are consistent with that previously reported in the literature.xxvii ¹H NMR (300 MHz, CD₂Cl₂): δ 8.62 – 8.48 (m, 1H), 8.27 - 8.15 (m, 1H), 7.70 - 7.55 (m, 3H), 7.36 - 7.10 (m, 3H), 7.07 -6.96 (m, 1H), 3.79 (s, 3H).

1-methyl-3-(thiophen-3-yl)-1*H***-indole (22)** was prepared according to the general procedure described above using 3-iodothiophene with 1-methyl-1*H*-indole, and purified by column chromatography (pentane/dichloromethane 80:20) to afford a white solid (33% isolated yield). Analytical data are consistent with that previously reported in the literature.^{xxi} ¹H NMR (300 MHz, CD₂Cl₂) δ 7.81 (d, *J* = 7.9 Hz, 1H), 7.37 – 7.25 (m, 4H), 7.22 – 7.05 (m, 3H), 3.72 (s, 3H).

1,7-dimethyl-3-phenyl-1H-indole (24) was prepared according to the general procedure described above using iodobenzene with purified 1,7-dimethylindole, and column chromatography bv (pentane/dichloromethane 95:5 to 90:10) to afford a light yellow solid (20% isolated yield). ¹H NMR (500 MHz, CD_2Cl_2): 7.64 (d, J = 8.0 Hz, 1H), 7.53 (dd, J = 8.2, 1.2 Hz, 2H), 7.33 (t, J = 7.9 Hz, 2H), 7.17 (t, 1H), 7.05 (s, 1H), 6.92 (m, 1H), 6.86 (d, J = 7.1 Hz, 1H), 4.00 (s, 3H), 2.70 (s, 3H). ¹³C NMR (500 MHz, CD₂Cl₂): δ 135.55 (Cq), 135.01 (Cq), 127.98 (CH), 127.76 (CH), 126.62 (CH), 126.42 (Cq), 124.89 (CH), 123.80 (CH), 121.06 (Cq), 119.32 (CH), 116.94 (CH), 115.32 (Cq), 36.16(CH₃), 18.85 (CH₃). **MS** (m/z): Calcd. for C₁₆H₁₅N: 221.1. Found: 220.9.

1,6-dimethyl-3-phenyl-1H-indole (25) was prepared according to the general procedure described above using iodobenzene with 1,6-dimethylindole, and purified by column chromatography (pentane/dichloromethane 95:5 to 90:10) to afford a vellow oil (20% isolated yield). ¹H NMR (500 MHz, CD_2Cl_2): δ 7.71 (d, J = 8.2 Hz, 1H), 7.60 (d, J = 7.7 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.18 (m, 3H), 6.96 (d, J = 8.2 Hz, 1H), 3.69 (s, 3H), 2.42 (s, 3H). ¹³C NMR (500 MHz, CD₂Cl₂): δ 138.03 (Cq), 135.90 (Cq), 131.78 (Cq), 128.71 (CH), 126.90 (CH), 126.08 (CH), 125.46 (CH), 123.86 (Cq), 121.60 (CH), 119.34 (CH), 116.03 (Cq), 109.55 (CH), 32.69 (CH₃), 21.50 (CH₃). **MS** (m/z): Calcd. for C₁₆H₁₅N: 221.1. Found: 221.4.

25 ×

1,5-dimethyl-3-phenyl-1H-indole (26) was prepared according to the procedure general described above using iodobenzene with 1,5-dimethylindole. and purified column chromatography bv (pentane/dichloromethane 95:5 to 90:10) to afford a yellow oil (25%) isolated yield). Analytical data are consistent with those previously reported in the literature.^{xxviii} ¹H NMR (300 MHz, CD₂Cl₂): δ 7.63 (s, 1H), 7.56 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.7 Hz, 2H), 7.18 (m, 3H), 7.01 (d, J = 8.4 Hz, 1H), 3.72 (s, 3H), 2.39 (s, 3H).

1,4-dimethyl-3-phenyl-1H-indole (27) was prepared according to the procedure described above using iodobenzene general with 1.4-dimethylindole. and purified column chromatography by (pentane/dichloromethane 95:5 to 90:10) to afford a light yellow oil (20% isolated yield). ¹H NMR (500 MHz, CD₂Cl₂): δ 7.62 (s, 1H), 7.56 (dd, J = 8.1, 1.1 Hz, 2H, 7.34 (t, J = 8.0 Hz, 2H), 7.20 – 7.13 (m, 3H), 7.01 (d, J = 8.3 Hz, 1H), 3.72 (s, 3H), 2.38 (s, 3H). ¹³C NMR (500 MHz, CD₂Cl₂): δ 135.27 (Cq), 135.14 (Cq), 128.38 (Cq), 127.92 (CH), 126.26 (CH), 125.99 (CH), 125.41 (Cq), 124.68 (CH), 122.69 (CH), 118.52 (CH), 114.90 (Cq), 108.49 (CH), 32.04 (CH₃), 20.51 (CH₃). **MS** (m/z): Calcd. for C₁₆H₁₅N: 221.1. Found: 221.1.

1-methyl-3-phenyl-6-carboxyindole methyl ester (28) was prepared according to the general procedure described above using iodobenzene with 1-methyl-6-carboxyindole methyl ester, and purified by column chromatography (pentane/dichloromethane 95:5 to 90:10) to afford a light yellow solid (30% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xxix} ¹H NMR (300 MHz, CD₂Cl₂): δ 8.06 (dd, *J* = 1.5, 0.7 Hz, 1H), 7.86 (dd, *J* = 8.5, 0.7 Hz, 1H), 7.75 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.60–7.54 (m, 2H), 7.41–7.33 (m, 3H), 7.24–7.17 (m, 1H), 3.85 (s, 3H), 3.82 (s, 3H).

5-bromo-1-methyl-3-phenyl-1*H***-indole (29)** was prepared according to the general procedure described above using iodobenzene with 5-bromo-1-methylindole, and purified by column chromatography (pentane/dichloromethane 95:5 to 90:10) to afford a brown oil (30% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xxx} ¹H NMR (300 MHz, CDCl₃): δ 7.99 (d, *J* = 1.9 Hz, 1H), 7.55 (m, 1H), 7.53 (m, 1H), 7.39 (m, 2H), 7.30 (m, 1H), 7.24 (m, 1H), 7.16 (m, 2H), 3.75 (s, 3H).

5-methoxy-1-methyl-3-phenyl-1*H***-indole (30)** was prepared according to the general procedure described above using iodobenzene with 5-methoxy-1-methylindole, and purified by column chromatography (pentane/dichloromethane 95:5 to 90:10) to afford a light yellow solid (30% isolated yield). Analytical data are consistent with those previously reported in the literature.^{xxx} ¹H NMR (300 MHz, CD₂Cl₂): δ 7.53 (d, *J* = 7.7 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.27 (d, *J* = 2.2 Hz, 1H), 7.16 (d, *J* = 8.6 Hz, 2H), 7.13 (s, 1H), 6.81 (dd, *J* = 8.9, 2.3 Hz, 1H), 3.74 (s, 3H), 3.67 (s, 3H).

MeO₂C

1-methyl-3-phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H***-indole (31)** was prepared according to the general procedure described above using iodobenzene with 1-methylindole-5-boronic acid pinacol ester, and purified by column chromatography (pentane/dichloromethane 50:50 to 10:90) to afford a white oil (50% isolated yield). ¹H NMR (500 MHz, CD_2Cl_2): δ 8.25 (t, *J* = 1.0 Hz, 1H), 7.62 – 7.55 (m, 3H), 7.40 – 7.34 (m, 2H), 7.30 (dd, *J* = 8.3, 0.8 Hz, 1H), 7.23 – 7.16 (m, 2H), 3.76 (s, 3H), 1.27 (s, 12H). ¹³C NMR (500 MHz, CD_2Cl_2): δ 139.39 (Cq), 135.46 (Cq), 128.70 (CH), 127.94 (CH), 127.30 (CH), 127.23 (CH), 126.80 (CH), 125.75 (CH), 116.99 (Cq), 108.95 (CH), 83.42 (Cq), 32.79 (CH₃), 29.68 (Cq), 24.68 (CH₃). **MS** (m/z): Calcd. for C₂₁H₂₄BNO₂: 333.2. Found: 333.1.

Functional group compatibility

The general procedure for gold-catalyzed direct arylation of indoles with iodoarenes was followed. The corresponding additive (1 eq.) was added in the Schlenk together with the silver trifluoromethanesulfonate and potassium phosphate tribasic.

1

	/ N		(MeDalphos)AuCl (5 mol9 AgOTf (1.05 eq.), K ₃ PO ₄ (1	6) eq.)
	+	+ additive	DCB/MeOH (50:1)	
(1 eq.)	(2 eq.)	(1 eq.)	75°C, 2 h	1
Entry	Additive	Yield of 1	Additive remaining	SM remaining
1	None	99%	-	88%
2	H_5	87%	100%	102%
3	OH	99%	77%	98%
4	NH ₂	0%	73%	200%
5	C H O	99%	74%	94%
6	CN	99%	76%	99%
7	ОН	0%	0%	200%
8		24%*	0%	44%
9	СН	20%	0%	0%
10	$\mathbb{I}_{\mathbf{N}}^{H}$	0%	0%	200%
11	S	98%	100%	88%
12		100%	99%	87%

Table S3. Study of functional group compatibility. Yields determined using calibrated GC-MS with *n*-dodecane as internal standard. *Yield determined using NMR with *n*-dodecane as internal standard

NMR spectra

Figure S12. ¹⁹F NMR spectrum of 14 in CD_2CI_2 .

Figure S14. ${}^{13}C{}^{1}H$ NMR spectrum of 15 in CD_2CI_2 .

Figure S15. ¹H NMR spectrum of **16** in CD₂Cl₂.

Figure S17. ¹H NMR spectrum of 24 in CD₂Cl₂.

Figure S19. ¹H NMR spectrum of 25 in CD₂Cl₂.

Figure S20. $^{13}C{^1H}$ NMR spectrum of 25 in CD_2Cl_2 .

Figure S21. ¹H NMR spectrum of 27 in CD₂Cl₂.

Figure S22. ${}^{13}C{}^{1}H$ NMR spectrum of 27 in CD_2CI_2 .

Crystallographic data collection and structure determination

The data were collected at low temperature (193 K) on a Bruker-AXS D8-Venture diffractometer equipped with a CMOS area detector, using MoK α radiation ($\lambda = 0.71073$ Å). Phi- and omega- scans were used. The data were integrated with SAINT, and an empirical absorption correction with SADABS was applied.^{xxxi} The structures were solved using an intrinsic phasing method (SHELXT)^{xxxii} and refined using the least-squares method on $F^{2xxxiii}$. All non-H atoms were refined with anisotropic displacement parameters. The H atoms were refined isotropically at calculated positions using a riding model.

CCDC-1894885 (**10**) and CCDC-1894886 (**13**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.a-c.uk/data_request/cif</u>.

Selected data for **10**: $C_{15}H_{12}N_2O_2$, M = 252.27, orthorhombic, space group *Pbca*, a = 16.5065(10) Å, b = 7.0663(4) Å, c = 21.0475(15) Å, V = 2455.0(3) Å³, Z = 8, crystal size 0.40 x 0.20 x 0.15 mm³, 97445 reflections collected (3042 independent, *Rint* = 0.0762), 173 parameters, *R*1 [I>2 σ (I)] = 0.0552, *wR*2 [all data] = 0.1315, largest diff. peak and hole: 0.220 and -0.225 eÅ⁻³.

Selected data for **13**: $C_{15}H_{12}BrN$, M = 286.17, orthorhombic, space group $P2_12_12_1$, a = 7.0113(7) Å, b = 10.6464(2) Å, c = 16.842(2) Å, V = 1257.2(2) Å³, Z = 4, crystal size 0.40 x 0.05 x 0.02 mm³, 29152 reflections collected (3131 independent, R*int* = 0.0544), 155 parameters, R1 [I>2 σ (I)] = 0.0334, *w*R2 [all data] = 0.0683, largest diff. peak and hole: 0.409 and -0.447 eÅ⁻³.

Computational Details

Calculations have been carried out with B97D Grimme's functional including dispersion,^{xxxiv} as implemented in Gaussian 09.^{xxxv} Gold, palladium and iodine atoms were described with the relativistic electron core potential SDD and the associated basis set.xxxvi The gold and palladium atoms have been augmented by a set of f polarization functions.xxxvii The 6-31G** basis set was employed for all other atoms. Full optimizations for all stationary points, minima and transition state structures involved in the oxidative addition (OA) of iodobenzene (PhI) to the metal were performed by taking into account solvent effects (dichloromethane, DCM) by means of the universal Solvation Model based on solute electron Density (SMD).xxxviii Profiles of the oxidative addition were computed: i) for the real gold cationic complexes (MeDalphos)Au⁺ (**A**), (bipy)Au⁺ (**B**)^{xxxix} and o-carboranyl(P,P)Au⁺ (**C**)^{xl} without taking into account counter-anion, at the B97D(SMD-DCM)/SDD+f(Au), SDD(I), 6-31G^{**}(other atoms) level of theory; iii) for model palladium complexes (PPh₃)₂Pd (**D**) and chelate $[1,2-(Ph_2P)_2(C_6H_4)]Pd$ (E) at the B97D(SMD-DCM)/SDD+f(Pd), SDD(I), 6-31G**(other atoms) level of theory to compare the impact of the metal on charge transfer at the transition state. Frequency calculations were undertaken at the same level of theory than optimization to confirm the nature of the stationary points, yielding one imaginary frequency for transition states (TS), corresponding to the expected process, and zero for minima. The connectivity of the transition states and their adjacent minima was confirmed by intrinsic reaction coordinate (IRC)xli calculations. All energies presented correspond to free energies in solution (electronic energies into brackets) and are given in kcal.mol⁻¹. All reported electronic energies (ΔE) were zero-point energy (ZPE) corrected and Gibbs free energies (ΔG) temperature corrected using unscaled density functional frequencies.

To further analyze the impact of the metal (gold *versus* palladium) on the oxidative addition process, Natural Bond Orbital^{xiii} (NBO, 5.9 version)^{xiiii} analyses have been performed. Stabilizing interactions ($\Delta E(2)$ in kcal·mol⁻¹), determined at second order perturbation theory, have been computed to get insight on donor-acceptor interactions. Natural Localized Molecular Orbitals (NLMO) have also been determined. The optimized structures were subjected to an Atoms-In Molecules analysis (QTAIM analysis) using AIMAII software.^{xliv} Bader charges have been calculated in order to determine the influence of the metal in the ligand—metal

S37

charge transfer (CT) at the transition state of the OA process for gold and palladium complexes. Charge decomposition analysis (CDA) was carried out with the CDA 2.2 program of G. Frenking.^{xiv} The orbital contributions to the charge distributions were divided into four parts: (i) the mixing of the occupied orbitals of the ligand and the unoccupied MOs of the metal fragment (Ligand \gg M donation *d*), (ii) the mixing of the unoccupied orbitals of the ligand and the occupied orbitals of the metal fragment (Ligand \ll M back-donation *b*), (iii) the mixing of the occupied orbitals of the ligand and the occupied orbitals of the unoccupied orbitals of the metal fragment (ligand \leftrightarrow M repulsive polarization *r*), and (iv) the mixing of the unoccupied orbitals of the unoccupied orbitals of the metal fragment (residual term Δ).

Energy Decomposition Analysis^{xIvi} was performed for all the transition states with Amsterdam Density Functional 2018.01 program package^{xIvii} at ZORA-BP86-D3/TZ2P level of theory on the geometry optimized from Gaussian 09 at B97D(SDM-DCM)/SDD+f(M),SDD(I), 6-31G^{**} level of theory. This analysis is based on the EDA method of Morokuma and the ETS partitioning scheme of Ziegler and Rauk. The term ΔE_{int} can be decomposed into different contributions: (i) electrostatic interaction energy between the fragments (ΔE_{elstat}), (ii) destabilizing Pauli repulsion from interactions between electrons on either fragment with the same spin (ΔE_{pauli}), (iii) stabilizing orbital interaction (ΔE_{orb}) and (iv) dispersion energy term (ΔE_{disp}).

$$\Delta \mathsf{E}_{\mathsf{int}} = \Delta \mathsf{E}_{\mathsf{elestat}} + \Delta \mathsf{E}_{\mathsf{Pauli}} + \Delta \mathsf{E}_{\mathsf{orb}} + \Delta \mathsf{E}_{\mathsf{disp}}$$

To further characterize the interaction between the substrate and metal fragments in the transition states, the Natural Orbital Chemical Valence (NOCV) approach was used.^{xlviii} ETS-NOCV scheme combines charge rearrangement (NOCV) and bond energy analysis. It is a powerful tool to quantitatively analyze chemical bonds, combining the extended transition state (ETS) method for energy decomposition analysis combined with the natural orbitals for chemical valence (NOCV) theory. In this approach, the ΔE_{orb} term is decomposed into the contributions from different natural orbitals of chemical valence (NOCV) eigenvalues (λ_i) as follow:

$$\Delta E_{orb} = \sum_{k} \Delta E_{orb}^{\ k} = \sum_{k=1}^{M/2} v_{k} [-F_{-k,-k}^{\ TS} + F_{k,k}^{TS}]$$

where $F^{TS}_{k,k}$ are diagonal Kohn-Sham matrix elements defined over NOCV with respect to the transition state (TS) density. The components ΔE^{k}_{orb} provide energetic estimation of $\Delta \rho^{k}$ and allow to characterize the importance of a particular electron flow channel for the bonding between considered molecular fragments. The color code used to analyze these densities are red (depletion) and blue (accumulation) and the direction of the charge flow is from red \rightarrow blue. Hirshfeld charge analysis was also used to determine the magnitude of the charge transfer between the ligand (PhI) and the metal fragments.^{xlix}

Scheme S5. Different complexes studied to analyze and compare the oxidative addition process of PhI to Au and Pd complexes.

Pd

PPh₃

D

Real gold complexes

Pd

Ph

Ρh

Ε

Figure S25. Energy profile for the oxidative addition of PhI (ΔG and ΔE values into kcal·mol⁻¹) brackets in to the gold complex Α, computed at the SMD(dichloromethane)-B97D/SDD+f(Au),SDD(I),6-31G**(other atoms) level of theory. Main geometrical parameters (distances in Å and bond angle in °).

Table S4. NBO and AIM analyses for the transition state **TS1** and the final product **A**-**OA**. Stabilizing interaction $n_N \rightarrow \sigma^*_{AuC}$ [$\Delta E(2)$ in kcal/mol], coming from NBO calculations. Density $\rho(r)$ in e.bohr⁻³, Laplacian of density $\nabla^2 \rho(r)$ in e.bohr⁻⁵ and bond index δ from AIM analysis.

Т	TS1		A-OA
AuN : 2.645 Å AuN : 2.3		336 Å	
N	NBO)
$n_N \rightarrow \sigma^*_{AuC}$	4.4	$n_N \rightarrow \sigma^*_{AuC}$	38.9
A	IM	AIM	-
BCP (A	AuN)	BCP (Au	N)
ρ(r)	0.039	ρ(r)	0.068
$\nabla^2 \rho(\mathbf{r})$	0.118	$\nabla^2 \rho(\mathbf{r})$	0.210
δ(Au-N)	0.282	δ(Au-N)	0.482

Figure S26. Energy profile for the oxidative addition of PhI (ΔG and ΔE values into kcal·mol⁻¹) brackets in to the gold complex Β, computed the at SMD(dichloromethane)-B97D/SDD+f(Au),SDD(I),6-31G**(other atoms) level of theory. Main geometrical parameters (distances in Å and bond angle in °).

Figure S27. Energy profile for the oxidative addition of PhI (ΔG and ΔE values into brackets in kcal·mol⁻¹) to gold complex **C**, computed at the SMD(dichloromethane)-B97D/SDD+f(Au),SDD(I),6-31G**(other atoms) level of theory. Main geometrical parameters (distances in Å and bond angle in °).

Figure S28. Energy profile for the oxidative addition of PhI (ΔG and ΔE values into brackets in kcal·mol⁻¹) to the model palladium complex **D**, computed at the SMD(dichloromethane)-B97D/SDD+f(Pd),SDD(I),6-31G**(other atoms) level of theory. Main geometrical parameters (distances in Å and bond angle in °).

Figure S29. Energy profile for the oxidative addition of PhI (ΔG and ΔE values into brackets in kcal·mol⁻¹) to the model palladium complex **E**, computed at the SMD(dichloromethane)-B97D/SDD+f(Pd),SDD(I),6-31G**(other atoms) level of theory. Main geometrical parameters (distances in Å and bond angle in °).

Table S5. NBO and AIM analyses for the transition states for oxidative addition of PhI to the different gold and palladium complexes. Charge transfer (CT) from PhI to the metal fragment computed from Bader charges. Main stabilizing interactions [$\Delta E(2)$ in kcal/mol] coming from NBO calculations. NLMO LP(M) accounting for the back-donation with participation of main atoms in %.

Transition states					
	TS1ª	TS2 ^ь	TS3ª	TS4⁵	TS2₽
	(Au)	(Au)	(Au)	(Pd)	(Pd)
		NBO analysi	is		
	Stabilizing	interactions	in kcal/mol		
LP(I) →σ* _{MP}	41.1	10.1 ^c	22.6 ^c	1.0 ^c	-
$\sigma_{cl} \rightarrow \sigma^*_{MP}$	23.5	30.4 ^c	30.8 ^c	6.9 ^c	5.1 ^c
$\pi_{C=C} \rightarrow \sigma^*_{MP}$	6.2	70.5℃	24.2 ^c	42.4 ^c	58.7 ^c
$\sigma_{cc} \rightarrow \sigma^*{}_{MP}$	1.1	3.8 ^c	2.38	5.2 ^c	7.2 ^c
Σ donation	71.9	114.8 ^c	80 ^c	55.5°	71 ^c
LP(M) $\rightarrow \sigma *_{ci}$	8.8	8.4	7.8 ^c	5.3	5.5
LP(M) $\rightarrow \pi *_{c=c}$	4.1	6.0	3.7 ^c	26.0	24.9
Σ back-donation	12.9	14.4	11.5 ^c	31.3	30.4
		NLMO			
LP(M)	93.2% Au	90.3% Au	92.4% Au	77.9 % Pd	76.9 % Pd
	2.0 % I	2.7 % I	2.1 % I	3.1 % I	3.5 % I
	3.2 % C	4 % C	2.9 % C	10.9 % C	11.3 % C
AIM analysis					
Bader charges					
CT (ArI \rightarrow M)	0.163	0.228	0.105	-0.421	-0.460
q(M)	0.059	0.384	0.013	0.038	0.051
q(I)	0.022	0.048	0.027	-0.287	-0.305
q(C)	-0.180	-0.185	-0.220	-0.164	-0.164

^a IRC calculations reveal that TS is connected to I-adduct and final product. ^b IRC calculations reveal that TS is connected to π-adduct and final product. ^c Donation in LP*(M) orbital, with strong s character.

The more or less significant contribution of the metal in the Natural Localized Molecular Orbital (NLMO) associated to LP(M) [77-78% (Pd) *versus* 90-93 % (Au)] corroborates the greater back-donation for the palladium center.

Table S6. CDA analysis computed at B97D/SDD+f(M)/SDD(I),6-31G**(other atoms) level of theory for the different transition states.

	TS1(Au)	TS2 (Au)	TS3 (Au)	TS4 (Pd)	TS5 (Pd)
$L \rightarrow M$ donation (d)	0.310	0.359	0.337	0.225	0.210
$M \rightarrow L$ back-donation (b)	0.116	0.149	0.146	0.329	0.288
d/b ratio	2.67	2.40	2.30	0.68	0.73
$M \leftrightarrow C$ repulsion	-0.380	-0.350	-0.475	-0.526	-0.442
Residue term Δ	-0.034	-0.037	-0.030	-0.022	-0.017

Table S7. Energy Decomposition Analysis (EDA-NOCV) for the different transition states at ZORA-BP86-D3/TZ2P level of theory (energy contributions in kcal.mol⁻¹). Charge flow contribution Δq^{PhI} from Hirshfeld partitioning.

	TS1 (Au)	TS2 (Au)	TS3 (Au)	TS4 (Pd)	TS5 (Pd)
ΔE_{Pauli}	102.29	122.25	120.34	169.49	157.39
ΔE_{Elstat}	-69.96 (48.9 %)ª	-89.93 (51.6%)ª	-77.42 (48.4%)ª	-114.88 (51.9 %)ª	-108.43 (51.8 %)ª
ΔE_{Orb}	-57.19 (40 %)ª	-76.42 (43.9 %)ª	-62.55 (39.1 %)ª	-86.39 (39.0 %)ª	-87.07 (41.6 %)ª
ΔE_{Orb1}	-18.62 (32.6 %) ^b	-32.50 (42.5 %) ^b	-20.50 (32.8 %) ^b	-56.12 (65.0 %) ^b	-59.43 (68.3 %) ^b
	λ_1 : 0.65 ^c	λ_1 : 0.63 ^c	λ_1 : 0.73 ^c	λ_1 : 0.97 ^c	λ_1 : 1.03 ^c
ΔE_{Orb2}	-22.89 (40.0 %) ^b	-25.85 (33.8 %) ^b	-22.72 (36.3 %) ^b	-10.01 (11.6 %) ^b	-9.67 (11.1 %) ^b
	λ_2 : 0.50 ^c	λ_2 : 0.55 ^c	λ_2 : 0.61 ^c	λ_2 : 0.33 ^c	λ_1 : 0.32 ^c
ΔE_{Orb3}	-3.98 (7.0 %) ^b	-4.67 (6.1 %) ^b	-6.01 (9.6%) ^b	-5.81 (6.7%) ^b	-6.65 (7.7 %) ^b
	λ_3 : 0.17 ^c	λ_3 : 0.20 ^c	λ ₃ : 27 ^c	λ_3 : 0.23 ^c	λ_1 : 0.23 ^c
$\Delta E_{dispersion}$	-15.85 (11.1 %)ª	-7.85 (4.5 %)ª	-19.89ª (12.4 %)	-20.26 (9.1 %)ª	-13.79 (6.6 %)ª
ΔE_{int}	-40.68	-51.95	-51.17	-52.03	-51.91
	Values i	into brackets (%) co	prrespond to : a the	contribution of each	term in the total
	attracti	ve interaction. ^b the	contribution of ea	ch term in the orbita	l interaction and
		^c Figenval	ue λ_{i} correspondin	g to the charge flow	
		Ligenval			
Δq^{Phl}	0.076	0.111	0.053	-0.332	-0.382
,					

We have analyzed the interaction between PhI and LAu⁺ or LPd fragments in the different transition states **TS1-5**, in terms of orbital contributions by applying the Extended Transition State-Natural orbitals for Chemical Valence scheme (ETS-NOCV). Table S7 and Figures S30 and S31 summarize the results, with the three more important contributions to the deformation electron density for ML_n/PhI partition and the energetic estimates of the i-th charge-flow channel, ΔE_{orbi} .

Figure S30: Plot of the contours of deformation densities contributions ($\Delta \rho_{orbi}$) of the main pairwise orbital interactions between PhI and AuL_n and associated orbital interaction energies contributions (ΔE_{orbi} , in kcal.mol⁻¹) for the different TSs computed at ZORA-BP86-D3/TZ2P level of theory. The charge flow is red \rightarrow blue ($\Delta \rho < 0$ in red and $\Delta \rho > 0$ in blue). The contour value for density is 0.001 a.u.

 $\Delta E_{orb2}(\rho) = -22.7$

 $\Delta E_{orb3}(\rho) = -6.0$

 $\Delta E_{orb1}(\rho) = -20.5$

Figure S31: Plot of the contours of deformation densities contributions ($\Delta \rho_{orbi}$) of the main pairwise orbital interactions between PhI and PdL_n and associated orbital interaction energies contributions (ΔE_{orbi} , in kcal.mol⁻¹) for the different TSs computed at ZORA-BP86-D3/TZ2P level of theory. The charge flow is red \rightarrow blue ($\Delta \rho < 0$ in red and $\Delta \rho > 0$ in blue). The contour value for density is 0.001 a.u.

 $\Delta \mathsf{E}_{\mathsf{orb1}}(\rho) = -56.1$

 $\Delta E_{orb2}(\rho) = -10.0$

TS5-Pd

 $\Delta \mathsf{E}_{\mathsf{orb1}}(\rho) = -59.4$

 $\Delta E_{orb2}(\rho) = -9.7$

 $\Delta E_{orb3}(\rho)$ = -5.8

Z-matrices and energies in au

•
$-\mathbf{n}$

Sum of	f electronic and	zero-point Er	nergies= -1621.795572
Sum of	f electronic and	thermal Enth	alpies = -1621.766625
Sum of	electronic and	thermal Free	Energies = -1621.852013
C	-0.11187	1.14/34	1.33320
с u	0.10003	0.04118	2.03007
п	0.29391	-0.41/33	2.00778
с и	0.08849	1.4/010	5.98185
C II	0.20207	2 84834	4.97077
н	-0.15109	2.84834	1 68011
C II	-0.10988	3.31090	2 5/252
н	-0.58080	1 42715	2.54555
C	-0.36770	2 54048	1 40041
C	0.17250	4 31080	-0 19952
н	0.00616	4 56832	-1 25561
н	1 23/76	4.07352	-0.05275
н	-0.08706	5 19330	0.41669
C	-2 07717	3 37088	-0.08884
н	-2.07717	4 14216	0.60279
н	-2.47020	2 43491	0.06475
н	-2.02777	3 70761	-1 12//3
C II	-1.43785	-1 21019	0 23905
C	-1.43785	-0.36958	0.23903
ч	2.75547	0.37378	0.02751
н Н	-2.62191	0.37378	-0.92976
C II	-2.08058	1 30000	-0.92970
с u	-3.97039	-1.30099	0.02101
Г	4.00934	-0.08410	-0.13136
С	-4.00017	-2.03044	1.3/01/
п	-4.93118	-2.70932	1.30824
п	-4.165/4	-1.52830	2.19462
С	-2.78030	-2.00//3	1.30107
Г	-2.03344	-3.41097	2.34929
с u	-2.03870	-5.91425	0.43491
п	-1.73033	4.52010	0.38713
п	-5.50570	-4.39092	0.45285
С	-2.33243	-3.10907	-0.916/4
п	-2.44204	-3.89330	-1./3909
U U	-3.82813	-2.52104	-1.15255
п	-3./0/00	-1./09/0	-2.09094
п	-4./1203	-2.9//00	-1.10229
С	-1.55010	-1.941/0	2 40992
п u	-1.06642	-1.20246	2.40003
C II	1 20767	-2.32040	0.00604
с u	-1.30707	2.24031	-0.90094
и П	1 20738	-2.80028	-0.75550
C II	1 74404	0.81546	-1.60705
C	1.74494	1 00187	1 17081
ч	1.62441	1 67167	2 18748
и П	1.02441	2 80630	0.88004
C II	2 2/288	2.50039	1 16281
ч	3 42067	2.31343	1.10201
C	J.=2007 A 31180	-5.52720	1.50057
н	+.31100 5 3/655	-1.30770	1.54210
н Н	1 07204	-0.00167	2 55056
C	4.07274	-0.33107	2.55050
с и	+.17043 1 87217	0.22003	0.31020
C	+.0/342 1 52777	0.33930	0.70001
с н	4.33222	-0./51/9	-0.90075
н Н	5 56077	-1 12272	-1.03003
п С	3.50922	-1.123/3	-0.92000
C	5.55045	-1.07471	-1.20037

Н	3.77625	-2.26236	-2.28210
С	2.10702	-1.34563	-1.25805
Н	1.40642	-2.13502	-1.55934
Н	2.03232	-0.52743	-1.99082
С	2.74047	0.32345	0.52962
Н	2.51241	0.71898	1.52926
Н	2.63022	1.14635	-0.19721
С	3.68905	-3.04410	-0.24610
Н	3.00714	-3.86746	-0.51505
Н	4.71802	-3.43813	-0.25670
Ν	-0.63844	3.12404	0.11161
Р	0.01902	-0.02301	0.13610
Au	-0.15948	1.17508	-1.76893

A-I

Sum of electronic and zero-point Energies= -1864.673782				
Sum c	of electronic an	d thermal Enth	alpies = -1864.636920	
Sum c	of electronic an	d thermal Free	Energies = -1864.741302	
С	-3.83738	0.10507	0.88158	
С	-3.10509	0.74479	1.88821	
Н	-2.30776	0.22631	2.41649	
Ι	-3.29292	-1.96029	0.38273	
Au	-0.71308	-0.97937	0.02363	
С	-4.84468	0.73675	0.14884	
Н	-5.38772	0.21489	-0.63721	
С	-5.13245	2.08112	0.45350	
Н	-5.91511	2.59422	-0.10618	
С	-4.42075	2.75330	1.45888	
С	-3.41176	2.08652	2.17313	
Н	-2.84817	2.60566	2.94888	
Р	1.24035	0.15408	-0.28151	
С	2.06527	-0.46191	-1.81312	
С	0.83707	1.97367	-0.56319	
С	2.38626	-0.19909	1.18750	
С	3.35992	0.00877	-2.13908	
С	1.46233	-1.42834	-2.66546	
С	-0.28815	2.03496	-1.64177	
С	2.03697	2.82213	-1.06553	
С	0.29562	2.56403	0.76515	
С	3.57414	0.78901	1.34414	
С	1.55238	-0.18137	2,50808	
C	2.92128	-1.64629	0.98083	
Н	3.83951	0.75567	-1.51352	
C	4.05027	-0.46389	-3.26112	
Č	2.16956	-1.89156	-3.79307	
N	0.13608	-1.93446	-2.41339	
Н	0.07978	1.60403	-2.58539	
Н	-1.15714	1.44468	-1.31308	
С	-0.73190	3.50235	-1.86075	
Č	1.58713	4.29353	-1.26392	
H	2.39424	2.42428	-2.02542	
Н	2.86571	2.77945	-0.34694	
С	-0.16005	4.02718	0.54266	
Ĥ	1.08867	2.54755	1.52549	
Н	-0.54634	1.95103	1.12287	
Н	4 18881	0 80894	0 43575	
Н	3.18906	1.80295	1.52157	
C	4 46246	0 35591	2.53898	
Č	2.44092	-0.58970	3.70975	
Ĥ	1.12975	0.81614	2.68187	
Н	0 71645	-0.89261	2 42167	
C	3.80518	-2.06077	2.18289	

Н	3.51178	-1.70142	0.05545
Н	2.06648	-2.33697	0.88332
Н	5.04771	-0.08254	-3.48081
С	3.45334	-1.42307	-4.09274
Н	1.69080	-2.62691	-4.43988
С	0.06924	-3.39789	-2.29668
С	-0.85649	-1.40958	-3.36324
Н	-1.52528	3.51699	-2.62455
С	0.47372	4.34644	-2.33497
С	-1.27443	4.07015	-0.52839
Н	2.45676	4.87962	-1.59911
С	1.05241	4.86523	0.07010
Н	-0.54188	4.42391	1.49654
Н	5.30631	1.05914	2.61502
С	4.99472	-1.07683	2.29883
С	3.62887	0.39208	3.83880
С	2.97141	-2.02383	3.48392
Н	1.82502	-0.55611	4.62196
Н	4.18003	-3.08084	2.00554
Н	3.98013	-1.79789	-4.97123
Н	-0.94181	-3.66588	-1.95604
Н	0.79569	-3.73517	-1.54499
Н	0.26792	-3.92384	-3.25116
Н	-0.68313	-1.76640	-4.39838
Н	-0.82510	-0.31200	-3.35278
Н	-1.85501	-1.73642	-3.03674
Η	0.15964	5.39041	-2.49770
Н	0.85471	3.95417	-3.29228
Η	-2.13952	3.47697	-0.19254
Η	-1.61158	5.10928	-0.67426
Η	1.84596	4.84095	0.83550
Н	0.75030	5.91569	-0.07061
Η	5.64735	-1.37588	3.13474
Η	5.59417	-1.10476	1.37399
Η	3.25566	1.41418	4.01728
Н	4.25914	0.10777	4.69708
Н	2.12647	-2.72859	3.40805
Н	3.59514	-2.33404	4.33778
Н	-4.64755	3.79572	1.68225

Α-π

Sum of electronic and zero-point Energies= -1864.676958 Sum of electronic and thermal Enthalpies = -1864.640252 Sum of electronic and thermal Free Energies = -1864.744969

С	3.21532	1.04706	-0.67471
С	2.52717	1.27236	-1.90356
Н	2.42575	0.47271	-2.63510
Ι	4.25176	-0.85914	-0.37252
Au	0.90677	0.51609	-0.17943
С	3.52357	2.12795	0.19707
Н	4.06860	1.94608	1.12055
С	3.10377	3.41385	-0.14944
Н	3.32605	4.24212	0.52347
С	2.42640	3.65353	-1.36593
С	2.14538	2.60090	-2.23679
Н	1.63740	2.77635	-3.18464
Р	-1.21240	-0.20927	0.28348
С	-1.42863	-0.28887	2.11158
С	-2.46177	1.03471	-0.37238
С	-1.38007	-1.97387	-0.39647
С	-2.62281	-0.82351	2.64773
С	-0.40646	0.12335	3.00918
С	-2.02730	2.43481	0.15660
С	-3.92789	0.78260	0.07532
С	-2.37777	1.02632	-1.92215
С	-2.83890	-2.49071	-0.49519
С	-0.72974	-2.06142	-1.81363

С	-0.55293	-2.87846	0.56423
Н	-3.42191	-1.12964	1.98078
С	-2.80703	-0.96502	4.02796
С	-0.60640	-0.02306	4.39624
Ν	0.81921	0.72008	2.53321
Н	-2.07390	2.44246	1.25648
Н	-0.98772	2.64176	-0.14210
С	-2.95371	3.53039	-0.42684
Č	-4.85139	1.87139	-0.53234
H	-3.99292	0.83499	1.17085
Н	-4 26490	-0 21243	-0 24134
C	-3.29244	2.13107	-2.50379
H	-2.70447	0.04854	-2.30230
Н	-1 33309	1 18707	-2.23413
н	-3 34029	-2.43880	0.47896
Н	-3 39933	-1 86855	-1 20719
C	-2 84347	-3 96322	-0.98242
C	-0 75329	-3 52657	-2 32071
н	-1 26334	-1 41596	-2 52289
н	0.31467	-1 71771	-1 76353
C	-0.56908	-4 34137	0.05821
н	-0.97457	-7 83865	1 57827
н	0.48402	-2.00000	0.60783
н	-3 73905	-1 38307	4 40872
C	-1 78989	-0.56712	4 90792
н	0 17075	0.30574	5 07542
C	2 03941	0.08808	3 05949
C	0.83121	2 17956	2 73440
н	-2 62680	4 50832	-0.04012
C	-4 41658	3 25733	-0.00461
C	-2 84468	3 51170	-1 97035
н	-5 88620	1 66004	-0 22124
C	-4 75269	1.85018	-2 07568
н	-3 21393	2 11069	-3 60189
Н	-3 88723	-4 31159	-1 02082
C	-2 03308	-4 84060	0.00151
C	-2 21130	-4 03686	-2 38994
C	0.06157	-4 41267	-1 35110
н	-0 29854	-3 55159	-3 32339
н	0.00985	-4 96036	0 76103
н	-1 92022	-0.67015	5 98592
н	2 89660	0.50321	2 51311
Н	1 99494	-0.99389	2 87973
Н	2 18957	0 27104	4 14076
Н	0.85331	2.45089	3.80796
Н	-0.06204	2.61553	2.26947
Н	1.72330	2.58996	2.24072
Н	-5.07660	4.03909	-0.41432
Н	-4.50141	3.28328	1.09418
Н	-1.80281	3.70997	-2.27372
Н	-3.47947	4.30255	-2.40107
Н	-5.07216	0.86773	-2.46107
Н	-5.42286	2.61416	-2.50174
Н	-2.05753	-5.89126	-0.32952
Н	-2.48368	-4.79146	1.00666
Н	-2.79340	-3.42149	-3.09565
Н	-2.22645	-5.07639	-2.75542
Н	1.10681	-4.06315	-1.31230
Н	0.06609	-5.45538	-1.70782
Н	2.13655	4.67021	-1.63050

A-OA

Н	-1.30032	2.98130	-0.37247
Ι	-4.05373	-0.18610	-0.14725
Au	-1.26241	-0.11858	-0.21966
С	-1.82669	1.17052	2.48669
Н	-1.91837	0.14666	2.84363
С	-2.05552	2.23705	3.37325
Н	-2.29627	2.01889	4.41479
С	-1.99699	3.56437	2.91920
С	-1.73003	3.82143	1.56701
Н	-1.70367	4.84554	1.19189
Р	1.09395	-0.26153	-0.29219
С	1.37545	-1.46343	-1.65091
С	1.90323	1.36309	-0.76133
С	1.70579	-1.09893	1.27854
С	2.68278	-1.85428	-2.02358
С	0.27831	-2.07514	-2.28241
С	1.04361	1.97585	-1.90754
С	3.35782	1.21114	-1.29753
С	1.92240	2.29093	0.48374
С	3.25617	-1.14537	1.36390
С	1.14045	-0.37490	2.52753
С	1.12854	-2.54593	1.25857
Н	3.54564	-1.41354	-1.53703
С	2.88779	-2.81466	-3.01926
С	0.48842	-3.03562	-3.28746
Ν	-1.10742	-1.74116	-1.89354
Н	1.08471	1.30876	-2.78315
Н	-0.00713	2.06155	-1.60334
С	1.59741	3.37413	-2.28064
С	3.92012	2.61195	-1.66412
Н	3.35436	0.59459	-2.20479
Н	3.99930	0.73151	-0.54634
С	2.45341	3.68783	0.08082
Н	2.59013	1.85678	1.24087
Н	0.92009	2.37424	0.91649
Н	3.67585	-1.66428	0.49317
Н	3.65581	-0.12148	1.38982
С	3.67133	-1.90536	2.65196
С	1.57881	-1.11543	3.81400
Н	1.47491	0.66818	2.56531
Н	0.05027	-0.38147	2.46696
С	1.55877	-3.29363	2.54585
Н	1.49784	-3.09174	0.37912
Н	0.02824	-2.49741	1.19997
Н	3.90391	-3.09983	-3.29056
С	1.78630	-3.40329	-3.65688
Н	-0.36450	-3.50202	-3.77639
С	-1.80231	-2.97928	-1.40423
С	-1.83201	-1.16520	-3.07724
Н	0.96379	3.79794	-3.07475
С	3.05263	3.23198	-2.78364
С	1.56479	4.29035	-1.03334
Н	4.95277	2.47725	-2.02093
С	3.90548	3.53831	-0.42733
Н	2.42928	4.33687	0.96927
Н	4.77104	-1.93796	2.69012
С	3.10424	-3.34471	2.61053
С	3.12180	-1.16040	3.88991
С	1.01244	-2.55355	3.78802
Н	1.17409	-0.56769	4.67886
Н	1.15067	-4.31515	2.50537
Н	1.93201	-4.15144	-4.43590
Н	-2.81788	-2.70372	-1.10604
Н	-1.24950	-3.36621	-0.54031
Н	-1.84234	-3.73665	-2.19954
Н	-1.83507	-1.88295	-3.90976
Н	-1.32324	-0.24181	-3.37709

Н	-2.86024	-0.94471	-2.77525
Н	3.45175	4.22085	-3.06033
Н	3.08082	2.59136	-3.68016
Н	0.53093	4.39717	-0.67073
Н	1.93577	5.29232	-1.30193
Н	4.53860	3.11565	0.37010
Н	4.31537	4.52456	-0.69835
Н	3.42051	-3.89498	3.51088
Н	3.49878	-3.87920	1.73077
Н	3.52800	-0.13618	3.92150
Н	3.43704	-1.67900	4.80943
Н	-0.08930	-2.52160	3.75241
Н	1.30638	-3.09205	4.70313
Н	-2.17686	4.38881	3.61004

TS1

Sum of electronic and zero-point Energies= -1864.662515Sum of electronic and thermal Enthalpies = -1864.626372Sum of electronic and thermal Free Energies = -1864.728970C-2.70141C-2.701411.102430.95423C-2.483691.075802.33776H-2.473590.137702.88776

C	-2.48369	1.07580	2.33776
Н	-2.47359	0.13770	2.88776
Ι	-3.87495	-0.78737	0.00308
Au	-1.13783	-0.52505	-0.14576
С	-2.76076	2.28680	0.20779
Н	-2.96566	2.27046	-0.86016
С	-2.50891	3.49515	0.88039
Н	-2.52480	4.42576	0.31210
С	-2.23892	3.50431	2.25862
С	-2.23081	2.29913	2.98115
Н	-2.03074	2.29730	4.05354
Р	1.13843	-0.19559	-0.28197
С	1.82676	-1.50458	-1.37585
Ċ	1.45286	1.47465	-1.09695
Ċ	1.91785	-0.41449	1.42680
Č	3.21171	-1.52512	-1.66235
Č	1.00398	-2.52340	-1.92215
Č	0 57625	1 51301	-2.38712
Č	2,92060	1 77115	-1 51125
Č	0.96046	2 56514	-0.10578
C	3 33791	0 19433	1 54460
C	0.99385	0 23990	2 49684
C	1 97150	-1 94371	1 71100
н	3 86239	-0.76693	-1 23577
C	3 76927	-2 51088	-2.48515
C	1 57641	-3 50835	-2 74956
N	-0.41210	-2 59376	-1 62495
н	0.92545	0 73888	-3 08811
н	-0.47613	1 30107	-2 14242
C	0.66328	2 91047	-3.04734
Č	3.00524	3 18224	-2 15518
н	3 25475	1 02674	-2.15516
н	3 58777	1.02074	-0.64242
C	1.03463	3 95712	-0.77716
н	1 59819	2 56383	0 78977
н	-0.07101	2.30303	0.20534
н	4 00746	-0 24310	0.79118
н	3 28/36	1 27786	1 37252
C	3 00600	0.07140	2 96250
C	1 56952	-0.07149	3 91/05
ч	0.80120	1 31637	2 31185
н	_0 00034	_0.20565	2.31103
C II	2 52004	-0.20303	2.43439
ч	2.33994	-2.19209	0.06856
п ц	2.00900	-2.44419 2.36604	1 62866
н Ц	1 82002	2.50004	2 60076
п	4.03703	-2.30132	-2.09070
U	2.94624	-3.30436	-3.03052

Н	0.93243	-4.28640	-3.15988
С	-0.74698	-3.76001	-0.78515
С	-1.26617	-2.52200	-2.82486
Н	0.03189	2.90996	-3.94936
С	2.13006	3.21542	-3.42877
С	0.15075	3.97303	-2.04615
Н	4.05623	3.37828	-2.41809
С	2.50489	4.25300	-1.15658
Н	0.67156	4.70997	-0.06036
Н	4.91921	0.35780	3.01864
С	3.96513	-1.59564	3.22082
С	2.99088	0.60032	4.01165
С	1.62815	-1.52241	4.18452
Η	0.90540	0.48541	4.64538
Н	2.57943	-3.27915	3.30543
Н	3.36900	-4.27775	-3.67908
Н	-1.80851	-3.68985	-0.50706
Н	-0.13622	-3.73243	0.12678
Н	-0.57410	-4.71511	-1.31508
Η	-1.17164	-3.41950	-3.46342
Н	-0.99680	-1.63174	-3.40806
Н	-2.31079	-2.43008	-2.49345
Η	2.19518	4.20742	-3.90448
Н	2.49231	2.46798	-4.15358
Н	-0.89496	3.75687	-1.77272
Н	0.18112	4.97131	-2.51168
Н	3.13268	4.24709	-0.25028
Н	2.58215	5.25255	-1.61422
Н	4.38726	-1.78884	4.22010
Н	4.62085	-2.07744	2.47705
Н	2.95119	1.68760	3.83282
Н	3.39734	0.43871	5.02296
Н	0.61415	-1.95326	4.13268
Н	2.02361	-1.71046	5.19590
Н	-2.04996	4.44761	2.77105

PhI

Sum of electronic and zero-point Energies= -242.840295 Sum of electronic and thermal Enthalpies = -242.833299 Sum of electronic and thermal Free Energies = -242.872207

2.2.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
С	0.60117	-0.00000	0.00000
С	1.27908	1.22631	-0.00000
Н	0.73435	2.16902	-0.00000
Ι	-1.58309	0.00000	0.00000
С	1.27909	-1.22631	0.00000
Н	0.73435	-2.16903	0.00000
С	2.68513	-1.21470	-0.00000
Н	3.22311	-2.16373	-0.00000
С	3.38867	0.00000	0.00000
С	2.68512	1.21471	0.00000
Н	3.22310	2.16374	0.00000
Н	4.47918	0.00000	0.00000

В

Sum of electronic and zero-point Energies= -630.790083	
Sum of electronic and thermal Enthalpies = -630.778139	
Sum of electronic and thermal Free Energies = -630.829932	2

С	3.37311	1.70976	-0.02798
С	-0.89294	1.42704	-0.00886
С	-1.74233	2.53724	-0.17379
С	-3.12929	2.35038	-0.16041
С	-3.64699	1.05973	0.01005
С	-2.74760	-0.00271	0.15187
Ν	-1.41257	0.18270	0.14347
Н	-1.32824	3.53036	-0.32803
Н	-3.79391	3.20411	-0.28858

Н	-4.71881	0.87004	0.02956
Н	-3.08623	-1.02921	0.28022
С	0.59812	1.56489	-0.00325
С	1.23031	2.80590	0.19922
С	2.62808	2.87677	0.18626
С	2.68418	0.50554	-0.20576
Ν	1.33713	0.44149	-0.19004
Н	0.64231	3.70100	0.38529
Н	3.12614	3.83213	0.34821
Н	4.46151	1.72085	-0.05189
Н	3.20523	-0.43614	-0.36796
Au	0.15053	-1.52873	0.00652

B-I

Sum of electronic and zero-point Energies= -873.677314 Sum of electronic and thermal Enthalpies = -873.657719 Sum of electronic and thermal Free Energies = -873.728011

С	4.57536	-1.68714	0.81200
С	2.22898	1.72587	-0.24739
С	2.80007	2.86267	-0.85248
С	1.96140	3.92601	-1.21063
С	0.58554	3.82558	-0.96170
С	0.10207	2.65484	-0.35802
Ν	0.90253	1.63654	-0.00422
Н	3.86706	2.90510	-1.06196
Н	2.37846	4.81319	-1.68698
Н	-0.10008	4.62908	-1.22805
Н	-0.95828	2.52695	-0.13875
С	3.06165	0.54802	0.13212
С	4.43023	0.68811	0.42437
С	5.19433	-0.43139	0.76481
С	3.21309	-1.77003	0.52248
Ν	2.46882	-0.68280	0.19292
Н	4.88084	1.67740	0.40296
Н	6.25333	-0.32193	0.99641
Н	5.12588	-2.59041	1.06817
Н	2.68237	-2.71872	0.54279
Au	0.35979	-0.95773	-0.10176
С	-2.79145	0.37376	0.36612
С	-3.63196	1.17807	-0.40591
С	-2.26170	0.76940	1.59819
С	-3.96115	2.45069	0.09784
С	-2.60494	2.04538	2.07787
С	-3.45142	2.88222	1.33219
Н	-4.01533	0.84185	-1.36768
Н	-1.58798	0.12128	2.15509
Н	-4.61509	3.09824	-0.48700
Ι	-2.20238	-1.59436	-0.41079
Н	-2.19884	2.37972	3.03296
Н	-3.70991	3.87126	1.71073

Β-π

Sum of electronic and zero-point Energies= -873.685200 Sum of electronic and thermal Enthalpies = -873.665700 Sum of electronic and thermal Free Energies = -873.736192

Sum	of cicculonic and	u ulermai Pice	Energieso
С	-3.98160	-2.53626	-0.99943
С	-2.68743	1.34058	0.23627
С	-3.52204	2.45135	0.45495
С	-2.95307	3.66552	0.85839
С	-1.56548	3.75337	1.03268
С	-0.79466	2.61004	0.79374
Ν	-1.34482	1.44303	0.41042
Н	-4.59654	2.38008	0.30898
Н	-3.59010	4.53236	1.03136
Н	-1.08521	4.67971	1.34300
Н	0.28920	2.60983	0.90463
С	-3.19571	0.00567	-0.19430

С	-4.56291	-0.27716	-0.36304
С	-4.95684	-1.55739	-0.76904
С	-2.63983	-2.19153	-0.81081
Ν	-2.26041	-0.95725	-0.41969
Н	-5.31498	0.48474	-0.17598
Η	-6.01442	-1.78488	-0.89896
Η	-4.24464	-3.54455	-1.31399
Н	-1.83386	-2.90638	-0.96792
Au	-0.09205	-0.45477	-0.01764
С	1.90214	-2.93553	1.81267
С	1.66793	-2.98306	0.44978
С	2.20912	-1.70086	2.45495
Н	1.47907	-3.92766	-0.05987
Η	2.39717	-1.68586	3.52891
С	1.70732	-1.77795	-0.33699
С	2.31368	-0.51908	1.73914
Н	2.58812	0.41426	2.22668
С	2.04650	-0.52950	0.32181
Ι	3.07230	1.05817	-0.85911
Н	1.79715	-1.86447	-1.42158
Н	1.88300	-3.85262	2.40128

B-OA

Sum of electronic and zero-point Energies= -873.709089 Sum of electronic and thermal Enthalpies = -873.689957 Sum of electronic and thermal Free Energies = -873.758825

С	-3.67398	-2.54284	0.01827
С	-2.41285	1.52098	0.00035
С	-3.25077	2.64721	-0.00927
С	-2.69378	3.93066	0.00378
С	-1.30174	4.07535	0.02929
С	-0.50908	2.92581	0.03688
Ν	-1.05335	1.69012	0.01979
Н	-4.33001	2.52370	-0.02624
Н	-3.34417	4.80421	-0.00467
Н	-0.82484	5.05314	0.04259
Н	0.57647	2.96892	0.05522
С	-2.91535	0.12779	-0.00347
С	-4.27915	-0.20278	-0.02847
С	-4.65993	-1.54991	-0.01852
С	-2.33139	-2.15198	0.03672
Ν	-1.96674	-0.85474	0.02416
Н	-5.03726	0.57511	-0.05427
Н	-5.71633	-1.81449	-0.03788
Н	-3.92686	-3.60116	0.03007
Н	-1.51711	-2.87392	0.06008
Au	0.10933	-0.10487	0.01095
С	1.91164	0.85560	-0.00495
С	2.53919	1.14740	1.21502
С	2.42281	1.31413	-1.22805
С	3.68924	1.95804	1.20660
С	3.57396	2.12353	-1.21818
С	4.20417	2.44516	-0.00546
Н	2.14206	0.75974	2.15263
Н	1.93302	1.05989	-2.16784
Н	4.18114	2.19592	2.15092
Ι	1.46066	-2.38714	-0.02617
Н	3.97459	2.49231	-2.16343
Н	5.09982	3.06730	-0.00560

TS2

Sum of electronic and zero-point Energies= -873.669803 Sum of electronic and thermal Enthalpies = -873.650761 Sum of electronic and thermal Free Energies = -873.719614 C -3.00155 -3.38544 0.67635

C	-5.00155	-3.36544	0.07055
С	-2.94238	0.78667	-0.24957
С	-4.08592	1.60656	-0.29637
С	-3.93516	2.96460	-0.60460

С	-2.65434	3.47877	-0.84906
С	-1.56301	2.60363	-0.76270
Ν	-1.71151	1.30228	-0.47587
Н	-5.07204	1.20287	-0.07994
Н	-4.81042	3.61244	-0.64528
Н	-2.49854	4.52829	-1.09407
Н	-0.53829	2.93985	-0.92597
С	-3.00474	-0.67186	0.06081
С	-4.21524	-1.38823	0.06549
С	-4.21493	-2.75135	0.37874
С	-1.82975	-2.62660	0.63575
Ν	-1.82955	-1.30693	0.33640
Н	-5.14741	-0.89000	-0.18900
Η	-5.15060	-3.30935	0.38299
Н	-2.95276	-4.44331	0.92772
Н	-0.85442	-3.06381	0.84198
Au	0.09275	-0.23119	0.13670
С	1.99119	0.75010	0.20699
С	2.19760	0.94828	1.60133
С	2.04875	1.83558	-0.71051
С	2.31411	2.26330	2.07792
С	2.18307	3.13003	-0.20248
С	2.31176	3.34607	1.18474
Н	2.24402	0.09563	2.27558
Н	1.95061	1.65033	-1.77784
Н	2.43549	2.43178	3.14824
Ι	2.71007	-1.36101	-0.61575
Н	2.19320	3.97360	-0.89339
Н	2.43102	4.36099	1.56385

С

Sum of electronic and zero-point Energies= -1998.568583 Sum of electronic and thermal Enthalpies = -1998.529467 Sum of electronic and thermal Free Energies = -1998.635855

Sum o	of electronic an	d thermal Free	Energies = -1998
Au	-0.07886	0.87756	-1.23289
Р	1.86036	0.17086	-0.15033
Р	-1.84413	-0.03880	-0.05956
Ν	3.30929	-0.61160	-0.55301
Ν	2.54624	1.28115	0.89377
В	0.16273	-0.55266	2.34896
Н	0.15815	0.61666	2.53127
В	1.65742	-1.55306	2.47270
Н	2.66351	-1.00243	2.78375
В	1.62203	-2.73613	1.12580
Н	2.60349	-3.00767	0.51882
В	1.16460	-3.24388	2.77726
Н	1.86421	-3.98055	3.40302
В	-0.61769	-3.29650	2.87280
Н	-1.20130	-4.07335	3.56564
В	-1.28029	-2.82208	1.28403
Н	-2.30303	-3.15481	0.78254
В	-1.24551	-1.63980	2.63136
Н	-2.24369	-1.15931	3.05730
В	0.10950	-2.43284	0.19779
Н	0.04233	-2.44251	-0.98807
В	0.26996	-1.88159	3.54595
Н	0.32674	-1.64087	4.71253
В	0.20948	-3.80068	1.35271
Н	0.22024	-4.92583	0.95743
С	0.99520	-1.15857	0.95650
С	-0.77498	-1.21059	1.05109
С	4.43030	0.32621	-0.29118
Н	4.58580	1.01694	-1.13797
Н	5.35035	-0.24917	-0.12564
С	4.01745	1.10092	0.97518
Н	4.27476	0.53182	1.88115
Н	4.50872	2.08093	1.01084

С	3.31797	-1.46107	-1.77630	Н	3.81183	4.92981	-1.50339
Н	2.41162	-2.08199	-1.70061	В	2.30054	3.45748	0.03234
C	4.53705	-2.38965	-1.74666	H	1.66488	4.22451	0.67929
Ĥ	5.46954	-1.81549	-1.85232	В	1.90675	3.16242	-1.69136
Н	4.47864	-3.10104	-2.58284	H	1.01212	3.73344	-2.21984
Н	4.57314	-2.95289	-0.80317	В	2.71989	1.87284	0.77381
С	3.25059	-0.63227	-3.07121	Н	2.37581	1.52588	1.85058
Ĥ	2 35979	0.01721	-3 07070	В	3 36500	2 52723	-2 50029
Н	3,19389	-1.30026	-3.94315	H	3.56032	2.73028	-3.65950
Н	4 14523	-0.00122	-3 17929	B	4 00977	3 01642	0 30115
C	1 89507	2 59312	1 12838	H	4 66392	3 56539	1 13405
Н	0.81385	2.38852	1 14357	C	2.66047	0 72121	-0 50636
C	2 29241	3 13852	2 50419	Č	1 52151	2 02842	-0.46832
н	2.05908	2 40901	3 29297	Č	3 83871	-2 59643	0.92112
Н	1 74424	4 07026	2 70541	н	3 38321	-3 55770	1 20906
н	3 36878	3 36304	2 53956	Н	4 80290	-2 48766	1 43705
C	2 18719	3 58005	-0.01197	C	4.00220	-2.40700	-0.61136
н	3 26663	3 78313	-0.08138	н	4 81603	-1 79079	-0.85700
н	1 66536	4 53348	0 16083	H	4 29393	-3 49070	-1.03351
н	1.84371	3 16021	-0.9713/	C II	2 31690	-1 3003/	2 61480
N	-2 8/1578	0 75909	1 04403	н	1 72622	-1.37734 -0.47091	2.01400
C	-4 25670	0.73707	0.61506	C II	3 40152	-0.47051	3 69063
ч	4.25070	1 35123	0.11275	с ц	1 00858	2 10633	3 73567
и П	4.01202	0.63500	-0.11275	11 Ц	2 03523	-2.19033	4 67560
C	4.91393	0.03339	0.02052	п П	2.93525	-1.13200	4.07500
U U	-4.30440	-0.62120	-0.02933	П	4.00423	-0.42004	3.47709
п u	-4.40343	-1.39978	0.74104	U U	0.58446	-2.3/201	2.8//51
п	-3.13639	-0.90303	-0.75495	П	0.36440	-2.01030	2.09421
с u	-2.90985	-1.2/39/	-2.21330	п	0.83910	-2.43909	2.04930
С	-1.90464	-1.42494	-2.43140	П	1.09314	-3.33147	2.09032
U U	-3.72079	-2.37230	-2.32994	C II	1.83011	-3.01///	-1.90221
п	-3.31331	-3.40808	-1.94364	П	0.93704	-2.45/8/	-2.10342
п	-5.02255	-2.80318	-3.00000	C II	2.32133	-3.32088	-3.16433
п	-4./9249	-2.4/221	-2.30207	П	2.80807	-2.0////	-5.62917
U U	-3.48999	-0.07723	-3.02/21	П	1.82370	-4.1091/	-3./3480
п	-4.33949	0.15557	-2.//5/4	П	5.42142	-4.11103	-2.93393
П	-3.43190	-0.29024	-4.10528	C II	1.41430	-4.1/008	-0.981/1
П	-2.88498	0.81852	-2.81285	П	2.28517	-4./03/8	-0.00005
C	-2.39855	2.08071	1.56827	Н	0.71853	-4.8368/	-1.51310
Н	-1.33/4/	1.94957	1.82186	H	0.90907	-3.77899	-0.08558
C	-3.16081	2.405/1	2.85/61	N	-1.14623	2.78063	-0.94/8/
H	-4.22863	2.5/018	2.65036	C	-2.01/90	3.65298	-0.12/18
H	-2./55//	3.32531	3.30368	H	-3.01838	3.20868	0.00599
Н	-3.06450	1.58512	3.58289	Н	-2.11997	4.63025	-0.61601
C	-2.51015	3.20/17	0.52634	C	-1.29651	3.78560	1.22400
H	-1.93850	2.95840	-0.38292	H	-0.51769	4.56404	1.18337
H	-2.10352	4.13973	0.94465	Н	-2.00234	4.02247	2.03044
H	-3.55836	3.38620	0.24572	C	-0.268/0	2.00423	2.80095
Ν	-3.01/36	-1.00328	-0.75222	Н	0.34060	1.10306	2.63361
~ •				C	0.60313	3.06720	3.48618
C-I				Н	1.45247	3.35252	2.85301
Sum	of electronic an	d zero-point Ei	rergies = -2241.440954	Н	0.98527	2.67339	4.43922
Sum	of electronic an	d thermal Enth	aipies = -2241.394194	Н	0.01016	3.96805	3.70377
Au	0 28223		0.04082	С	-1.48062	1.62281	3.66547
Au D	-0.28233	-0.09110	0.04082	Н	-2.16320	2.47924	3.77340
I D	2.01884	-1.02901	-0.07080	Н	-1.14629	1.32426	4.67049
г N	-0.33270	1.07003	1 27042	Н	-2.03447	0.78633	3.21772
IN NI	2.94039	-1.40312	1.2/040	С	-1.54634	2.39136	-2.32473
IN D	2.73004	-2.03/33	-1.21312	Н	-0.64979	1.94063	-2.77452
	2.07720	1.39030	-1.9809/	С	-1.89825	3.64505	-3.13455
п	1.32292	0.74438	-2.02019	Н	-2.82613	4.10513	-2.76361
ы	3.8133/	0.9/209	-1./4/3/	Н	-2.05381	3.36640	-4.18628
Р	4.23418	0.01608	-2.31009	Н	-1.08785	4.38610	-3.07985
в	4.20926	1.2/09/	-0.02/22	С	-2.68312	1.35531	-2.34146
H	4.89/62	0.51835	0.58096	Н	-2.37355	0.43650	-1.82379
в	4.68368	2.45880	-1.2/5/4	Н	-2.94383	1.10171	-3.38021
H	5.83138	2.60979	-1.36464	Н	-3.57949	1.74841	-1.84158
в	3.30936	3.80610	-1.23824	Ν	-0.70856	2.45095	1.46133

С	-3.98099	-0.95252	0.03130
С	-3.69951	0.19117	0.77981
Η	-2.73100	0.32728	1.25465
Ι	-2.42278	-2.48716	-0.12768
С	-5.19458	-1.14564	-0.63328
Η	-5.38584	-2.04355	-1.21896
С	-6.16876	-0.13433	-0.53222
Η	-7.12019	-0.26224	-1.04962
С	-5.92020	1.02424	0.22015
Η	-6.68256	1.80016	0.29316
С	-4.68931	1.18339	0.87679
Η	-4.48351	2.08011	1.46184

С-π

Sum of electronic and zero-point Energies= -2241.444114 Sum of electronic and thermal Enthalpies = -2241.396992 Sum of electronic and thermal Free Energies = -2241.521863

Au	0.54245	-0.07425	-0.41057
Р	-1.00933	-1.80823	-0.12937
Р	-0.63844	1.78644	0.34681
Ν	-1.60917	-3.00356	-1.17337
Ν	-0.87407	-2.79267	1.21935
В	-2.76222	-0.06988	1.73528
Н	-1.90675	-0.28793	2.52531
В	-3.87297	-1.33113	1.08465
Н	-3.77498	-2.43393	1.51366
В	-4.05859	-1.03349	-0.67453
Н	-4.09044	-1.93051	-1.44908
В	-5.33393	-0.51135	0.46023
Н	-6.39478	-1.05827	0.47393
В	-5.14932	1.24163	0.74383
Н	-6.07600	1.96289	0.95861
В	-3.75515	1.81508	-0.21235
Н	-3.57516	2.89645	-0.66178
В	-3.57766	1.51806	1.54258
Н	-3.27260	2.39257	2.28483
В	-3.04846	0.40055	-1.07529
Н	-2.36797	0.48716	-2.04509
В	-4.53414	0.07124	1.96731
Н	-5.01427	-0.05424	3.05189
В	-4.82391	0.56304	-0.89440
Н	-5.51254	0.78764	-1.84238
С	-2.58711	-0.72943	0.14640
С	-2.40496	0.98502	0.41518
С	-1.30906	-4.33702	-0.59793
Н	-0.29440	-4.67775	-0.86763
Н	-2.04288	-5.06526	-0.96735
С	-1.42999	-4.14002	0.92357
Н	-2.48449	-4.18069	1.23157
Н	-0.86561	-4.90196	1.47202
С	-1.50884	-2.77968	-2.63843
Н	-1.80108	-1.72921	-2.79534
С	-2.51658	-3.67589	-3.36800
Н	-2.24063	-4.73584	-3.26290
Н	-2.52242	-3.43056	-4.43981
Н	-3.52834	-3.53224	-2.96350
С	-0.07519	-2.98054	-3.16078
Н	0.62587	-2.33923	-2.60792
Н	-0.02079	-2.72583	-4.22942
Н	0.23749	-4.02875	-3.04291
С	0.25701	-2.62529	2.16879
Н	0.50896	-1.55346	2.14871
С	-0.19918	-2.98599	3.58738
Н	-1.06870	-2.38065	3.88077
Н	0.61935	-2.80675	4.29998
Н	-0.47608	-4.04943	3.64679
С	1.49335	-3.42362	1.72793

Η	1.28650	-4.50408	1.73678	
Н	2.33226	-3.23189	2.41287	
Н	1.79755	-3.12733	0.71378	
Ν	-0.51189	2.37872	1.92739	
С	-0.53370	3.86324	1.91514	
Η	0.49152	4.26899	1.92862	
Н	-1.08167	4.23481	2.79146	
С	-1.24336	4.26850	0.60433	
Н	-2.33764	4.23822	0.72303	
Н	-0.94072	5.27245	0.28632	
С	-0.53382	3.54964	-1.81694	
Η	-0.02561	2.65083	-2.19942	
С	-1.82474	3.76945	-2.61914	
Η	-2.45666	2.87198	-2.60182	
Η	-1.57571	4.00803	-3.66453	
Η	-2.39804	4.61115	-2.20232	
С	0.42917	4.73833	-1.96009	
Η	-0.05151	5.67824	-1.64977	
Η	0.72070	4.84587	-3.01455	
Η	1.33338	4.58399	-1.35516	
С	0.38661	1.66244	2.86984	
Η	0.19231	0.59180	2.70360	
С	-0.00554	1.99715	4.31293	
Н	0.17837	3.05990	4.53127	
Н	0.59860	1.39717	5.00887	
H	-1.06970	1.78103	4.48555	
С	1.87437	1.93349	2.58906	
Н	2.11795	1.68812	1.54452	
H	2.50143	1.31284	3.24557	
H	2.12584	2.98866	2.7/315	
N	-0.79340	3.26883	-0.38835	
C	3.33250	0.28040	-0.98315	
C	2.64/09	-0.48115	-1.95946	
H T	2.61058	-1.56654	-1.89619	
	4.19318	-0.74282	0.72059	
С П	3.31130	1.00/40	-1.12440	
п С	4.04462	2.23/10	-0.30392	
с u	2.99439	2.30133	-2.20329	
п С	2 203/3	1 57153	-2.37884	
C C	2.29343	0.18868	-3.23987	
с н	2.12/21	-0.396/13	-3.8/87/	
н Н	1 80207	2 07072	-4 11655	
11	1.07277	2.01712	-7.11035	
С-С	DA			
Sum	Sum of electronic and zero-point Energies= -2241.468996			
Sum of electronic and thermal Enthalpies = -2241.423257				

Sum of electronic and thermal Enthalpies = -2241.423257				
Sum o	of electronic and	d thermal Free	Energies = -2241.541875	
Au	-0.72190	-0.55317	-0.11826	
Р	1.60990	-0.91063	0.29155	
Р	-0.46743	1.75671	-0.32598	
Ν	1.92815	-1.55392	1.79860	
Ν	2.61274	-1.91473	-0.55581	
В	2.58964	1.57299	-1.17179	
Н	2.25729	0.93373	-2.10926	
В	3.99009	1.12522	-0.14217	
Н	4.63432	0.18533	-0.46477	
В	3.51993	1.33339	1.57043	
Н	3.85827	0.53495	2.37827	
В	4.50752	2.57692	0.75186	
Н	5.65342	2.73210	1.04342	
В	3.43370	3.92917	0.28344	
Н	3.79844	5.06375	0.24335	
В	1.78123	3.53077	0.81705	
Н	0.89450	4.26710	1.09236	
В	2.24678	3.31553	-0.90630	
Н	1.67446	3.91278	-1.75624	

В	1.83043	1.91513	1.61797
H	0.99536	1.51778	2.35641
В	3.93332	2.71821	-0.95258
H	4.65241	2.97599	-1.86/32
В	3.16596	3.06823	1.84806
Н	3.33967	3.5/581	2.91215
C	2.37661	0.84346	0.37763
C	1.38227	2.10036	-0.04364
C	2.82668	-2.72751	1.69364
Н	2.24306	-3.66082	1.67686
Н	3.51505	-2.74247	2.54908
C	3.59103	-2.54006	0.36819
H	4.46/15	-1.88693	0.50504
Н	3.91313	-3.50311	-0.04217
С	1.01865	-1.37169	2.95988
Н	0.32118	-0.56811	2.67718
С	1.82104	-0.91109	4.18286
Н	2.57026	-1.66942	4.45552
Н	1.14625	-0.77421	5.04100
Н	2.33/17	0.03581	3.97814
C	0.19806	-2.63659	3.25010
Н	-0.35654	-2.95943	2.35909
Н	-0.51623	-2.42738	4.05972
Н	0.84874	-3.46047	3.57760
С	2.65390	-2.09702	-2.02786
Н	1.78818	-1.54242	-2.42053
С	3.94176	-1.53114	-2.64425
Н	4.03118	-0.45208	-2.47781
Н	3.94195	-1.72425	-3.72728
Н	4.82203	-2.02928	-2.21041
C	2.48267	-3.58335	-2.38059
Н	3.35551	-4.16747	-2.05320
Н	2.39993	-3.68850	-3.47211
Н	1.57863	-3.99280	-1.91179
N	-0.81061	2.51627	-1.76830
С	-1.95701	3.44504	-1.58956
Н	-2.91177	2.93941	-1.79699
Н	-1.83079	4.29440	-2.27033
C	-1.87212	3.89931	-0.12275
Н	-1.15031	4.72211	-0.00476
Н	-2.85308	4.20904	0.25232
С	-1.79476	2.43686	2.03869
Н	-1.42243	1.42291	2.24976
С	-1.14173	3.44292	2.99656
Н	-0.04834	3.39654	2.95800
Н	-1.46989	3.23030	4.02495
Н	-1.46107	4.46488	2.74227
С	-3.32231	2.44763	2.19761
Н	-3.71282	3.47389	2.13271
Н	-3.5/864	2.05/26	3.19250
Н	-3.80751	1.82762	1.43/13
C	-0.46521	1.95152	-3.10123
Н	0.51810	1.48159	-2.98243
C	-0.32256	3.08556	-4.12317
Н	-1.29364	3.55860	-4.32860
Н	0.05887	2.66842	-5.06538
H	0.38055	3.84960	-3.76304
С	-1.46914	0.88215	-3.55400
Н	-1.51806	0.05726	-2.82752
Н	-1.15641	0.47249	-4.52573
Η	-2.47316	1.31568	-3.67062
Ν	-1.41659	2.70356	0.62774
С	-2.81284	-0.34567	0.12321
С	-3.34090	-0.90606	1.30326
Н	-2.69264	-1.42546	2.00956
Ι	-1.15200	-3.26277	-0.62264
С	-3.66621	0.29718	-0.78554

Н	-3.27190	0.73160	-1.69957
С	-5.04556	0.38129	-0.51769
Н	-5.70102	0.88195	-1.23257
С	-5.57299	-0.17038	0.65961
Η	-6.64171	-0.10276	0.86667
С	-4.71770	-0.81180	1.57000
Η	-5.11683	-1.24860	2.48698

TS3 Sum of electronic and zero-point Energies= -2241.426608Sum of electronic and thermal Enthalpies = -2241.380419Sum of electronic and thermal Free Energies = -2241.501349Au -0.71535 -0.40334 0.01024

Au	-0.71535	-0.40334	0.01024
Р	1.40804	-1.38180	0.35082
Р	0.02929	1.80500	-0.42609
Ν	1.86875	-2.28142	1.70418
Ν	2.01732	-2.44570	-0.76609
В	2.96589	0.93856	-1.02155
Н	2 51038	0 49930	-2.02028
B	4 19190	0.09488	-0.01378
н	4 60895	-0.94679	-0.40220
D	2 72720	0 21026	1 70597
Б	2.13139	0.51950	1./050/
H	3.84/96	-0.56/08	2.48528
в	5.02470	1.32261	0.98454
Н	6.16333	1.17751	1.31156
В	4.33038	2.92142	0.58748
Н	4.96578	3.93108	0.62812
В	2.60792	2.91109	1.05789
Н	1.93302	3.82952	1.38082
В	3.07056	2.69006	-0.65604
Н	2.70534	3.45422	-1.48743
в	2,22476	1 28860	1 73507
Н	1 30425	1.06200	2 44924
B	4 55557	1.69658	-0 71451
ы	5 24529	1 91977	1 50001
п	2,70022	1.010//	-1.39991
в	5.79925	2.00334	2.08055
Н	4.05528	2.446//	3.18070
C	2.55706	0.16255	0.47115
С	1.88702	1.69696	0.09193
С	2.34731	-3.62216	1.28390
Н	1.51875	-4.34907	1.26734
Η	3.11983	-3.97110	1.98184
С	2.91612	-3.43471	-0.13411
Н	3.95213	-3.06308	-0.09957
Н	2.88601	-4.37335	-0.70084
С	1 04980	-2.14604	2 93848
Ĥ	0 77012	-1 08243	2.98710
C	1 90704	-2 47837	4 16521
ч	2 21035	2,47037	4.10521
11	1 22600	-3.33390	5.09262
п	1.52009	-2.30440	3.08202
Н	2.81026	-1.85252	4.19022
C	-0.23601	-2.98929	2.88442
Н	-0.81049	-2.76464	1.97303
Н	-0.86451	-2.76963	3.75986
Н	-0.00287	-4.06387	2.89518
С	1.81845	-2.34529	-2.22730
Η	1.25000	-1.41666	-2.38885
С	3.16219	-2.23806	-2.96134
Н	3.74208	-1.38173	-2.59357
Н	2.98879	-2.11646	-4.04048
н	3 75204	-3 15477	-2.81159
C	0 97725	-3 52870	-2 72890
н	1 40007	_4 48013	_2 54507
ц	0.80506	2 /2720	2 81211
п u	0.00390	-3.43/20	-3.01214
п	0.00536	-3.33304	-2.21452
N	0.18158	2.35482	-2.02246
C	-0.30705	3.75288	-2.12360

Н	-1.34964	3.77615	-2.48071
Н	0.32771	4.31861	-2.81862
С	-0.22081	4.33732	-0.69803
Н	0.80198	4.67917	-0.47664
Н	-0.91897	5.17115	-0.57057
С	-1.38435	3.33929	1.44184
Н	-1.78845	2.33326	1.63346
С	-0.53152	3.77235	2.64339
Η	0.26903	3.04962	2.84306
Н	-1.16986	3.84777	3.53731
Н	-0.07755	4.75771	2.46097
С	-2.56660	4.29833	1.23600
Н	-2.22170	5.34042	1.16304
Н	-3.24014	4.22774	2.10035
Н	-3.13203	4.04318	0.32968
С	-0.07572	1.40656	-3.13713
Н	0.44305	0.47690	-2.86201
С	0.56330	1.94079	-4.42429
Н	0.05721	2.85754	-4.76155
Н	0.47210	1.18814	-5.22080
Н	1.62800	2.16430	-4.26467
С	-1.56962	1.08429	-3.31649
Н	-1.97721	0.64427	-2.39566
Η	-1.70207	0.35818	-4.13248
Н	-2.14580	1.98803	-3.56438
Ν	-0.60290	3.21435	0.18842
С	-3.02596	-0.28070	0.49217
С	-3.00941	-0.47699	1.88830
Η	-2.46337	-1.30756	2.32928
Ι	-2.70331	-2.32625	-0.80558
С	-3.80490	0.72047	-0.11749
Н	-3.84244	0.81449	-1.20083
С	-4.50235	1.60672	0.71060
Н	-5.08856	2.40570	0.25633
С	-4.44624	1.47837	2.11296
С	-3.70049	0.44556	2.69621
Н	-3.67250	0.32373	3.77969
Н	-5.00057	2.17368	2.74278

D

Sum of electronic and zero-point Energies= -2199.329460 Sum of electronic and thermal Enthalpies = -2199.292025 Sum of electronic and thermal Free Energies = -2199.407006

Pd	-0.00132	-0.00653	-0.01849
Р	2.26941	0.00001	-0.00628
Р	-2.27389	-0.00513	-0.00624
С	-3.03709	-1.62900	0.43354
С	-2.32304	-2.45300	1.33036
С	-4.27554	-2.06907	-0.07622
С	-2.84872	-3.69221	1.72385
С	-4.79501	-3.31472	0.31320
С	-4.08523	-4.12554	1.21455
Н	-1.35233	-2.11653	1.70356
Н	-4.82737	-1.44524	-0.78043
Н	-2.29022	-4.32298	2.41732
Н	-5.75212	-3.65127	-0.08847
Н	-4.49004	-5.09368	1.51327
С	-3.02995	1.18402	1.18980
С	-4.26695	0.96191	1.82808
С	-2.31500	2.37145	1.45502
С	-4.78415	1.92107	2.71441
С	-2.83810	3.33139	2.33384
С	-4.07321	3.10658	2.96594
Н	-4.81957	0.04117	1.63749
Н	-1.34588	2.52599	0.97380
Н	-5.74000	1.74133	3.20916
Н	-2.27830	4.24673	2.53262

Н	-4.47605	3.84856	3.65692
С	-3.05456	0.43503	-1.62250
С	-2.34883	0.09076	-2.79560
С	-4.30030	1.08565	-1.72897
С	-2.89037	0.37779	-4.05730
С	-4.83614	1.37916	-2.99374
С	-4.13502	1.02299	-4.15789
Н	-1.37114	-0.38979	-2.70672
Η	-4.84530	1.36750	-0.82743
Η	-2.33759	0.10869	-4.95877
Η	-5.79890	1.88717	-3.06846
Н	-4.55240	1.25507	-5.13888
С	3.02340	1.35812	0.99500
С	4.26297	1.95331	0.68479
С	2.30203	1.80311	2.12358
С	4.77684	2.97516	1.50000
С	2.82199	2.81775	2.94060
С	4.05990	3.40599	2.62877
Н	4.81929	1.62364	-0.19322
Н	1.33019	1.35380	2.34384
Н	5.73477	3.43523	1.25209
Н	2.25798	3.15566	3.81139
Н	4.46019	4.20211	3.25835
С	3.03851	-1.53666	0.67580
С	2.34517	-2.74912	0.47269
C	4.26421	-1.54749	1.37207
C	2.87864	-3.95719	0.94501
C	4.79193	-2.75792	1.85104
C	4.10353	-3.96321	1.63460
H	1.38372	-2.73185	-0.04686
H	4.80012	-0.61370	1.54485
H	2.33586	-4.88977	0.78272
H	5.73962	-2.75816	2.39193
H	4.51491	-4.90154	2.00963
C	3.05233	0.18400	-1.6/026
C	2.34955	0.93591	-2.63623
C	4.29992	-0.38025	-2.00430
C	2.89/13	1.1301/	-3.91218
C	4.84145	-0.18533	-3.28562
U U	4.14544	0.3/40/	-4.23691
п u	1.5/10/	1.34978	-2.5/9/5
п u	4.04299	-0.9/200	-1.20/49
п ц	2.34/30	1./1943	-4.032/0
н	J.80034 1 56560	0 72232	-5.55608
11	4.50509	0.12233	-5.25401

D-I

Sum of electronic and zero-point Energies= -2442.184990 Sum of electronic and thermal Enthalpies = -2442.139776 Sum of electronic and thermal Free Energies = -2442.270038

Juni	or creed onne un	ia incrinar i rec	Energies 2112
С	4.04353	-2.35006	3.37062
С	4.79886	-2.17005	2.19951
С	4.33261	-1.32047	1.18288
С	3.10156	-0.65044	1.32790
С	2.34581	-0.84174	2.50301
С	2.81663	-1.68175	3.52255
Н	4.40471	-3.01562	4.15623
Н	5.74939	-2.69176	2.07548
Н	4.92129	-1.18483	0.27512
Н	1.37343	-0.35058	2.59002
Н	2.21899	-1.83105	4.42311
С	4.63644	4.53604	0.52969
С	5.01514	3.45085	1.33492
С	4.37797	2.20544	1.19260
С	3.34336	2.03857	0.25066
С	2.96252	3.13898	-0.55063
С	3.61049	4.37479	-0.42015

Н	5.13307	5.50104	0.64112
Н	5.81008	3.56802	2.07349
Η	4.68658	1.36514	1.81450
Н	2.15047	3.02404	-1.27250
Н	3.31105	5.21314	-1.05139
С	4.07089	-1.27997	-3.97030
С	4.87324	-0.40844	-3.21402
С	4.39086	0.13040	-2.01030
С	3.09858	-0.19900	-1.55104
С	2.29655	-1.06877	-2.32014
Ċ	2,78122	-1.60991	-3.52054
Ĥ	4.44697	-1.69288	-4.90768
Н	5 87408	-0.14572	-3 56099
н	5 01561	0.81016	-1 42969
н	1 28886	-1 30449	-1 97446
н	2 14624	-2 27648	-4 10678
p	2 38630	0.46125	0.03034
C	-5 50000	-0.81203	1 90106
c	-5.33500	-1.78/10	0 90087
c	4.06587	1 000/6	0.33020
C	-4.00387	-1.99940	0.33920
C	-2.90241	-1.23497	0.70089
C	-3.14/10	-0.23798	1.70073
U U	-4.41085	-0.03338	2.33838
п	-0.49/38	-0.04247	2.33070
Н	-6.18679	-2.3/314	0.55628
H	-3.936/6	-2./5330	-0.43800
H	-2.29801	0.35933	2.06851
Н	-4.54270	0.71143	3.10488
C	0.65828	-5.03221	2.28272
C	-0.66118	-4.66775	2.59228
C	-1.27442	-3.59125	1.92702
С	-0.56315	-2.85974	0.95551
С	0.76807	-3.22599	0.65838
С	1.37012	-4.31126	1.30700
Н	1.13209	-5.86757	2.80062
Н	-1.21955	-5.22224	3.34868
Н	-2.30442	-3.32400	2.16406
Н	1.33530	-2.64187	-0.06665
Н	2.40005	-4.57934	1.06801
С	-1.87439	-2.98334	-4.28798
С	-1.98024	-3.88169	-3.21236
С	-1.80883	-3.42785	-1.89467
С	-1.53243	-2.06856	-1.64093
С	-1.41805	-1.17528	-2.72725
С	-1.59293	-1.62835	-4.04401
Н	-2.00195	-3.33950	-5.31137
Н	-2.19231	-4.93569	-3.39905
Н	-1.88059	-4.12961	-1.06303
Н	-1.16519	-0.13120	-2.52824
Η	-1.49659	-0.92872	-4.87585
Р	-1.25611	-1.39028	0.06016
Pd	0.10816	0.41350	0.05735
С	-3.14144	2.71058	-0.09628
Ι	-0.98738	3.05495	0.13514
С	-3.55004	1.62284	-0.87399
Н	-2.81601	0.96930	-1.34307
С	-5.86246	2.18911	-0.35594
C	-4.92549	1.36888	-1.00404
Н	-5.25468	0.51704	-1.59944
C	-4.05280	3.54601	0.55948
Ĉ	-5.42648	3.27273	0.42298
н	-3 71266	4 38402	1 16717
Н	-6.14940	3.91116	0 93316
Н	-6 92856	1 98059	-0 45206
**	0.72000	1.70057	0.15200

Sum of electronic and zero-point Energies= -2442.196135 Sum of electronic and thermal Enthalpies = -2442.151558 Sum of electronic and thermal Free Energies = -2442.276632

С	3.53410	2.11298	-3.59117
С	4.34175	2.14963	-2.44208
С	3.96519	1.44004	-1.29144
С	2.77210	0.69225	-1.28066
С	1.96417	0.66111	-2.43619
С	2.34565	1.36478	-3.58759
Н	3.82479	2.67247	-4.48147
Н	5.26336	2.73372	-2.43913
Н	4.59214	1.48329	-0.40112
Н	1.02502	0.10421	-2.41467
Н	1.70758	1.34295	-4.47192
С	4.45699	-4.33500	0.03826
С	4.31773	-3.57350	-1.13248
С	3.69414	-2.31587	-1.08914
С	3.20286	-1.80729	0.12947
С	3.34384	-2.57872	1.30417
С	3.97104	-3.83078	1.25869
Н	4.94160	-5.31171	0.00365
Н	4.69445	-3.95525	-2.08272
Н	3.58561	-1.73324	-2.00393
Н	2.96065	-2.19971	2.25274
Н	4.08033	-4.41361	2,17470
C	3.77657	2.04536	3.90960
Ċ	4.67454	1.28263	3.14204
Ċ	4.21777	0.56959	2.02350
Ċ	2.85501	0.61924	1.65809
Ċ	1.95850	1.37155	2,44337
Ĉ	2.41732	2.08684	3.56070
Н	4.13540	2.59688	4,77987
Н	5.72987	1.24094	3.41571
Н	4.91442	-0.03201	1.43977
Н	0.90221	1.39147	2.18088
Н	1.71060	2.66460	4.15800
Р	2.18629	-0.26796	0.18447
С	-5.46590	0.76752	-2.16390
С	-5.37204	1.41292	-0.91977
Ċ	-4.12118	1.59482	-0.30835
C	-2.95152	1.12032	-0.93409
Ċ	-3.05311	0.46642	-2.18116
C	-4.30170	0.29945	-2.79710
Н	-6.43917	0.62848	-2.63663
Н	-6.27242	1.77913	-0.42403
Н	-4.05710	2.09920	0.65548
Н	-2.15454	0.08050	-2.66317
Н	-4.36610	-0.20455	-3.76265
С	0.94559	4.62636	-2.50667
С	-0.25426	4.11375	-3.02230
С	-0.96326	3.12489	-2.32018
С	-0.47202	2.63145	-1.09573
С	0.73451	3.15514	-0.58239
С	1.43387	4.14802	-1.27878
Н	1.49665	5.39143	-3.05529
Н	-0.64631	4.48399	-3.97097
Н	-1.89774	2.74292	-2.72926
Н	1.13038	2.78399	0.36134
Н	2.36692	4.53661	-0.86945
С	-2.01868	2.93048	4.10839
С	-1.92824	3.82661	3.02962
С	-1.71768	3.34521	1.72788
С	-1.58711	1.96072	1.49891
С	-1.67853	1.06560	2.58551
С	-1.89750	1.54843	3.88430
Н	-2 17894	3.30802	5 11936

Н	-2.02148	4.90014	3.20077
Н	-1.64302	4.04306	0.89380
Н	-1.56220	-0.00420	2.40405
Н	-1.96176	0.84835	4.71853
Р	-1.27716	1.24543	-0.17214
Pd	-0.09999	-0.75382	0.00526
С	-1.39401	-2.38826	-0.36367
Ι	-3.30613	-2.34894	1.01850
С	-1.71315	-2.61110	-1.74333
Н	-2.62402	-2.18615	-2.15978
С	0.33325	-3.94071	-1.99349
С	-0.83188	-3.33288	-2.54167
Н	-1.05364	-3.44619	-3.60497
С	-0.21480	-3.00344	0.20381
С	0.62148	-3.80121	-0.64362
Н	-0.10835	-3.10881	1.28496
Η	1.48168	-4.30544	-0.20282
Н	0.98265	-4.54008	-2.63297

D-OA

Sum of electronic and zero-point Energies=-2442.236890 Sum of electronic and thermal Enthalpies= -2442.192685 Sum of electronic and thermal Free Energies=-2442.316925

Sum 0	i electronic and thermal	Fice Energies-	-2442.310923
С	-1.46467700	2.86214800	4.00504400
С	-2.15952000	3.40518400	2.91274300
С	-2.29985300	2.67281600	1.72351900
С	-1.73317900	1.39019500	1.61637900
С	-1.01900400	0.85549900	2.71067600
С	-0.89108200	1.58441200	3.90172700
Н	-1.36078100	3.43542800	4.92723600
Н	-2.58996300	4.40504900	2.98068400
Н	-2.82782100	3.11457000	0.88143300
Н	-0.56137400	-0.13204600	2.62063100
Н	-0.33903000	1.15801100	4.74051500
С	-5.74171700	-2.21230300	1.11189100
С	-4.92935400	-1.75285700	2.16113000
C	-3.79028700	-0.97994000	1.88769400
С	-3.45072700	-0.66194200	0.55728400
C	-4.26590900	-1.13190300	-0.49393700
С	-5.40725800	-1.89759100	-0.21565000
Н	-6.62941400	-2.80882500	1.32672900
Н	-5.18367500	-1.98795900	3.19567000
Н	-3.17573100	-0.62104300	2.71273700
Н	-4.01232600	-0.89741400	-1.52694900
Н	-6.03243000	-2.24963900	-1.03745400
С	-3.04936200	2.64820400	-3.66784000
С	-3.86588300	2.75993300	-2.52848400
С	-3.54866400	2.05084800	-1.36099500
С	-2.39107100	1.24477700	-1.31644000
С	-1.59905600	1.10929200	-2.47271700
С	-1.92292100	1.81075500	-3.64397000
Н	-3.30117900	3.20030700	-4.57434000
Н	-4.75470600	3.39180900	-2.55192000
Н	-4.20570700	2.11313800	-0.49416300
Н	-0.72160100	0.46501700	-2.44140500
Н	-1.29479300	1.70392000	-4.52943500
Р	-1.90197100	0.27156500	0.16119500
С	4.99992800	0.08260800	3.01724800
С	5.32238000	0.16100800	1.65372300
С	4.32265500	0.41006700	0.69976800
С	2.98631600	0.57703200	1.10759500
С	2.66221800	0.47013600	2.47713200
С	3.66569200	0.23989600	3.42720400
Н	5.78071300	-0.10866600	3.75445900
Н	6.35392500	0.02554100	1.32585700
Н	4.58609600	0.45455600	-0.35516400
Н	1.62511200	0.55772200	2.79796200

0.50974800 .56581200
.56581200
41740200
.41/40300
0.20033600
).86409500
0.70791100
0.63335800
2.51386000
2.24943500
1.82056500
1.54161400
4.36685500
3.31927600
2.02444200
.76400400
.81774400
4.11631600
5.37507600
3.51143200
1.21985800
2.61801200
4.92594900
0.08824500
0.06552000
0.04955400
.56252800
1.03336400
2.05376700
0.47735800
0.82079700
1.67717800
.34869300
.56421300
2.20728900
2.58118000
0.64127400

TS4

Sum of electronic and zero-point Energies= -2442.196847 Sum of electronic and thermal Enthalpies = -2442.152851 Sum of electronic and thermal Free Energies = -2442.276993

			6
С	-1.04427	4.70205	-2.42697
С	-0.12828	5.03768	-1.41549
С	0.56731	4.02971	-0.73142
С	0.34234	2.67650	-1.05052
С	-0.57853	2.34531	-2.06396
С	-1.26521	3.35470	-2.75429
Н	-1.58875	5.48790	-2.95234
Н	0.04258	6.08385	-1.15691
Н	1.27178	4.29666	0.05588
Н	-0.76754	1.29330	-2.28549
Н	-1.98386	3.08863	-3.53022
С	5.32519	1.00133	-2.40150
С	4.17239	1.39825	-3.10075
С	2.95363	1.54991	-2.42403
С	2.87304	1.30669	-1.03526
С	4.03351	0.90929	-0.33878
С	5.25181	0.76156	-1.01948
Н	6.27252	0.88180	-2.92912
Н	4.22093	1.59267	-4.17338
Н	2.06401	1.85780	-2.97492
Н	3.98253	0.70978	0.72958
Н	6.14187	0.45674	-0.46689
С	1.86682	2.59726	4.20328
С	2.65747	3.18589	3.20086
С	2.49296	2.80819	1.85940

С	1.53144	1.83610	1.51129
С	0.75204	1.23947	2.52388
С	0.91397	1.62283	3.86368
Н	2.00043	2.89146	5.24532
Н	3.40486	3.93599	3.46349
Н	3.11960	3.25502	1.08774
н	0.02820	0 46925	2,25690
н	0 30492	1 15169	4 63655
P	1 22556	1 28727	-0.21596
C	-1 93706	-3 11242	-2 44360
C	5 32003	2 70321	1 12061
Č	-5.52095	-2.79321	-1.12901
C	-4.30479	-1.97213	-0.33002
C	-3.29214	-1.4/200	-0.65200
C	-2.90397	-1.80430	-2.10/88
C	-3./2986	-2.61560	-2.96309
Н	-5.5/393	-3./5094	-3.05/4/
Н	-6.255/6	-3.18215	-0./2313
Н	-4.80507	-1.72400	0.68250
Н	-1.95319	-1.43887	-2.55446
Н	-3.42388	-2.86847	-3.97930
С	-3.97722	3.90679	-0.28463
С	-4.53801	2.85813	-1.02895
С	-4.03129	1.55329	-0.90600
С	-2.95117	1.29276	-0.04137
С	-2.38919	2.35261	0.70305
С	-2.90346	3.64923	0.58591
Н	-4.36908	4.92002	-0.38373
Н	-5.37280	3.05060	-1.70473
Н	-4.47689	0.74343	-1.48328
Н	-1.54353	2.16463	1.36506
Н	-2.45643	4.46071	1.16116
C	-2.76307	-1.49882	4.59462
Ĉ	-3 65675	-0 59790	3 99110
Ĉ	-3 50481	-0.25165	2 63914
č	-2 45592	-0.80869	1 87884
C	-2.+5572	-1.71230	2 /012/
C	-1.71584	-2.05698	3 8/230
ц	2 87864	1 75045	5 64767
н ц	-2.87804	-1.73943	1 57077
п u	-4.40941	-0.10010	4.37277
11	-4.19089	0.43900	2.17033
п	-0.75202	-2.12307	1.91262
п	-1.01252	-2.74938	4.50075
P	-2.1695/	-0.37092	0.10697
Pd	0.09837	-0./2681	-0.3/858
C	1.5/493	-2.09259	-0.83134
I	2.93337	-2.30955	1.29777
С	0.45073	-2.98531	-0.82345
Н	0.02888	-3.36290	0.10784
C	0.84213	-3.41366	-3.20277
С	0.10061	-3.63482	-2.04655
Н	0.57303	-3.91919	-4.13132
Н	-0.72698	-4.34625	-2.04451
С	2.38350	-1.93665	-1.99203
С	1.98461	-2.56727	-3.16920
Н	3.24603	-1.27302	-1.97024
Н	2.55397	-2.38866	-4.08387

Е

Sum of electronic and zero-point Energies= -1967.305103 Sum of electronic and thermal Enthalpies = -1967.274190 Sum of electronic and thermal Free Energies = -1967.369658

Р	-1.64513	-0.30665	-0.39187	
Р	1.66434	-0.30901	-0.45527	
Pd	-0.03236	-0.42748	-1.96686	
С	-0.67195	-0.85525	1.11692	
С	-1.34248	-1.22393	2.30054	
С	0.75314	-0.87981	1.08680	

$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	-0.63067	-1.62638	3.43959
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	-2.43221	-1.19909	2.32782
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	1.45378	-1.28524	2.24147
H -1.16986 -1.91244 4.3438 H 2.54292 -1.31560 2.2236 H 1.33613 -1.97488 4.2876 C -2.05764 1.45179 0.0044 C -3.00113 2.12996 -0.8010 C -1.37275 2.17108 1.0058 C -3.26083 3.49229 -0.5982 C -1.62159 3.54037 1.1935 C -2.56629 4.20475 0.3964 H -3.53567 1.58793 -1.5834 H -0.63568 1.66861 1.6305 H -3.99960 3.99957 -1.2210 H -1.07343 4.08379 1.9646 H -2.76063 5.26791 0.5452 C -3.24912 -1.20883 -0.1647 C -3.31270 -2.53380 -0.6502 C -4.48674 -3.28758 -0.5111 C -5.62049 -2.71962 0.0963 H -2.43893 -2.97007 -1.1400 H -4.52085 -4.31181 -0.8859 H -6.44462 -0.95401 1.0476 H -6.53862 -3.30083 0.1939 C 1.99247 1.47019 -0.0453 C 2.48672 1.88026 1.2104 C 1.67602 2.44452 -1.0123 C 2.33815 4.21036 0.5219 H 2.72691 1.13546 1.9694 H 1.27632 2.12278 <	С	0.77203	-1.66021	3.40834
H 2.54292 -1.31560 2.2236 H 1.33613 -1.97488 4.2876 C -2.05764 1.45179 0.0044 C -3.00113 2.12996 -0.8010 C -1.37275 2.17108 1.0058 C -3.26083 3.49229 -0.5982 C -1.62159 3.54037 1.1935 C -2.56629 4.20475 0.3964 H -3.53567 1.58793 -1.5834 H -0.63568 1.66861 1.6305 H -3.99960 3.99957 -1.2210 H -1.07343 4.08379 1.9646 H -2.76063 5.26791 0.5452 C -3.24912 -1.20883 -0.64452 C -3.31270 -2.53380 -0.6502 C -4.48674 -3.28758 -0.5111 C -5.62049 -2.71962 0.0963 H -2.43893 -2.97007 -1.1400 H -4.52085 -4.31181 -0.8855 H -6.44462 -0.95401 1.0476 H -6.53862 -3.30083 0.1939 C 1.99247 1.47019 -0.0453 C 2.48672 1.88026 1.2104 C 1.67602 2.44452 -1.0123 C 2.33815 4.21036 0.5219 H 2.72691 1.13546 1.9694 H 1.27632 2.12278 -1.9772 H 3.03643 3.55270 <	Н	-1.16986	-1.91244	4.34388
H1.33613 -1.97488 4.2876 C -2.05764 1.45179 0.0044 C -3.00113 2.12996 -0.8010 C -1.37275 2.17108 1.0058 C -3.26083 3.49229 -0.5982 C -1.62159 3.54037 1.1935 C -2.56629 4.20475 0.3964 H -3.53567 1.58793 -1.5834 H -0.63568 1.66861 1.6305 H -3.99960 3.99957 -1.2210 H -1.07343 4.08379 1.9646 H -2.76063 5.26791 0.5452 C -3.24912 -1.20883 -0.6500 C -3.31270 -2.53380 -0.6500 C -4.38802 -0.64859 0.4513 C -5.62049 -2.71962 0.0963 H -2.43893 -2.97007 -1.1400 H -4.35269 0.37098 0.8344 H -4.52085 -4.31181 -0.8855 H -6.44462 -0.95401 1.0476 H -6.53862 -3.30083 0.1935 C 1.99247 1.47019 -0.0453 C 2.48672 1.88026 1.2104 C 1.84848 3.80934 -0.7312 C 2.33815 4.21036 0.5219 H 2.72691 1.13546 1.9694 H 1.27632 2.12278 -1.9772 H 3.03643 3.55270	Н	2.54292	-1.31560	2.22363
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	1.33613	-1.97488	4.28764
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	-2.05764	1 45179	0 00449
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Č	-3 00113	2 12996	-0.80109
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Č	-1 37275	2 17108	1 00589
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	-3 26083	3 49229	-0 59827
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	č	-1 62159	3 54037	1 19356
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C	-2 56629	4 20475	0 39649
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	н	-3 53567	1 58793	-1 58343
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	н	-0.63568	1.66861	1 63053
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	п	3 00060	3 00057	1 22103
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	н ц	-3.99900	1 08370	-1.22103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н ц	-1.07343	5 26701	0.54522
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-2.70003	1 20892	0.34322
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	-3.24912	-1.20003	-0.10470
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	-3.31270	-2.35360	-0.03021
C -4.48674 -5.28738 -0.511 C -5.56857 -1.39948 0.5731 C -5.62049 -2.71962 0.0963 H -2.43893 -2.97007 -1.1407 H -4.35269 0.37098 0.8344 H -4.52085 -4.31181 -0.8859 H -6.44462 -0.95401 1.0476 H -6.53862 -3.30083 0.1939 C 1.99247 1.47019 -0.04533 C 2.48672 1.88026 1.2104 C 1.67602 2.44452 -1.0123 C 2.65851 3.24389 1.4918 C 1.84848 3.80934 -0.7312 C 2.33815 4.21036 0.5219 H 2.72691 1.13546 1.9694 H 1.27632 2.12278 -1.9772 H 3.03643 3.55270 2.4678 H 1.59305 4.55536 -1.4852 H 2.46570 5.27061 0.7457 C 3.31563 -1.12253 -0.2557 C 3.36437 -2.53520 -0.1933 C 4.52743 -0.39985 -0.2964 C 4.59465 -3.20460 -0.15566 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.50951 0.68916 -0.3435 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963	C	-4.38802	-0.04839	0.45151
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	-4.480/4	-3.28/38	-0.51115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	-5.5685/	-1.39948	0.5/310
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C	-5.62049	-2./1962	0.09635
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	-2.43893	-2.97007	-1.140/2
H -4.32085 -4.31181 -0.885 H -6.44462 -0.95401 1.0476 H -6.53862 -3.30083 0.1935 C 1.99247 1.47019 -0.0453 C 2.48672 1.88026 1.2104 C 1.67602 2.44452 -1.0123 C 2.65851 3.24389 1.4918 C 1.84848 3.80934 -0.7312 C 2.33815 4.21036 0.5219 H 2.72691 1.13546 1.9694 H 1.27632 2.12278 -1.9772 H 3.03643 3.55270 2.4678 H 1.59305 4.55536 -1.4852 H 2.46570 5.27061 0.7457 C 3.31563 -1.12253 -0.2557 C 3.36437 -2.53520 -0.1933 C 4.52743 -0.39985 -0.2644 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2	Н	-4.35269	0.3/098	0.8344/
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H	-4.52085	-4.31181	-0.88596
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H	-6.44462	-0.95401	1.04769
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-6.53862	-3.30083	0.19390
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	1.99247	1.47019	-0.04535
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	2.48672	1.88026	1.21043
C 2.65851 3.24389 1.4918 C 1.84848 3.80934 -0.7312 C 2.33815 4.21036 0.5219 H 2.72691 1.13546 1.9694 H 1.27632 2.12278 -1.9772 H 3.03643 3.55270 2.4678 H 1.59305 4.55536 -1.4852 H 2.46570 5.27061 0.7457 C 3.31563 -1.12253 -0.2557 C 3.36437 -2.53520 -0.1933 C 4.52743 -0.39985 -0.2964 C 4.59465 -3.20460 -0.1556 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.50951 0.68916 -0.3435 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963 H 6.68715 -0.50201 -0.2963	C	1.67602	2.44452	-1.01234
C 1.84848 3.80934 -0.7312 C 2.33815 4.21036 0.5219 H 2.72691 1.13546 1.9694 H 1.27632 2.12278 -1.9772 H 3.03643 3.55270 2.4678 H 1.59305 4.55536 -1.4852 H 2.46570 5.27061 0.7457 C 3.31563 -1.12253 -0.2557 C 3.36437 -2.53520 -0.1933 C 4.52743 -0.39985 -0.2964 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.60517 -4.29422 -0.0971 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963 H 6.68715 -0.26941 -0.1692	С	2.65851	3.24389	1.49183
C 2.33815 4.21036 0.5219 H 2.72691 1.13546 1.9694 H 1.27632 2.12278 -1.9772 H 3.03643 3.55270 2.4678 H 1.59305 4.55536 -1.4852 H 2.46570 5.27061 0.7457 C 3.31563 -1.12253 -0.2557 C 3.36437 -2.53520 -0.1933 C 4.52743 -0.39985 -0.2964 C 4.59465 -3.20460 -0.1556 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.50951 0.68916 -0.3435 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963 H 6.68715 -0.50201 -0.2963	С	1.84848	3.80934	-0.73125
H 2.72691 1.13546 1.9694 H 1.27632 2.12278 -1.9772 H 3.03643 3.55270 2.4678 H 1.59305 4.55536 -1.4852 H 2.46570 5.27061 0.7457 C 3.31563 -1.12253 -0.2557 C 3.36437 -2.53520 -0.1933 C 4.52743 -0.39985 -0.2964 C 4.59465 -3.20460 -0.1556 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.50951 0.68916 -0.3435 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963 H 6.75575 -2.99861 -0.1692	С	2.33815	4.21036	0.52195
H 1.27632 2.12278 -1.9772 H 3.03643 3.55270 2.4678 H 1.59305 4.55536 -1.4852 H 2.46570 5.27061 0.7457 C 3.31563 -1.12253 -0.2557 C 3.36437 -2.53520 -0.1933 C 4.52743 -0.39985 -0.2964 C 4.59465 -3.20460 -0.1556 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.50951 0.68916 -0.3435 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963 H 6.75575 -2.99861 -0.1692	Н	2.72691	1.13546	1.96948
H 3.03643 3.55270 2.4678 H 1.59305 4.55536 -1.4852 H 2.46570 5.27061 0.7457 C 3.31563 -1.12253 -0.2557 C 3.36437 -2.53520 -0.1933 C 4.52743 -0.39985 -0.2964 C 4.59465 -3.20460 -0.1556 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.50951 0.68916 -0.3435 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963 H 6.75575 -2.99861 -0.1692	Н	1.27632	2.12278	-1.97725
H 1.59305 4.55536 -1.4852 H 2.46570 5.27061 0.7457 C 3.31563 -1.12253 -0.2557 C 3.36437 -2.53520 -0.1933 C 4.52743 -0.39985 -0.2964 C 4.59465 -3.20460 -0.1556 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.50951 0.68916 -0.3435 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963 H 6.75575 -2.99861 -0.1692	Н	3.03643	3.55270	2.46786
H 2.46570 5.27061 0.7457 C 3.31563 -1.12253 -0.2557 C 3.36437 -2.53520 -0.1933 C 4.52743 -0.39985 -0.2964 C 4.59465 -3.20460 -0.1556 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.50951 0.68916 -0.3435 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963 H 6.75575 -2.99861 -0.1692	Н	1.59305	4.55536	-1.48524
C 3.31563 -1.12253 -0.2557 C 3.36437 -2.53520 -0.1933 C 4.52743 -0.39985 -0.2964 C 4.59465 -3.20460 -0.1556 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.60517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963 H 6.68755 -2.99861 -0.1692	Н	2.46570	5.27061	0.74573
C 3.36437 -2.53520 -0.1933 C 4.52743 -0.39985 -0.2964 C 4.59465 -3.20460 -0.1556 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.60517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2683 H 6.68715 -0.50201 -0.2684	С	3.31563	-1.12253	-0.25571
C 4.52743 -0.39985 -0.2964 C 4.59465 -3.20460 -0.1556 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.60517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2683 H 6.75575 -2.99861 -0.1692	С	3.36437	-2.53520	-0.19330
C 4.59465 -3.20460 -0.1556 C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.50951 0.68916 -0.3435 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963 H 6.75575 -2.99861 -0.1692	С	4.52743	-0.39985	-0.29643
C 5.75865 -1.07506 -0.2684 C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.50951 0.68916 -0.3435 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2684 H 6.75575 -2.99861 -0.1692	С	4.59465	-3.20460	-0.15562
C 5.79805 -2.47677 -0.1941 H 2.43556 -3.10883 -0.1660 H 4.50951 0.68916 -0.3435 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963 H 6.75575 -2.99861 -0.1692	С	5.75865	-1.07506	-0.26840
H 2.43556 -3.10883 -0.1660 H 4.50951 0.68916 -0.3435 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963 H 6.75575 -2.99861 -0.1692	С	5.79805	-2.47677	-0.19417
H 4.50951 0.68916 -0.3435 H 4.61517 -4.29422 -0.0971 H 6.68715 -0.50201 -0.2963 H 6.75575 -2.99861 -0.1692	Η	2.43556	-3.10883	-0.16608
H4.61517-4.29422-0.0971H6.68715-0.50201-0.2962H6.75575-2.99861-0.1692	Η	4.50951	0.68916	-0.34356
H 6.68715 -0.50201 -0.2963 H 6.75575 -2.99861 -0.1692	Н	4.61517	-4.29422	-0.09714
Н 6.75575 -2.99861 -0.1692	Η	6.68715	-0.50201	-0.29638
	Η	6.75575	-2.99861	-0.16929

E-I

Sum of electronic and zero-point Energies= -2210.175539Sum of electronic and thermal Enthalpies = -2210.136560Sum of electronic and thermal Free Energies = -2210.251744C 3.74140 -2.04350 0.22060C 3.80264 -0.68231 -0.06802

С	3.80264	-0.68231	-0.06802
Η	2.88497	-0.12594	-0.27435
Р	-2.17595	-0.47829	-0.26717
Р	0.46091	1.33844	-0.39998
Ι	1.71354	-3.00420	0.23013
Pd	0.07497	-0.90886	-0.20459
С	4.87796	-2.80900	0.49725
Н	4.80476	-3.87401	0.71979
С	6.12984	-2.16393	0.48371
Н	7.02998	-2.74180	0.70008

С	6.22174	-0.79190	0.19520
Н	7.19631	-0.30213	0.18555
С	5.06006	-0.05218	-0.08192
Н	5.12353	1.01279	-0.31099
С	-2.27675	1.18979	-1.10991
С	-3.47435	1.68439	-1.66364
Ĉ	-1 10855	1 99725	-1 15349
c	-3 51900	2 95373	-2 25935
н	-4 37203	1.06691	-1 63952
\hat{C}	1 16702	3 27425	1 74515
C	-1.10702	2 75141	-1.74313
U U	-2.30303	3./3141	-2.29949
н	-4.45295	3.31/20	-2.69042
Н	-0.26935	3.89275	-1.//462
Н	-2.39252	4./3905	-2./6198
C	0.50296	2.11908	1.27177
С	-0.62052	2.75467	1.83798
С	1.66630	1.94933	2.05732
С	-0.58382	3.20620	3.16755
С	1.70489	2.41750	3.37742
С	0.57615	3.04125	3.93991
Н	-1.52861	2.88271	1.25004
Н	2.53871	1.44898	1.63382
Н	-1.46623	3.68282	3.59705
Н	2.61200	2.28659	3.96985
Н	0.60253	3 39219	4 97252
C	1 78833	2 21425	-1 34140
c	2 38036	3 42085	-0.91316
c	2.30030	1 60699	-2 53230
c	3 11215	4.00736	-1.66345
C	2 26480	2 20212	2 29711
C	2 95529	2.20212	-3.20/11
U U	3.83328	3.40147	-2.85104
Н	2.03832	3.89599	0.00604
Н	1.80628	0.65980	-2.85622
Н	3.86617	4.93901	-1.32127
Н	3.60983	1.72373	-4.20501
Н	4.65872	3.85803	-3.43085
С	-2.76482	-0.07587	1.44336
С	-1.99628	-0.52499	2.53555
С	-3.91404	0.70593	1.68245
С	-2.36738	-0.19501	3.84873
С	-4.28468	1.03474	2.99491
С	-3.51028	0.58690	4.07980
Н	-1.09681	-1.11530	2.34543
Н	-4.51303	1.06367	0.84456
Н	-1.75989	-0.54073	4.68640
Н	-5.17351	1.64282	3.17104
Н	-3.79600	0.84994	5.09939
С	-3.58978	-1.39300	-1.02843
Ĉ	-3 60396	-1 56548	-2,43224
Č	-4 58741	-2.02033	-0 25227
C	-4 60479	-2 33213	-3 04403
č	-5 58291	-2 79573	-0 86878
č	-5.50271	-2.7575	-0.00070
с u	-5.57/70	-2.93160	-2.20411
п u	-2.03440	-1.09192	-3.04314
п	-4.39131	-1.09813	4.12016
п	-4.00885	-2.44/03	-4.12916
H	-6.35060	-5.2/140	-0.25601
н	-0.3/446	-3.33158	-2./409/

Ε-π

Sum	of electronic and	-2210.193333		
Sum	of electronic and	-2210.153410		
Sun	n of electronic an	d thermal Free H	Energies=	-2210.269550
С	-1.39245700	-2.30175100	-0.54953	100
С	-0.36915300	-2.79485700	-1.43720	300
Н	-0.27412000	-2.40377800	-2.45230	000
Р	-0.81558200	1.06859000	0.71462	800

Р	2.12832100	0.05790800	-0.00835300
I	-3.43838000	-1.43272300	-1.69364200
Pd	-0.00179300	-0 82071100	-0 31271200
C	-1 72581100	-3 04271400	0.62800100
н	-2 50517800	-2 67658000	1 29583/00
C	1.01271400	4 20070000	0.0310/100
	-1.012/1400	-4.20079900	1.96072500
Н	-1.23266100	-4./3000/00	1.860/2500
C	-0.00382400	-4.69756400	0.06051900
Н	0.51383400	-5.62570800	0.30606900
С	0.30035400 ·	-4.01450900	-1.11169600
Η	1.02645900	-4.42045000	-1.81920500
С	0.62825200	1.85673700	1.57620700
С	0.45891300	2.88765100	2.52208500
С	1.93354700	1.42321200	1.23884000
С	1 57383800	3 48391200	3 12627100
Ĥ	-0 54692000	3 21081800	2 79046600
C	3 0/797800	2 03091500	1 85011500
C	2 86006600	2.05606000	2 78006600
	2.80990000	5.05000900	2.78900000
н	1.43323000	4.2/809300	3.86050900
Н	4.053/8100	1.6956/600	1.59584400
Н	3.73885200	3.51767000	3.25968100
С	-1.38417200	2.35338500	-0.47296100
С	-1.22861500	2.09506000	-1.84982800
С	-1.92611100	3.58492900	-0.04943600
С	-1.60658900	3.06178300	-2.79532600
С	-2.30753000	4.54553400	-0.99670300
Ċ	-2.14610600	4.28608100	-2.36957000
н	-0.82045600	1 13475600	-2 17104400
н	-2 05420000	3 78821900	1 01389100
и П	-2.03420000	2 85468100	2 85025200
п	-1.464/6000	2.03400100	-3.83933300
Н	-2./2859400	5.49568000	-0.6648/200
Н	-2.44464900	5.03593900	-3.10354800
С	-2.11633100	0.95765700	1.99847000
С	-1.77599500	0.51779700	3.29766600
С	-3.47463000	1.14826600	1.66540500
С	-2.77842400	0.29731100	4.25270500
С	-4.47283900	0.92393100	2.62580100
С	-4.12911600	0.49980400	3.91999200
Н	-0.73003100	0.35987700	3.56384000
Н	-3.74979100	1.47231400	0.66242000
Н	-2 50363400	-0.03113900	5 25617800
Н	-5 51908700	1 08137700	2 35985700
н	-4 90769700	0.32730400	A 66/19600
C	-4.00/00/00	0.52750400	1 41210100
C	2.00839300	0.83037700	-1.41210100
C	2.90220200	2.23/04/00	-1.0498/000
C	3.68911000	0.036/9900	-2.34552900
C	3.4/3/8900	2.800/4000	-2.80161300
С	4.26539700	0.60720000	-3.48902000
С	4.15698400	1.98971800	-3.72182400
Н	2.37949700	2.87439000	-0.93664500
Н	3.77514000	-1.03680000	-2.17172300
Н	3.38770800	3.87445200	-2.97477500
Н	4.79744600	-0.02806900	-4.19867900
Н	4.60294000	2.43046100	-4.61440900
C	3 33686800	-1 09909700	0 75126500
Ĉ	4 73253700	-0.89959400	0.71459000
C	2 80861500	2 23107500	1 40775400
C	2.80801500	-2.23107300	1.40773400
C	2.((702(00	-1.019/0200	1.55914/00
C	5.00/93000	-3.144/4100	2.030/3400
U	5.05/40000	-2.93968300	2.00289500
H	5.14498900	-0.03578100	0.19295100
Н	1.72825900	-2.39298400	1.41005400
Н	6.66713800	-1.66252100	1.30781200
Н	3.25327700	-4.01912700	2.54032000
Н	5.72632500	-3.65366900	2.48543300

E-OA

Sum of	electronic and	zero-point E	nergies= -2210.2	45457
Sum of	electronic and	thermal Enth	alpies = -2210.2	206818
Sum of	electronic and	thermal Free	Energies = -22	10.320985
C	1 85344	1 85769	0 46430	

C	1.85344	1.85/69	0.46430
С	2.19209	1.99876	1.82839
Н	1.53876	1.57883	2.59673
Р	1.36242	-0.96238	-0.37337
Р	-1.75578	-0.58673	-0.05939
Ι	-1.34025	3.23640	0.11195
Pd	0.09587	0.84497	0.04456
С	2.72601	2.39594	-0.50134
Н	2.49844	2.29174	-1.56286
С	3.90811	3.05840	-0.11683
н	4 57246	3 46523	-0.88286
C	4 23497	3 19132	1 24282
н	5 1 5 3 0 9	3 70083	1.24202
C	2 26040	2 66 4 5 0	2 21502
U U	2 61001	2.00439	2.21393
П	5.01001	2.70234	5.27084
C	0.25286	-2.38333	-0.79482
C	0.//94/	-3.61101	-1.23839
C	-1.14512	-2.19025	-0.74247
С	-0.08586	-4.63662	-1.64441
Н	1.85942	-3.75507	-1.28110
С	-2.00704	-3.21899	-1.16963
С	-1.47730	-4.43720	-1.61922
Н	0.32449	-5.58385	-1.99543
Н	-3.08577	-3.06213	-1.14866
Н	-2.14865	-5.22979	-1.95124
С	-2.25343	-0.98474	1.66902
С	-2.56131	-2.29177	2.09792
Č	-2.29369	0.08096	2.59470
Č	-2.90981	-2 52792	3 43735
č	-2 64764	-0.16084	3 93006
č	-2 95457	-1 46481	4 35388
н	-2.53457	-3 12324	1 39503
н Ц	-2.52550	1 00088	2 26600
11	-2.04528	2 5 4 2 4 4	2.20099
п	-3.14343	-3.34244	3.70102
п	-2.07020	0.00/94	4.038/3
Н	-3.22291	-1.65221	5.39449
C	-3.30544	-0.23764	-0.97320
C	-4.56898	-0.63020	-0.48874
C	-3.20474	0.44391	-2.20486
С	-5.72268	-0.35083	-1.23838
С	-4.36007	0.71399	-2.95189
С	-5.61941	0.31696	-2.46959
Н	-4.64954	-1.14452	0.46905
Н	-2.22949	0.77281	-2.56697
Н	-6.69964	-0.65407	-0.85958
Н	-4.27817	1.24349	-3.90192
Н	-6.51805	0.53570	-3.04786
С	2.38565	-0.75520	-1.87779
С	1.88010	0.08313	-2.89318
С	3.60236	-1.43815	-2.06943
Ċ	2.58821	0.23623	-4.09308
Ĉ	4 31095	-1 27399	-3 26996
č	3 80615	-0.43967	-4 28082
Ĥ	0.94651	0 62420	-2 72490
н	3 00833	-2 08/61	_1 28710
и Ц	2 10657	0.80050	4 87286
н Ц	2.1703/	1 70965	2 /1200
п u	J.23030 A 2617A	-1./9603	-3.41380
п С	4.301/4	-0.312/1	-3.21083
C	2.43033	-1.34414	0.90048
C	3.68225	-0.88399	1.20038
C	2.02649	-2.56133	1.84342
C	4.47784	-1.25927	2.29182
С	2.82627	-2.92589	2.93685

4.05267	-2.27861	3.16058
4.00510	-0.08127	0.53952
1.07518	-3.06546	1.67325
5.42525	-0.74798	2.46627
2.49086	-3.71582	3.61000
4.67296	-2.56440	4.01107
	4.05267 4.00510 1.07518 5.42525 2.49086 4.67296	4.05267-2.278614.00510-0.081271.07518-3.065465.42525-0.747982.49086-3.715824.67296-2.56440

TS5

Sum of e	electronic and zero-po	oint Energies=	-2210.193093
Sum of	electronic and therma	al Enthalpies=	-2210.154990
Sum of	electronic and therma	al Free Energies=	-2210.268533
С	-1.54449800	-2.30252500	-0.44014500
С	-0.51721200	-2.95221000	-1.21054600
Н	-0.27333400	-2.61961700	-2.22178000
Р	-0 73958600	0 99005600	0 84121800
P	2 11938900	-0.08732900	0.04892500
Ī	-3 33319400	-1 17879100	-1 84533200
Pd	0.02432200	0.05727500	0 15702300
C	2 10601300	2 05133400	0.70035000
U U	-2.10001300	2.95155400	1 27214000
П	-2.89302700	-2.40093700	1.2/214000
C II	-1.39337700	-4.16394100	1.099/3100
H	-1.98208300	-4.04983400	2.00761400
C	-0.56/83500	-4.83233500	0.35851200
Н	-0.20925400	-5.81193700	0.67734800
С	-0.05000400	-4.23454000	-0.78542800
Н	0.68405300	-4.75835400	-1.40157900
С	0.72960800	1.66552700	1.75417000
С	0.61180700	2.65153300	2.75224600
С	2.01331200	1.18114100	1.39589800
С	1.75479300	3.14699400	3.39623900
Н	-0.37515700	3.01685700	3.03484600
С	3.15513800	1.68455000	2.04855300
С	3.02642600	2.66241800	3.04583200
H	1.65305500	3,90558200	4,17326300
Н	4 14154300	1 30630600	1 77883100
Н	3 91563400	3 04433100	3 54887300
C	-2 09542700	0.96601500	2 06884800
C	2.07542700	1 22086500	2.00004000
C C	-1 84055000	0.52334800	3 38621100
C	-1.84033000	1.05770800	2 58000600
C	-4.4//93000	0.26508000	2.38009000
C	-2.89/5/200	0.30398900	4.29362900
C	-4.21847700	0.63295200	3.893/5100
H	-3.63324300	1.54495000	0.64835900
H	-0.81821700	0.31316300	3.70202700
H	-5.50104900	1.26393400	2.26252100
Н	-2.68878800	0.03548900	5.31220100
Н	-5.03942500	0.50866400	4.60117400
С	-1.15256000	2.31699400	-0.36245200
С	-0.89068800	2.07244900	-1.72511900
С	-1.65091800	3.57328700	0.04045400
С	-1.11277300	3.07924600	-2.67755200
С	-1.87898700	4.57411200	-0.91489200
С	-1.60672200	4.32964800	-2.27302800
Н	-0.51602700	1.09432200	-2.02895900
Н	-1.86337500	3.76640300	1.09223500
Н	-0 90240700	2 88382400	-3 72976900
Н	-2 26599000	5 54439600	-0.60023600
H H	-1 78174200	5 11255200	-3 01232800
II C	3 56263800	1 131/2500	0 /0/03300
	3 21122000	-1.13142300	1 25082200
	J.J1133900 1 00121200	-2.290/3000	0 10/27/00
	4.00101000	-0.82143100	0.1045/000
C	4.3/393800	-3.12121600	1.04333000
C	5.94031900	-1.66006700	0.48682600
C	5.68821200	-2.80721000	1.25826400
Н	2.28553900	-2.53891600	1.54137100
Н	5.07622100	0.06801800	-0.49573200
Н	4.17545300	-4.01657900	2.23613400

Н	6.95966700	-1.41792200	0.18273700	С	3.19715700	2.23905000	-3.83553600
Н	6.51298400	-3.45808000	1.55182500	Н	2.39856100	-0.89138000	-2.70907000
С	2.62754600	0.86122400	-1.44436800	Н	2.89776800	2.78302500	-0.47257100
С	2.63220600	0.17462700	-2.67925800	Н	2.92537400	0.32156900	-4.81518200
С	2.90747000	2.24141800	-1.41791100	Н	3.39785600	3.99629300	-2.58232300
С	2.92315000	0.85997500	-3.86640200	Н	3.41093200	2.77429600	-4.76168000
С	3.18828400	2.92609700	-2.61186700				

References

- ⁱ J.-J. Dai, J.-H. Liu, D.-F. Luo, L. Liu, *Chem. Commun.* **2011**, *47*, 677.
- K. Hata, H. Ito, Y. Segawa, K. Itami, Beilstein J. Org. Chem. 2015, 11, 2737.
- ⁱⁱⁱ a) L. T. Ball, G. C. Lloyd-Jones, C. A. Russell, *Science* **2012**, 337, 1644. b) L. T. Ball, G. C. Lloyd-Jones, C. A. Russell, *J. Am. Chem. Soc.* **2014**, *136*, 254.
- ^{iv} A. J. Cresswell, G. C. Lloyd-Jones, *Chem. Eur. J.* **2016**, *22*, 12641.
- v a) X. C. Cambeiro, N. Ahlsten, I. Larrosa, J. Am. Chem. Soc. 2015, 137, 15636. b) J.-R. Liu,
- Y.-Q. Duan, S.-Q. Zhang, L.-J. Zhu, Y.-Y. Jiang, S. Bi, X. Hong, Org. Lett., 2019, 21, 2360.
- vi M. Hofer, A. Genoux, R. Kumar, and C. Nevado, Angew. Chem. Int. Ed. 2017, 56, 1021.
- vii V. Gauchot, D. R. Sutherland, A.-L. Lee, *Chem. Sci.* **2017**, *8*, 2885.
- viii C. Qu, S. Zhang, H. Du, C. Zhu, Chem. Commun. 2016, 52, 14400.
- ^{ix} a) A. Wetzel, F. Gagosz, *Angew. Chem. Int. Ed.* **2011**, *50*, 7354. b) B. Lu, Y. Luo, L. Liu, L. Ye, Y. Wang, L. Zhang, *Angew. Chem. Int. Ed.* **2011**, *50*, 8358.
- * a) B. Join, T. Yamamoto, K. Itami, *Angew. Chem. Int. Ed.* 2009, *48*, 3644. b) D. R. Stuart, K. Fagnou, *Science* 2007, *316*, 1172.
- ^{xi} R. J. Phipps, N. P. Grimster, M. J. Gaunt, *J. Am. Chem. Soc.* **2008**, *130*, 8172.
- ^{xii} K. Yamaguchi, H. Kondo, J. Yamaguchi, K. Itami, *Chem. Sci.* **2013**, *4*, 3753.
- a) L. Ackermann, M. Dell'Acqua, S. Fenner, R. Vicente, R. Sandmann, Org. Lett. 2011, 13, 2358. b) K. Morimoto, K. Sakamoto, Y. Ohnishi, T. Miyamoto, M. Ito, T. Dohi, Y. Kita, Chem. Eur. J. 2013, 19, 8726.
- xiv Y.-P. Zhang, X.-L. Feng, Y.-S. Yang, B.-X. Cao, *Tetrahedron Lett.* 2016, 57, 2298.
- ^{xv} J. Chen, J. Wu, *Angew. Chem., Int. Ed.* **2017**, *56*, 3951.
- ^{xvi} a) L. Zhu, P. Guo, G. Li, J. Lan, R. Xie, J. You, *J. Org. Chem.* **2007**, *72*, 8535. b) S. Xu, X. Huang, X. Hong, B. Xu, *Org. Lett.* **2012**, *14*, 4614.
- xvii S. Islam, I. Larrosa, *Chem. Eur. J.* **2013**, *19*, 15093.
- ^{xviii} B. S. Lane, M. A. Brown, D. Sames *J. Am. Chem. Soc.* **2005**, *127*, 8050.
- xix G. Yan, C. Kuang, Y. Zhang, J. Wang, Org. Lett. 2010, 12, 1052.
- X.-H. Xu, G.-K. Liu, A. Azuma, E. Tokunaga, N. Shibata, Org. Lett. 2011, 13, 4854.
- xxi Y. Zou, G. Yue, J. Xu, J. Zhou, *Eur. J. Org. Chem.* **2014**, *2014*, 5901.
- ^{xxii} S. G. Modha, M. F. Greaney, *J. Am. Chem. Soc.* **2015**, *137*, 1416.
- ^{xxiii} J. Ghorai, A. C. S. Reddy, P. Anbarasan, *Chem. Eur. J.* **2016**, *22*, 16042.
- xxiv X.-M. Ji, S.-J. Zhou, C.-L. Deng, F. Chen, R.-Y. Tang, *RSC Adv.* **2014**, *4*, 53837.
- A. K. Mishra, S. Biswas, J. Org. Chem. 2016, 81, 2355.
- ^{xxvi} F. Bellina, F. Benelli, R. Rossi, J. Org. Chem. **2008**, 73, 5529.
- xxvii K. Seki, K. Ohkura, M. Terashima, Y. Kanaoka. *Chem. Pharm. Bull.* **1988**, 36, 940.
- xxviii J. Barluenga, M. A. Fernández, F. Aznar, C. Valdés, *Chem. Eur. J.* **2005**, *11*, 2276.
- xxix N. Ishida, D. Necas, Y. Shimamoto, M. Murakami, Chem. Lett. 2013, 42, 1076.
- XXX Y. Bao, J.-Y. Wang, Y.-X. Zhang, Y. Li, X.-S. Wang, *Tetrahedron Lett.* **2018**, *59*, 3147.
- xxxi SAINT, SADABS, Programs for data correction, Bruker–AXS.
- xxxii ShelXT, G. M. Sheldrick, University of Göttingen, Acta Crystallogr. Sect. A 2015, 71, 3.
- xxiii ShelXL, G. M. Sheldrick, University of Göttingen, Acta Crystallogr. Sect. C 2015, 71, 3.
- ^{xxxiv} S. Grimme, *J Comput Chem* **2006**, 27, 1787.
- Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2009.**
- xxxvi D. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta* **1990**, 77, 123.

xxxvii	Α.	W.	Ehlers,	Μ.	Biihme,	S.	Dapprich,	Α.	Gobbi,	Α.	Hijllwarth,	V.	Jonas,	K.	F.	Kiihler,	R.
	St	egm	ann, A. '	Velc	lkamp, G	6. Fr	enking, Ch	em	. Phys. (Che	em. 1993 , 2	208,	111.				

- XXXIX M. J. Harper, C. J. Arthur, J. Crosby, E. J. Emmet, R. L. Falconer, A. J. Fensham-Smith, P. J. Gates, T. Leman, J. E. McGrady, J. F. Bower, C. A. Russell, *J. Am. Chem. Soc.* 2018, 140, 4440.
- M. Joost, A. Zeineddine, L. Estévez, S. Mallet-Ladeira, K. Miqueu, A. Amgoune, D. Bourissou, *J. Am. Chem. Soc.* 2014, **136**, 14654.
- a) K. Fukui, Acc. Chem. Res. 1981, 14, 363. b) H. P. Hratchian, H. B. Schlegel. Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In Theory and Applications of Computational Chemistry: The First 40 Years; C. E. Dykstra, G. Frenking, K. S. Kim, G. Scuseria, Eds.; Elsevier: Amsterdam, 2005, 195.
- a) E. Reed, L. A. Curtiss, F. Weinhold, *Chem. Rev.* **1988**, *88*, 899. b) J. P. Foster F. Weinhold, *J. Am. Chem. Soc.* **1980**, *102*, 7211. c) A. E. Reed, F. Weinhold, *J. Chem. Phys.* **1985**, *83*, 1736.
- ^{xliii} NBO 5.0 program, E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, **2001**.
- xliv a) R. F. W. Bader, *Atoms in Molecules: A Quantum Theory*; Oxford University Press: New-York Ed., **1990**. b) R. F. W. Bader, *Chem. Rev.* **1991**, *91*, 893. c) AIMAII (Version 10.10.11), Todd A. Keith, **2010** (aim.tkgristmill.com).
- xlv S. Dapprich, G. Frenking, J. Phys. Chem. **1995**, 99, 9352.
- a) K. Morokuma, J. Chem. Phys. **1971**, 55, 1236. b) T. Ziegler, A. Rauk, Theor. Chim. Acta **1977**, 46, 1.
- ^{xtvii} E. J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, J. W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, S. M. Morton, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, M. Pavanello, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodríguez, P. Ros, P. R. T. Schipper, H. van Schoot, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovle, ADF2018, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
- xlviii M. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theor. Comput. 2009, 5(4), 962.
- ^{xlix} F. L. Hirshfeld, *Theor. Chem. Acc.* **1977**, *44*, 129.

xxxviii A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.