Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Substituent-controlled, Mild Oxidative Fluorination of Iodoarenes: Synthesis and Structural Study of Aryl I(III)- and I(V)-Fluorides

Joel Häfliger, † Cody Ross Pitts, † Dustin Bornemann, Roland Käser, Nico Santschi, Julie Charpentier, Elisabeth Otth, Nils Trapp, René Verel, Hans Peter Lüthi, and Antonio Togni*

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland

Contents

General Information	S2
General Procedure for Synthesis of Difluoro(aryl)- λ^3 -iodanes	S2
General Procedure for Synthesis of Tetrafluoro(aryl)- λ^5 -iodanes	
Procedures and Characterization Data for Starting Materials	
Route for Synthesis of Probe Molecule 21	S10
Procedure for Synthesis of 21 with XeF ₂	S11
Procedure for Synthesis of 37 with XeF ₂	S11
Characterization Data for Difluoro(aryl)- λ^3 -iodanes and Tetrafluoro(aryl)- λ^5 -iodanes	
Temperature Calibration of the NMR Spectrometer	
Determination of Line Widths and Peak Separation for Line Shape Analysis	
Calculation of Rate Constants	
Important Equations for Dynamic NMR Analyses	
NMR Spectra	S32-S131
VT-NMR Overlay of ¹ H NMR Spectra for 21	S132
Controlled Hydrolysis Experimental Data	
Computational Data	
Single-crystal X-ray Structural Data	

General Information

Unless otherwise stated, all reactions were carried out under strictly anhydrous conditions and Ar or N₂ atmosphere. All solvents were dried and distilled using standard methods (i.e. MeCN and CH₂Cl₂ were dried and distilled over CaH₂ and stored over molecular sieves prior to use). Trichloroisocyanuric acid was used without prior drying or purification. Spray-dried (or otherwise rigorously dried) KF was always weighed out under N₂ atmosphere in a glove box. All ¹H and ¹³C NMR spectra were acquired on either a 300, 400, or 500 MHz spectrometer. All ¹⁹F NMR spectra were acquired on either a 300, 400, or 500 MHz spectrometer. For ¹⁹F NMR yield determination, either trifluorotoluene or fluorobenzene was introduced after each reaction as an internal standard, and the d1 relaxation delay was increased to 10 s during data collection. The ¹H, ¹³C, and ¹⁹F NMR chemical shifts are given in parts per million (δ) and calibrated to either residual solvent signal (¹H and ¹³C), ¹ α , α , α -trifluorotoluene $({}^{19}F, \delta = -63.10 \text{ in } CD_3CN),^2 \text{ fluorobenzene } ({}^{19}F, \delta = -114.81 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ in } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^2 \text{ or } CFCl_3 ({}^{19}F, \delta = 0.65 \text{ or } CD_3CN),^$ $CDCl_3$).² NMR data are reported in the following format: chemical shift (integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, br = broad), coupling constants (Hz)). IR data were collected on a Thermo Fischer Scientific Nicolet 6700 FT-IR equipped with a PIKE technologies GladiATR or a Perkin-Elmer BX II using ATR FT-IR technology and absorption maxima are reported in cm⁻¹. GC/MS was performed on a Thermo Fischer Trace GC 2000 equipped with a flame ionization detector, using a ZB-5 column with guardian (L: 30 m, i.d.: 0.25 mm, DF = 0.25 μ m) and helium as the carrier gas with a constant flow of 1.1 mL min⁻¹ and a Shimadzu-QP 2010 Ultra using HP-5 column with a parallel MS and FID detection. HRMS data were collected by MoBiAS - the MSservice of the "Laboratorium für Organische Chemie der ETH Zürich." Compounds 35 and 36 were synthesized according to literature procedure.³

General Procedure for Synthesis of Difluoro(aryl)- λ^3 -iodanes

Trichloroisocyanuric acid (0.350 g, 1.5 mmol, 4.0 equiv.) was added to an oven-dried microwave vial equipped with a stir bar; the vessel was then transported inside a glove box under N₂ atmosphere. Spraydried (or crushed and rigorously dried) potassium fluoride (0.131 g, 2.3 mmol, 6.0 equiv.) was added to the reaction vessel, which was then sealed with a cap with septum using a crimper. The closed vial was removed from the glove box. Under Ar atmosphere, a solution of the aryl iodide substrate (0.38 mmol, 1.0 equiv.) in 4.0 mL MeCN was added to the vial. The reaction mixture was stirred vigorously at 40 °C for ca. 24 h. *Note that substrates with limited solubility in MeCN were introduced to the reaction mixture as solids in the glove box.* Upon reaction completion, an aliquot of the reaction mixture was passed through a PTFE syringe filter, and an NMR sample was prepared with 0.4 mL of the filtered aliquot + 0.1 mL internal standard solution (made immediately prior to use with x g of either trifluorotoluene or fluorobenzene in y mL CD₃CN) for ¹⁹F NMR yield determination. In order to obtain NMR characterization data, reactions were run in CD₃CN and filtered prior to measurement to remove KF and most of the TCICA (note that we were unable to extract the aryl-IF₂ compounds from TCICA completely, so the residual TCICA signal is labelled in the ¹³C {¹H} NMR spectra).

General Procedure for Synthesis of Tetrafluoro(aryl)- λ^5 -iodanes

Trichloroisocyanuric acid (0.350 g, 1.5 mmol, 4.0 equiv.) was added to an oven-dried microwave vial equipped with a stir bar; the vessel was then transported inside a glove box under N₂ atmosphere. Spraydried (or crushed and rigorously dried) potassium fluoride (0.131 g, 2.3 mmol, 6.0 equiv.) was added to the reaction vessel, which was then sealed with a cap with septum using a crimper. The closed vial was removed from the glove box. Under Ar atmosphere, a solution of the aryl iodide substrate (0.38 mmol, 1.0 equiv.) in 4.0 mL MeCN was added to the vial. The reaction mixture was stirred vigorously at 40 °C for ca. 48 h. Note that substrates with limited solubility in MeCN were introduced to the reaction mixture as solids in the glove box. Upon reaction completion, an aliquot of the reaction mixture was passed

¹ G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stolz, J. E. Bercaw, and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176.

² C. P. Rosenau, B. J. Jelier, A. D. Gossert, and A. Togni, Angew. Chem. Int. Ed., 2018, 57, 9528.

³ V. Matoušek, E. Pietrasiak, R. Schwenk, and A. Togni, J. Org. Chem., 2013, 78, 6763.

through a PTFE syringe filter, and an NMR sample was prepared with 0.4 mL of the filtered aliquot + 0.1 mL internal standard solution (made immediately prior to use with x g of either trifluorotoluene or fluorobenzene in y mL CD₃CN) for ¹⁹F NMR yield determination.

In order to remove KF and TCICA (and its byproducts), the reaction vessel atmosphere and solvent was purged with Ar and transported into the glove box. Subsequently, the crude reaction mixture was filtered into a PFA vessel, washed with dry MeCN, and then concentrated in vacuo. Then, the crude reaction mixture was diluted with n-hexane, filtered into a PFA vessel, and concentrated in vacuo. (*Note that repeating dilution and filtration multiple times will provide better results due to limited solubility of aryl-IF*₄ compounds.)

Procedures and Characterization Data for Starting Materials

I-(2-Iodophenyl)ethan-1-ol: A solution of 2-iodoacetophenone (1.0 g, 4.1 mmol, 1.0 eq.) in methanol (20 mL) was cooled to 0 °C. NaBH₄ (0.16 g, 4.1 mmol, 1.0 eq.) was added as a solid. The reaction was warmed to room temperature and stirred for 1 h. The reaction was quenched by adding saturated aqueous NH₄Cl to the reaction mixture. The aqueous layer was extracted three times with Et₂O. The combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed at reduced pressure. The product was obtained as a yellow oil in 98% yield (0.99 g, 4.0 mmol), which was used without further purification. ¹H NMR (300 MHz, CDCl₃): δ = 7.80 (1H, dd, *J* = 7.9, 1.2 Hz), 7.56 (1H, dd, *J* = 7.8, 1.7 Hz), 7.38 (1H, td, *J* = 7.6, 1.2 Hz), 6.96 (1H, td, *J* = 7.6, 1.7 Hz), 5.06 (1H, qd, *J* = 6.3, 3.1 Hz), 2.08 (1H, d, *J* = 3.2 Hz), 1.46 (3H, d, *J* = 6.3 Hz); ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 147.6, 139.5, 129.3, 128.9, 126.5, 97.4, 73.9, 23.9. v_{max} (ATR-IR): 3315 (br) cm⁻¹. HRMS (ESI-TOF): calc'd for C₈H₉INaO [M+Na]⁺: 270.9590, found: 270.9590.⁴

1-(1-Fluoroethyl)-2-iodobenzene: 1-(2-Iodophenyl)ethanol (0.25 g, 1.0 mmol, 1.0 eq.) was dissolved in dry DCM (6.0 mL) under an Ar atmosphere and stirred. The solution was cooled to -78 °C using an acetone/dry ice bath. Subsequently, DAST (0.16 mL, 1.2 mmol, 1.2 eq.) was added carefully to the reaction mixture. After a few minutes, the cooling bath was removed, and the mixture was allowed to warm gradually to room temperature. After one hour, full conversion was indicated by TLC analysis, and the reaction was quenched with saturated aqueous K₂CO₃. The organic layer was separated, and the aqueous phase was extracted with DCM three times. The combined organic layers were washed with

⁴ Procedure adapted from: J. R. Wolstenhulme, J. Rosenqvist, O. Lozano, J. Ilupeju, N. Wurz, K. M. Engle, G. W. Pidgeon, P. R. Moore, G. Sandford and V. Gouverneur, *Angew. Chem. Int. Ed.* 2013, **52**, 9796.

brine and dried over MgSO₄. The crude material was purified by flash column chromatography using hexanes as an eluent. The product was obtained in 55% yield (0.14 g, 0.55 mmol) as a colorless liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.81 (1H, d, *J* = 7.9 Hz), 7.50 (1H, dd, *J* = 7.8, 1.8 Hz), 7.41 (1H, t, *J* = 7.5 Hz), 7.02 (1H, td, *J* = 7.6, 1.8 Hz), 5.76 (1H, dq, *J* = 46.4, 6.3 Hz), 1.62 (3H, dd, *J* = 24.0, 6.3 Hz); ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 144.1 (d, *J* = 20.8 Hz), 139.4, 129.9 (d, *J* = 1.8 Hz), 128.8, 126.2 (d, *J* = 10.0 Hz), 95.4 (d, *J* = 5.8 Hz), 94.3 (d, *J* = 170.6 Hz), 22.4. (d, *J* = 25.7 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ = -170.94 (1F, dq, *J* = 47.6, 23.8 Hz). HRMS (EI): calc'd for C₈H₈FI [M]⁺: 249.3649, found: 249.3646.⁵

(4-Fluorophenyl)(2-iodophenyl)methanol: 1,2-Diiodobenzene (0.66 g, 2.0 mmol, 1.0 eq.) was dissolved in dry THF (10 mL), and the mixture was cooled to -40 °C using an acetonitrile/dry ice bath. After stirring for a few minutes at -40 °C, a 2 M solution of *i*-PrMgCl in THF (1.1 mL, 2.2 mmol, 1.1 eq.) was added to the reaction mixture. The mixture was warmed to -20 °C and stirred for 30 min. In the next step, a solution of 4-fluorobenzaldehyde (0.25 g, 2.0 mmol, 1.0 eq.) in dry THF (1.0 mL) was added drop wise to the reaction mixture. After complete addition, the reaction mixture was warmed to room temperature and stirred overnight. The reaction was quenched with saturated aqueous NH_4Cl . Then, Et₂O was added, and the organic layer was separated. The aqueous layer was extracted three times with Et₂O. The combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude material was purified by gradient column chromatography on silica gel eluting with hexanes and ethyl acetate. The product was obtained in 78% yield (0.51 g, 1.6 mmol) as a white solid; m.p. 95.8-97.7 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.83 (1H, dd, J = 7.9, 1.2 Hz), 7.50 (1H, dd, J = 7.8, 1.7 Hz), 7.42 - 7.30 (3H, m), 7.07 - 6.95 (3H, m), 5.99 (1H, d, J = 3.6 Hz), 2.77 $(1H, d, J = 3.7 \text{ Hz}); {}^{13}\text{C} \{{}^{1}\text{H}\}$ NMR (101 MHz, CDCl₃): $\delta = 162.3$ (d, J = 246.4 Hz), 145.3, 139.7, 137.9 $(d, J = 3.3 \text{ Hz}), 129.7, 129.1 (d, J = 8.2 \text{ Hz}), 128.8, 128.3, 115.4 (d, J = 21.4 \text{ Hz}), 98.6, 78.5; {}^{19}\text{F}$ NMR (282 MHz, CDCl₃): $\delta = -114.36$ (1F, tt, J = 8.7, 5.3 Hz). v_{max} (ATR-IR): 3271 (br) cm⁻¹. HRMS (ESI-TOF): calc'd for $C_{13}H_{10}FINaO[M+Na]^+$: 350.9653, found: 350.9651.⁶

⁵ Procedure adapted from: A. L. Johnsen, J. Org. Chem. 1982, 47, 5220.

⁶ Procedure adapted from: M. Wang, Q. Fan and X. Jiang, Org. Lett. 2018, 20, 216.

(4-Fluorophenyl)(2-iodophenyl)methanol: (4-Fluorophenyl)(2-iodophenyl)methanol (0.33)g, 1.0 mmol, 1.0 eq.) was dissolved in dry DCM (6 mL) under an argon atmosphere. The solution was cooled to -78 °C using an acetone/dry ice bath and stirred. In the next step, DAST (0.16 mL, 1.2 mmol, 1.2 eq.) was added carefully to the reaction mixture. After 15 min at -78 °C, the cooling bath was removed, and the mixture was allowed to warm to room temperature. After full conversion (determined by TLC), the reaction was quenched with saturated aqueous K₂CO₃. The organic layer was separated, and the aqueous phase was extracted with DCM three times. The combined organic layers were washed with brine and dried over MgSO₄. The crude material was purified by flash column chromatography using hexanes as an eluent. The product was obtained in 27% yield (88 mg, 0.27 mmol) as a white solid; m.p. 44.0-45.6 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.86 (1H, d, J = 7.9 Hz), 7.59 – 7.40 (2H, m), 7.40 - 6.30 (2H, m), 7.14 - 6.97 (3H, m), 6.61 (1H, d, J = 46.6 Hz); ${}^{13}C{}^{1}H$ NMR (75 MHz, CDCl₃): $\delta = 163.0$ (d, J = 248.0 Hz), 141.7 (d, J = 22.7 Hz), 139.8, 134.2 (dd, J = 22.3, 3.3 Hz), 130.3 (d, J = 1.6 Hz) 129.8 (dd, J = 8.5, 5.2 Hz), 128.7, 127.9 (d, J = 9.5 Hz), 115.7 (d, J = 21.9 Hz), 97.0 (d, J = 5.1 Hz), 96.5 (d, J = 174.1 Hz); ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -112.49 - -112.72$ (1F, m), -161.85 (1F, dd, J = 46.9 Hz). HRMS (EI): calc'd for C₈H₈F₂I [M]⁺: 329.9712, found: 329.9709.⁵

N-(5,6,7,8-Tetrahydronaphthalen-1-yl)acetamide: Acetic anhydride (6.3 g, 61 mmol, 2.1 eq.) was dissolved in EtOH (100 mL), and the mixture was cooled to 0 °C. Then, a solution of 5,6,7,8-tetrahydronaphthalenamine (4.3 g, 29 mmol, 1.0 eq.) in EtOH (18 mL) was added slowly. After complete addition, the reaction was stirred for five minutes at 0 °C before the reaction mixture was warmed to room temperature. After stirring the reaction mixture for an additional 18 h at room temperature, the solvent was evaporated. The remaining solid was dried at 50 °C under reduced pressure (8 mbar). The product was obtained in 97% yield (5.3 g, 28 mmol) as a light brown solid; m.p. 158.9-160.7 °C. It was used without further purification. ¹H NMR (300 MHz, CDCl₃): δ = 7.59 (1H, d, J = 8.0 Hz), 7.12 (1H, t, J = 7.7 Hz), 6.92 (1H, d, J = 7.7 Hz), 6.88 (1H, s), 2.78 (2H, t, J = 6.2 Hz), 2.59 (2H, t, J = 6.3 Hz), 2.20 (3H, s), 1.89 – 1.71 (4H, m); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ = 168.5, 138.2,

135.4, 128.8, 126.6, 125.9, 121.1, 29.9, 24.7, 24.4, 23.0, 22.7. v_{max} (ATR-IR): 3287, 1653, 1537 cm⁻¹. HRMS (ESI-TOF): calc'd for C₁₂H₁₅NNaO [M+Na]⁺: 212.1046, found: 212.1050.⁷

N-(*4-Bromo-5,6,7,8-tetrahydronaphthalen-1-yl)acetamide*: *N*-(5,6,7,8-Tetrahydronaphthalen-1-yl)acetamide (5.3 g, 28 mmol, 1.0 eq.) was dissolved in AcOH (40 mL), and the mixture was cooled to 10 °C using a cold water bath. Then, a solution of Br₂ (1.4 mL, 28 mmol, 1.0 eq.) in AcOH (3.0 mL) was added drop wise using a drop funnel. After complete addition, the drop funnel was washed with an additional AcOH (2.0 mL). The reaction mixture was warmed to room temperature and stirred for 4 h. The yellow slurry obtained was poured into ice water (100 mL). The suspension was filtered, and the solid was washed with cold water. The remaining solid was dissolved in DCM, and the organic phase was washed with water. The aqueous phase was extracted three times with DCM. The organic phase was dried over MgSO₄, filtered and then the solvent was removed under reduced pressure. The product was obtained in 91% yield (6.8 g, 26 mmol) as a white solid; m.p. 178.9-181.4 °C. It was used without further purification. ¹H NMR (300 MHz, CDCl₃): δ = 7.47 (1H, d, *J* = 8.7 Hz), 7.38 (1H, d, *J* = 8.5 Hz), 6.92 (1H, s) 2.79 – 2.69 (2H, m), 2.59 (2H, m), 2.18 (3H, s), 1.83 – 1.72 (4H, m); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ = 168.4, 137.3, 134.7, 131.5, 130.1, 122.5, 122.4, 30.9, 25.5, 24.4, 22.7, 22.4. ppm. v_{max} (ATR-IR): 3272, 1651 cm⁻¹. HRMS (ESI-TOF): calc'd for C₁₂H₁₅BrNO [M+H]⁺: 268.0332, found: 268.0334.⁷

N-(4-Bromo-8-oxo-5,6,7,8-tetrahydronaphthalen-1-yl)acetamide: *N-*(4-Bromo-5,6,7,8-tetrahydronaphthalen-1-yl)acetamide (6.8 g, 26 mmol, 1.0 eq.) was dissolved in acetone (180 mL), then a solution of 15% MgSO₄ in H₂O (4.4 g of MgSO₄ in 25 mL H₂O) was added to the solution. KMnO₄ (13 g, 80 mmol, 3.1 eq.) was added portion-wise over 30 min as a solid. After stirring for 14 h at room temperature, the reaction mixture was filtered through a pad of Celite. The remaining solid was washed

⁷ Procedure adapted from: W. C. Cronk, O. A. Mukhina and A. G. Kutateladze, J. Org. Chem. 2014, 79, 1235.

with H₂O (200 mL) and CHCl₃ (200 mL). The aqueous phase was separated and washed three times with CHCl₃, and the organic phase was washed two times with brine. After drying the organic phase over MgSO₄, the organic phase was filtered, and the solvent was evaporated under reduced pressure. The crude product was purified by gradient column chromatography on silica gel eluting with hexanes and ethyl acetate. The product was obtained in 44% yield (3.2 g, 11 mmol) as a white solid; m.p. 174.3-175.8 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 12.12$ (1H, s), 8.55 (1H, d, J = 9.1 Hz), 7.69 (1H, d, J = 9.1 Hz), 3.03 (2H, t, J = 6.2 Hz), 2.69 (2H, t, J = 6.6 Hz), 2.22 (3H, s), 2.11 (2H, p, J = 6.6 Hz); ¹³C {¹H} NMR (75 MHz, CDCl₃): $\delta = 203.0$, 169.6, 144.1, 142.5, 138.9, 119.9, 119.7, 117.5, 40.2, 31.4, 25.7, 21.8. v_{max} (ATR-IR): 3167 (br), 1652 cm⁻¹. HRMS (ESI-TOF): calc'd for C₁₂H₁₃BrNO₂ [M+H]⁺: 282.0124, found: 282.0124.⁷

8-Amino-5-bromo-3,4-dihydronaphthalen-1(2H)-one: *N*-(4-Bromo-8-oxo-5,6,7,8-tetrahydronaphthalen-1-yl)acetamide (0.59 g, 2.1 mmol, 1.0 eq.) was suspended in 6 M HCl (9.7 mL). The mixture was stirred for 8 h at 90 °C. After cooling to room temperature, ice was added to the reaction mixture followed by solid NaHCO₃ in order to quench the reaction. The pH was adjusted to 8 using 2 M NaOH. The aqueous layer was extracted four times with EtOAc, and the organic layer was washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure, and the product was obtained in 99% yield (0.50 g, 2.1 mmol) as a brown solid; m.p. 94.5-97.8 °C. It was used without further purification. ¹H NMR (300 MHz, CDCl₃): δ = 7.35 (1H, d, *J* = 8.9 Hz), 6.53 (2H, s), 6.40 (1H, d, *J* = 8.9 Hz), 2.92 (2H, t, *J* = 6.2 Hz), 2.61 (2H, t, *J* = 6.6 Hz), 2.04 (2H, p, *J* = 6.4 Hz); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ = 200.9, 150.6, 143.9, 138.1, 116.7, 116.4, 109.2, 39.8, .31.3, 22.1. v_{max} (ATR-IR): 3442, 3328, 1638, 1599 cm⁻¹. HRMS (ESI-TOF): calc'd for C₁₀H₁₁BrNO [M+H]⁺: 240.0019, found: 240.0019.⁷

5-Bromo-8-iodo-3,4-dihydronaphthalen-1(2H)-one:8-Amino-5-bromo-3,4-dihydronaphthalen-1(2H)-one (0.43 g, 1.8 mmol, 1.0 eq) was dissolved in a mixture of H2O (2.2 mL), AcOH (2.2 mL) andconcentrated HCl (0.6 mL). After cooling to 0 °C, a solution of NaNO2 (0.14 g, 2.0 mmol, 1.1 eq.) inH2O (0.6 mL) was added drop wise. The mixture was stirred at 0 °C for 15 min, followed by drop wise

addition of a solution of KI (0.32 g, 1.9 mmol, 1.1 eq.) in H₂O (0.6 mL). After stirring at 0 °C for 10 min, the reaction mixture was heated to 60 °C and stirred for an additional 1 h. After cooling to room temperature, the reaction was quenched using 40% aqueous NaHSO₃. DCM was added, and the organic layer was separated. The aqueous phase was extracted with DCM three times. The combined organic layers were washed with saturated aqueous NaHCO₃, brine and saturated aqueous Na₂S₂O₃. The organic layer was dried over MgSO₄, and, after filtration, the solvent was removed under reduced pressure. The crude material was purified by gradient column chromatography on silica gel eluting with hexanes and ethyl acetate. In order to obtain an analytically pure sample, the product was subjected to preparative HPLC eluting with hexanes and ethyl acetate. The product was obtained in 45% yield (0.28 g, 0.81 mmol) as a light yellow solid; m.p. 77.2-79.0 °C.¹H NMR (300 MHz, CDCl₃): δ = 7.81 (1H, d, J = 8.4 Hz), 7.32 (1H, d, J = 8.4 Hz), 3.04 (2H, t, J = 6.2 Hz), 2.71 (2H, t, J = 6.6 Hz), 2.14 (2H, p, J = 6.4 Hz); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ = 196.3, 145.2, 142.1, 137.0, 134.6, 125.6, 91.7, 38.6, .31.4, 21.7. v_{max} (ATR-IR): 1683 cm⁻¹. HRMS (ESI-TOF): calc'd for C₁₀H₉BrIO [M+H]⁺: 350.8876, found: 350.8878.⁸

5-Bromo-8-iodo-1,2,3,4-tetrahydronaphthalen-1-ol: NaBH₄ (14 mg, 0.40 mmol, 1.1 eq.) was added as a solid to a stirred solution of *5-Bromo-8-iodo-3,4-dihydronaphthalen-1(2H)-one* (0.13 g, 0.37 mmol, 1.0 eq.) in methanol (3 mL) at 0 °C. After full conversion was determined by TLC, the reaction was quenched with saturated aqueous NH₄Cl. Et₂O was added, and the organic layer was separated. The aqueous phase was extracted with Et₂O three times. The combined organic layers were washed with brine. The organic layer was dried over MgSO₄, and, after filtration, the solvent was removed under reduced pressure. The crude product was purified by gradient column chromatography on silica gel eluting with hexanes and ethyl acetate. The product was obtained in 87% yield (0.11 g, 0.81 mmol) as a pale brown solid; m.p. 64.0-65.8 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.58 (1H, d, *J* = 8.4 Hz), 7.22 (1H, d, *J* = 8.4 Hz), 4.83 (1H, q, *J* = 3.5 Hz), 2.95 (1H, dd, *J* = 18.0, 5.6 Hz), 2.62 – 2.43 (1H, m), 2.37 (1H, dd, *J* = 4.1, 1.2 Hz), 2.19 (1H, dm, *J* = 13.6 Hz), 2.11 – 1.95 (1H, m), 1.92 – 1.79 (1H, m), 1.71 (1H, tm, *J* = 13.9 Hz); ¹³C {¹H} NMR (126 MHz, CDCl₃): δ = 142.1, 139.7, 138.3, 133.6, 126.8, 101.4, 70.6, 31.2, 30.6, 17.4. v_{max} (ATR-IR): 3202 (br) cm⁻¹. HRMS (ESI-TOF): calc'd for C₁₀H₁₀BrINaO [M+Na]⁺: 374.8852, found: 374.8859.⁴

⁸ Procedure adapted from: P. Nguyen, E. Corpuz, T. M. Heidelbaugh, K. Chow and M. E. Garst, *J. Org. Chem.* 2003, **68**, 10195.

5-Bromo-1-fluoro-8-iodo-1,2,3,4-tetrahydronaphthalene: 5-Bromo-8-iodo-1,2,3,4-tetrahydronaphthalen-1-ol (0.11 g, 0.32 mmol, 1.0 eq.) was dissolved in dry DCM (2.0 mL) under an argon atmosphere and stirred. The solution was cooled to -78 °C using an acetone/dry ice bath. In the next step, DAST (0.05 mL, 0.40 mmol, 1.25 eq.) was added carefully to the reaction mixture. After a few minutes, the cooling bath was removed, and the mixture was allowed to warm gradually to room temperature. After 15 min, full conversion was indicated by TLC, and the reaction was quenched with saturated aqueous K_2CO_3 . The organic layer was separated, and the aqueous phase was extracted with DCM for three times. The combined organic layers were washed with brine and dried over MgSO₄. The crude product was purified by flash column chromatography using hexanes as an eluent. The product was obtained in 69% yield (77 mg, 0.22 mmol) as a colorless liquid. ¹H NMR (500 MHz, CDCl₃): $\delta =$ 7.63 (1H, d, J = 8.3 Hz), 7.27 (1H, dd, J = 8.3, 2.3 Hz), 5.61 (1H, dt, J = 48.5, 2.9 Hz), 3.02 - 2.94 (1H, m), 2.57 – 2.46 (1H, m), 2.45 – 2.34 (1H, m), 2.01 – 1.85 (2H, m), 1.83 – 1.64 (1H, m); ¹³C{¹H} NMR $(126 \text{ MHz}, \text{CDCl}_3)$: $\delta = 140.5 \text{ (d}, J = 3.8 \text{ Hz}), 138.7 \text{ (d}, J = 2.9 \text{ Hz}), 137.5 \text{ (d}, J = 16.8 \text{ Hz}), 134.7 \text{ (d}, J = 16.8 \text{ Hz})$ J = 3.8 Hz), 126.4 (d, J = 2.7 Hz), 102.2 (d, J = 3.3 Hz), 90.4 (d, J = 169.7 Hz), 30.9 (d, J = 1.6 Hz), 29.5. (d, J = 22.3 Hz), 17.4; ¹⁹F NMR (471 MHz, CDCl₃): $\delta = -160.59 - -161.11$ (1F, m). HRMS (ESI-TOF): calc'd for C₁₀H₉BrFINa [M+Na]⁺: 376.8809, found: 376.8815.⁵

Trichloroisocyanuric acid: ${}^{13}C{}^{1}H$ NMR (75 MHz, CD₃CN): δ = 144.9.

Route for Synthesis of Probe Molecule 21

Procedure for Synthesis of 21 with XeF₂

5-Bromo-1-fluoro-8-iodo-1,2,3,4-tetrahydronaphthalene (21 mg, 0.06 mmol, 1.0 equiv.) was added to an oven-dried 5 mL PFA vessel equipped with a stir bar under glove box (N₂) atmosphere, and then diluted with DCM (1.0 mL). In one portion, XeF₂ (8.9 mg, 0.05 mmol, 0.9 equiv.) was added. The PFA vessel was sealed (to prevent solvent evaporation), and the reaction mixture was stirred for 24 h. An aliquot was taken for ¹⁹F NMR analysis; approximately 85% conversion of the starting material to **21** was observed. Subsequently, the reaction mixture was diluted with n-hexane, and single crystals suitable for X-ray analysis were obtained by slow solvent evaporation of the DCM/n-hexane mixture under inert atmosphere.

Procedure for Synthesis of 37 with XeF₂

A dry NMR tube with a screw cap (J Young NMR tube) was charged with **36** (19 mg, 0.05 mmol, 1.0 equiv.) and MeCN (0.5 mL) under glove box (N₂) atmosphere. XeF₂ (14 mg, 0.08 mmol, 1.6 equiv.) was then added (in the dark). The NMR tube was sealed with the screw cap, and its contents were mixed. The tube was transported outside of the glovebox, where it was connected to a Schlenk line and kept under argon atmosphere for several minutes to ensure pressure equalization. (Note that the sample was protected from light with aluminum foil.) The solution turned yellow about 1 h after starting the reaction, and the reaction was monitored by ¹⁹F NMR. After several hours, the reaction had gone to completion, and **37** was obtained by removal of the solvent. Single crystals suitable for X-ray analysis were obtained by sublimation; they were maintained under inert atmosphere.

Characterization Data for Difluoro(aryl)- λ^3 -iodanes and Tetrafluoro(aryl)- λ^5 -iodanes

Difluoro(2-(trifluoromethyl)phenyl)-λ³-iodane (Compound 2): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (400 MHz, CD₃CN): $\delta = 8.72$ (1H, d, J = 7.8 Hz), 8.06 (1H, d, J = 7.7 Hz), 7.93 (1H, t, J = 7.8 Hz), 7.85 (1H, t, J = 7.8 Hz); ¹³C{¹H} NMR (101 MHz, CD₃CN): $\delta = 140.3$, 136.6 – 136.5 (m), 134.6 (t, J = 1.8 Hz), 129.8 (q, J = 32.6 Hz), 129.00 (q, J = 5.4 Hz), 125.2 (q, J = 273.7 Hz), 124.3 (tq, J = 14.3, 1.7 Hz); ¹⁹F NMR (376 MHz, CD₃CN): $\delta = -60.36$ (3F, s), -161.65 (2F, s).

(4-Fluoro-2-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (Compound 3): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (400 MHz, CD₃CN): $\delta = 8.75$ (1H, br dd, J = 8.7, 5.1 Hz), 7.80 (1H, br d, J = 8.7 Hz), 7.56 (1H, br t, J = 7.3 Hz); ¹³C{¹H} NMR (101 MHz, CD₃CN): $\delta = 165.1$ (d, J = 256.2 Hz), 143.5 (d, J = 9.4 Hz), 133.1 (qd, J = 33.7, 8.9 Hz), 123.5 (d, J = 22.1 Hz), 123.0 (qd, J = 273.9, 2.3 Hz), 119.7 – 119.1 (m), 117.7 (dq, J = 27.0, 5.5 Hz); ¹⁹F NMR (376 MHz, CD₃CN): $\delta = -60.82$ (3F, s), -103.17 (1F, s), -159.84 (2F, s).

(4-Chloro-2-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (Compound 4): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (500 MHz, CD₃CN): δ = 8.67 (1H, d, *J* = 8.5 Hz), 8.05 (1H, s), 7.84 (1H, d, *J* = 8.5 Hz); ¹³C{¹H} NMR (126 MHz, CD₃CN): δ = 141.9, 140.6, 136.5, 131.8 (q, *J* = 33.2 Hz), 129.6 (q, *J* = 5.4 Hz),123.2 (q, *J* = 274.2 Hz), 122.2 (tm, *J* = 14.7 Hz); ¹⁹F NMR (471 MHz, CD₃CN): δ = -60.77 (3F, s), -160.27 (2F, s).

(4-Bromo-2-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (Compound 5): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (500 MHz, CD₃CN): δ = 8.58 (1H, d, *J* = 8.4 Hz), 8.20 (1H, s), 8.00 (1H, d, *J* = 8.5 Hz); ¹³C{¹H} NMR (126 MHz, CD₃CN): δ = 141.7, 139.5, 132.3 (q, *J* = 5.3 Hz), 131.6 (q, *J* = 33.1 Hz), 128.7 (t, *J* = 2.1 Hz), 123.0 (q, *J* = 274.3 Hz), 122.9 – 122.6 (m); ¹⁹F NMR (471 MHz, CD₃CN): δ = -60.70 (3F, s), -160.35 (2F, s).

Ethyl 4-(difluoro-\lambda^3-iodanyl)-3-(trifluoromethyl)benzoate (Compound 6): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (400 MHz, CD₃CN): $\delta = 8.80$ (1H, d, J = 8.2 Hz), 8.53 (1H, s), 8.37 (1H, d, J = 8.2 Hz), 4.42 (2H, q, J = 7.0 Hz), 1.39 (3H, t, J = 7.1 Hz); ¹³C{¹H} NMR (101 MHz, CD₃CN): $\delta = 164.6$, 140.7, 136.9, 136.0, 130.4 (q, J = 33.2 Hz), 129.4 (q, J = 5.3 Hz), 127.4 (t, J = 13.9 Hz), 123.5 (q, J = 273.8 Hz), 63.2, 14.4; ¹⁹F NMR (376 MHz, CD₃CN): $\delta = -60.62$ (3F, s), -161.25 (2F, s).

Difluoro(4-*nitro-2-(trifluoromethyl)phenyl)-λ³-iodane* (Compound 7): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (500 MHz, CD₃CN): δ = 8.93 (1H, br d, *J* = 8.6 Hz), 8.73 (1H, br s), 8.59 (1H, br d, *J* = 8.5 Hz); ¹³C{¹H} NMR (126 MHz, CD₃CN): δ = 150.8, 141.9, 131.7 (q, *J* = 34.1 Hz), 131.3, 128.3 (t, *J* = 14.4 Hz), 124.5 (q, *J* = 5.5 Hz), 122.9 (q, *J* = 274.3 Hz); ¹⁹F NMR (471 MHz, CD₃CN): δ = -60.88 (3F, s), -160.30 (2F, s).

(2-Chloro-6-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (Compound 8): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (500 MHz, CD₃CN): δ = 8.16 (1H, d, *J* = 8.2 Hz), 7.95 (1H, d, *J* = 7.8 Hz), 7.87 (1H, t, *J* = 8.2 Hz); ¹³C{¹H} NMR (126 MHz, CD₃CN): δ = 139.7, 136.5, 134.6, 133.0 (q, *J* = 32.3 Hz), 130.2 (t, *J* = 14.3 Hz), 127.5 (q, *J* = 5.7 Hz), 123.6 (q, *J* = 274.3 Hz); ¹⁹F NMR (471 MHz, CD₃CN): δ = -60.10 (3F, s), -163.36 (2F, s).

Methyl 2-(difluoro-\lambda^3-iodanyl)-3-(trifluoromethyl)benzoate (Compound 9): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (500 MHz, CD₃CN): δ = 8.33 (1H, d, *J* = 7.8 Hz), 8.22 (1H, d, *J* = 7.9 Hz), 8.00 (1H, t, *J* = 7.9 Hz), 4.03 (3H, s); ¹³C{¹H} NMR (126 MHz, CD₃CN): δ = 166.6, 135.5, 135.2, 134.8, 132.2 (q, *J* = 5.6 Hz), 131.9 (q, *J* = 32.0 Hz), 124.1 (q, *J* = 274.3 Hz), 123.4 (q, *J* = 14.0 Hz), 54.4; ¹⁹F NMR (471 MHz, CD₃CN): δ = -59.23 (3F, s), -159.98 (2F, s).

Difluoro(2-(*trifluoromethoxy*)*phenyl*)- λ^3 -*iodane* (Compound 10): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (500 MHz, CD₃CN): δ = 8.46 (1H, dd, *J* = 8.0, 1.8 Hz), 7.82 (1H, t, *J* = 8.0 Hz), 7.72 (1H, d, *J* = 8.5 Hz), 7.56 (1H, t, *J* = 7.8 Hz); ¹³C{¹H} NMR (126 MHz, CD₃CN): δ = 146.4 (q, *J* = 1.8 Hz), 137.9, 136.6, 130.5, 123.2 (t, *J* = 13.8 Hz), 121.41 (q, *J* = 259.8 Hz), 121.40 (q, *J* = 1.9 Hz); ¹⁹F NMR (471 MHz, CD₃CN): δ = -57.60 (3F, s), -166.40 (2F, s).

Difluoro(perfluorophenyl)- λ^3 -iodane (Compound 11): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹⁹F NMR (282 MHz, CD₃CN): $\delta = -124.10$ to -124.65 (2F, m), -145.92 (1F, tt, J = 19.9, 5.1 Hz), -158.21 to -158.66 (2F, m), -162.08 (2F, s).

(2,6-Difluorophenyl)difluoro- λ^3 -iodane (Compound 12): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (500 MHz, CD₃CN): δ = 7.80 (1H, t, *J* = 7.7 Hz), 7.37 (2H, br s); ¹³C{¹H} NMR (126 MHz, CD₃CN): δ = 160.0 (dd, *J* = 253.9, 4.6 Hz), 138.7 (dd, *J* = 11.2, 8.9 Hz), 113.5 – 113.2 (m), 108.4 – 107.6 (m); ¹⁹F NMR (471 MHz, CD₃CN): δ = -97.43 (2F, br. s), -165.78 (2F, s).

(2,4-Difluorophenyl)difluoro- λ^3 -iodane (Compound 13): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (500 MHz, CD₃CN): $\delta = 8.37$ (1H, dt, J = 9.0, 4.6 Hz), 7.34 (1H, td, J = 8.9, 2.8 Hz), 7.20 (1H, td, J = 8.6, 2.7 Hz); ¹H{¹⁹F} NMR (500 MHz, CD₃CN): $\delta = 8.37$ (1H, d, J = 8.9 Hz), 7.34 (1H, d, J = 2.8 Hz), 7.20 (1H, td, J = 9.0, 2.8 Hz); ¹³C{¹H} NMR (126 MHz, CD₃CN): $\delta = 167.0$ (ddt, J = 256.1, 12.0, 1.9 Hz), 160.4 (dd, J = 253.9, 13.3 Hz), 115.5 (dd, J = 23.0, 3.4 Hz), 112.2 (dtd, J = 23.3, 15.2, 4.5 Hz), 106.3 (t, J = 26.8 Hz); ¹⁹F NMR (471 MHz, CD₃CN): $\delta = -94.80$ (1F, d, J = 11.4 Hz), -101.28 (1F, dt, J = 11.1, 4.3 Hz), -165.09 (2F, s).

(2-Chloro-4-fluorophenyl)difluoro- λ^3 -iodane (Compound 14): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (400 MHz, CD₃CN): $\delta = 8.47$ (1H, dd, J = 8.9, 5.6 Hz), 7.64 (1H, dd, J = 8.6, 2.8 Hz), 7.28 (1H, td, J = 8.5, 2.8 Hz); ¹³C{¹H} NMR (101 MHz, CD₃CN): $\delta = 160.0$ (dt, J = 256.6, 1.7 Hz), 140.7 (d, J = 10.0 Hz), 138.6 (d, J = 11.5 Hz), 127.6 (td, J = 14.6, 4.0 Hz), 118.8 (t, J = 26.7 Hz), 118.3 (t, J = 22.7 Hz); ¹⁹F NMR (376 MHz, CD₃CN): $\delta = -103.50$ (1F, tq, J = 9.3, 4.8 Hz), -164.37 (2F, d, J = 4.2 Hz); ¹⁹F{¹H} NMR (376 MHz, CD₃CN): $\delta = -103.50$ (1F, t, J = 4.5 Hz), -164.37 (2F, d, J = 3.7 Hz).

(2-Bromo-4-fluorophenyl)difluoro-λ³-iodane (Compound 15): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (400 MHz, CD₃CN): δ = 8.47 (1H, dd, *J* = 8.9, 5.5 Hz), 7.78 (1H, dd, *J* = 8.8, 2.7 Hz), 7.36 – 7.25 (1H, m); ¹³C{¹H} NMR (101 MHz, CD₃CN): δ = 165.5 (dt, *J* = 257.4, 1.7 Hz), 141.1 (d, *J* = 9.6 Hz), 130.7 (td, *J* = 14.7, 4.0 Hz), 128.5 (d, *J* = 10.4 Hz), 122.0 (t, *J* = 26.3 Hz), 118.7 (t, *J* = 22.7 Hz); ¹⁹F NMR (376 MHz, CD₃CN): δ = -103.74 (1F, br s), -163.35 (2F, br s).

Methyl 2-(difluoro-\lambda^3-iodaneyl)-5-fluorobenzoate (Compound 16): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (500 MHz, CD₃CN): $\delta = 8.47$ (1H, dd, J = 8.8, 5.1 Hz), 7.88 (1H, dd, J = 9.0, 3.1 Hz), 7.52 (1H, td, J = 8.4, 3.1 Hz), 3.98 (3H, s); ¹³C{¹H} NMR (126 MHz, CD₃CN): $\delta = 165.2$ (d, J = 253.8 Hz), 164.7 (d, J = 2.7 Hz), 140.5 (d, J = 9.0 Hz), 133.15 (d, J = 8.2 Hz), 122.6 (d, J = 22.7 Hz), 121.8 (td, J = 13.6, 3.6 Hz), 119.9 (d, J = 25.4 Hz), 54.0; ¹⁹F NMR (471 MHz, CD₃CN): $\delta = -106.14$ to -106.21 (1F, m), -165.51 (2F, br s).

Difluoro(4-fluoro-2-nitrophenyl)-λ³-iodane (Compound 17): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (400 MHz, CD₃CN): $\delta = 8.51$ (1H, dd, J = 8.9, 5.2 Hz), 8.06 (1H, dd, J = 8.3, 2.8 Hz), 7.69-7.64 (1H, m); ¹³C{¹H} NMR (101 MHz, CD₃CN): $\delta = 165.3$ (d, J = 256.9 Hz), 148.7 (br d, J = 8.4 Hz), 140.3 (d, J = 8.9 Hz), 123.7 (d, J = 22.5 Hz), 115.7 (d, J = 28.4 Hz), 114.5 (td, J = 14.8, 4.4 Hz); ¹⁹F NMR (376 MHz, CD₃CN): $\delta = -103.45$ to -103.57 (1F, m), -164.72 (2F, br s).

Difluoro(*4-fluoro-2-methylphenyl*)- λ^3 -*iodane* (Compound 18): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (400 MHz, CD₃CN): $\delta = 8.32$ (1H, dd, J = 8.9, 5.5 Hz), 7.34 (1H, dd, J = 9.8, 3.0 Hz), 7.12 (1H, td, J = 8.6, 3.1 Hz), 2.74 (3H, s); ¹³C{¹H} NMR (101 MHz, CD₃CN): $\delta = 165.7$ (dt, J = 252.4, 1.9 Hz), 144.4 (d, J = 9.5 Hz), 139.6 (d, J = 9.5 Hz), 128.5 (td, J = 13.6, 3.0 Hz), 118.9 (t, J = 23.1 Hz), 116.8 (t, J = 22.8 Hz), 25.1; ¹⁹F NMR (376 MHz, CD₃CN): $\delta = -106.86$ (1F, tt, J = 9.9, 4.8 Hz), -168.31 (2F, d, J = 3.7 Hz); ¹⁹F{¹H} NMR (376 MHz, CD₃CN): $\delta = -106.86$ (1F, tt, J = 4.7 Hz), -168.32 (2F, d, J = 4.2 Hz).

*Difluoro(2-(1-fluoroethyl)phenyl)-λ*³*-iodane* (Compound 19): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (500 MHz, CD₃CN): $\delta = 8.39$ (1H, d, J = 8.0 Hz), 7.85 – 7.77 (2H, m), 7.57 (1H, d, J = 7.6 Hz), 6.07 (1H, dd, J = 46.1, 6.4 Hz), 1.72 (3H, dd, J = 24.1, 6.4 Hz); ¹³C {¹H} NMR (126 MHz, CD₃CN): 141.8 (d, J = 20.9 Hz), 137.3, 134.7, 132.4, 129.4 (td, J = 13.2, 4.3 Hz), 128.5 (d, J = 7.7 Hz), 93.8 (d, J = 129.7 Hz), 23.5 (d, J = 25.2 Hz); ¹⁹F NMR (471 MHz, CD₃CN): $\delta = -165.35$ (2F, s), -165.58 (1F, dq, J = 47.8, 24.2 Hz).

Difluoro(2-(fluoro(4-fluorophenyl)methyl)phenyl)-λ³-*iodane* (Compound 20): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (500 MHz, CD₃CN): $\delta = 8.42$ (1H, d, J = 8.0 Hz), 7.85 – 7.77 (2H, m), 7.61 (1H, br t, J = 7.5 Hz), 7.45 (2H, br t, J = 6.9 Hz), 7.17 (2H, br t, J = 8.5 Hz), 7.02 (1H, d, J = 46.1 Hz); ¹³C {¹H} NMR (126 MHz, CD₃CN): $\delta = 163.6$ (dd, J = 246.6, 2.8 Hz), 139.6 (d, J = 23.1 Hz), 138.1 (d, J = 28.4 Hz), 137.6, 134.9 (dd, J = 22.2, 3.2 Hz), 134.6, 132.8 (d, J = 1.8 Hz), 130.6 (dd, J = 8.7, 5.8 Hz), 129.7 (d, J = 8.6 Hz), 116.6 (d, J = 21.9 Hz), 95.4 (d, J = 174.0 Hz); ¹⁹F NMR (471 MHz, CD₃CN): $\delta = -113.59$ (1F, br. s), -161.74 (1F, d, J = 46.2 Hz), -165.69 (2F, br. s).

(4-Bromo-8-fluoro-5,6,7,8-tetrahydronaphthalen-1-yl)difluoro-λ³-iodane (Compound 21): The reaction was run according to the general procedure in CD₃CN, and the product was characterized directly from the reaction mixture. ¹H NMR (500 MHz, CD₂Cl₂): $\delta = 8.16$ (1H, d, J = 8.4 Hz), 7.79 (1H, dd, J = 8.4, 2.1 Hz), 5.97 (1H, dt, J = 49.3, 3.2 Hz), 3.12 – 3.05 (1H, m), 2.67 – 2.54 (1H, m), 2.50 – 2.41 (1H, m), 2.02 – 1.95 (2H, m), 1.92 – 1.82 (1H, m); ¹³C {¹H} NMR (126 MHz, CD₂Cl₂): $\delta = 142.1$, 136.4 (d, J = 44.2 Hz), 135.3 (d, J = 17.6 Hz), 132.0, 117.0, 88.4 (d, J = 170.1 Hz), 31.4, 29.2 (d, J = 21.5 Hz), 17.4, 2.1; ¹⁹F NMR (471 MHz, CD₃CN): $\delta = -156.94$ to -157.21 (1F, m), -165.33 (2F, s).

Tetrafluoro(phenyl)- λ^5 -*iodane* (Compound 25): The reaction was run according to the general procedure, and the product was characterized by the diagnostic IF₄ signal in the ¹⁹F NMR spectrum. ¹⁹F NMR (282 MHz, CD₃CN): δ = -27.95 (4F, br s).

Tetrafluoro(4-fluorophenyl)- λ^5 -*iodane* (Compound 26): The reaction was run according to the general procedure, and the product was isolated via extraction with n-hexane as an air-sensitive white solid. ¹H NMR (500 MHz, CD₃CN): $\delta = 8.16$ (2H, dd, J = 9.2, 4.7 Hz), 7.51 (2H, t, J = 8.7 Hz); ¹H{¹⁹F} NMR (500 MHz, CD₃CN): $\delta = 8.16$ (2H, d, J = 9.2 Hz), 7.51 (2H, t, J = 8.7 Hz); ¹³C{¹H} NMR (126 MHz, CD₃CN): $\delta = 166.2$ (d, J = 254.9 Hz), 155.76 (br s), 131.05 (d, J = 10.1 Hz), 118.5 (d, J = 23.8 Hz); ¹⁹F NMR (471 MHz, CD₃CN): $\delta = -25.84$ (4F, br s), -104.32 (1F, m). Additionally, single crystals suitable for X-ray analysis were obtained by cooling a concentrated solution of **26** in n-hexane at approximately -20 °C in a PFA vessel inside a glovebox freezer.

Tetrafluoro(4-chlorophenyl)- λ^5 -*iodane* (Compound 27): The reaction was run according to the general procedure, and the product was characterized by the diagnostic IF₄ signal in the ¹⁹F NMR spectrum. ¹⁹F NMR (282 MHz, CD₃CN): δ = -26.46 (4F, br s).

Tetrafluoro(4-bromophenyl)-\lambda^5-iodane (Compound 28): The reaction was run according to the general procedure, and the product was characterized by the diagnostic IF₄ signal in the ¹⁹F NMR spectrum. ¹⁹F NMR (282 MHz, CD₃CN): δ = -26.62 (4F, br s).

Tetrafluoro(3-(trifluoromethyl)phenyl)-\lambda^5-iodane (Compound 29): The reaction was run according to the general procedure, and the product was characterized by the diagnostic IF₄ signal in the ¹⁹F NMR spectrum. ¹⁹F NMR (282 MHz, CD₃CN): δ = -26.03 (4F, br s), -63.33 (3F, s).

Tetrafluoro(4-(trifluoromethyl)phenyl)-\lambda^5-iodane (Compound 30): The reaction was run according to the general procedure, and the product was characterized by the diagnostic IF₄ signal in the ¹⁹F NMR spectrum. ¹⁹F NMR (282 MHz, CD₃CN): δ = -26.64 (4F, br s), -63.86 (3F, s).

1-(4-(Tetrafluoro-λ⁵-iodanyl)phenyl)ethan-1-one (Compound 31): The reaction was run according to the general procedure, and the product was characterized by the diagnostic IF₄ signal in the ¹⁹F NMR spectrum. ¹⁹F NMR (282 MHz, CD₃CN): δ = -27.26 (4F, br s).

Pentafluoro(4-(*tetrafluoro*- λ^5 -*iodanyl*)*phenyl*)- λ^6 -*sulfane* (Compound 32): The reaction was run according to the general procedure, and the product was characterized by the diagnostic IF₄ signal in the ¹⁹F NMR spectrum. ¹⁹F NMR (282 MHz, CD₃CN): δ = +80.76 (1F, quint, *J* = 149.0 Hz), +61.79 (4F, d, *J* = 149.0 Hz), -26.05 (4F, br s).

Tetrafluoro(p-tolyl)-\lambda^5-iodane (Compound 33): The reaction was run according to the general procedure, and the product was characterized by the diagnostic IF₄ signal in the ¹⁹F NMR spectrum. ¹⁹F NMR (282 MHz, CD₃CN): δ = -27.68 (4F, br s).

Tetrafluoro(4-nitrophenyl)-\lambda^5-iodane (Compound 34): The reaction was run according to the general procedure, and the product was characterized by the diagnostic IF₄ signal in the ¹⁹F NMR spectrum. ¹⁹F NMR (282 MHz, CD₃CN): δ = -25.74 (4F, br s).

1,1,1-Trifluoro-3,3-dimethyl-1,3-dihydro-1 λ^5 *-benzo[d][1,2]iodaoxole* (Compound 37): The reaction was run according to the general procedure for the synthesis of tetrafluoro(aryl)- λ^5 -iodanes using either compound **35** or **36** as the starting material, and the product was characterized by the diagnostic ¹⁹F NMR signals (consistent with literature).⁹ ¹⁹F NMR (282 MHz, CD₃CN): δ = -20.02 (2F, d, *J* = 107.6 Hz), -33.79 (1F, t, *J* = 107.6 Hz).

⁹ (a) R. L. Amey and J. C. Martin, J. Am. Chem. Soc., 1979, **101**, 5294; (b) J. Charpentier, PhD Thesis, ETH Zürich, 2016.

Temperature Calibration of the NMR Spectrometer

Figure S 1. Temperature calibration curves for VT-NMR measurements. Left: High concentration experiment. Right: Low concentration experiment.

The temperature calibration was performed using the statistical computing software R. The temperature displayed in the TopSpin software was plotted against the real temperature obtained. The real temperatures were determined using a calibration sample (4% MeOH in MeOD- d_4). The difference in chemical shifts between the two MeOH signals were measured at different temperatures. Dependencies of the chemical shift difference between the two MeOH signals from the temperature were published by van Geet.¹⁰ Using the linear regression shown above, the real temperatures for VT-NMR measurements were calculated. The linear equations describing the dependency of the real temperature from the temperature indicated was found to be y = -41(6) + 1.14(3)x for both, low and high concentration experiment. Y is the real temperature in the sample and x is the temperature displayed. Values and the corresponding confidence intervals are listed in the following tables.

¹⁰ A. L. Van Geet, Anal. Chem., 1970, **42**, 679.

Temperature [K]	Temperature Measured [K]	Confidence Interval [K] ^[a]
183	168	± 4
193	179	± 4
203	190	± 3
213	202	± 3
223	213	± 2
233	224	± 2
234	226	± 2
235	227	± 2
236	228	± 2
237	229	± 2
238	230	± 2
243	236	± 2
253	247	± 2
263	259	± 2
273	270	± 3
283	281	± 3
298	298	± 4

Table S 1. Temperature calibration data for the high concentration experiment

Temperature [K]	Temperature Measured [K]	Confidence Interval [K] ^[a]
183	170	± 4
193	181	± 3
203	192	± 3
213	203	± 2
223	214	± 2
232	224	± 2
233	225	± 2
234	226	± 2
235	227	± 2
236	228	± 2
238	230	± 2
243	236	± 2
253	247	± 2
263	258	± 2
273	269	± 2
283	280	± 3
298	296	± 3

Table S 2. Temperature calibration data for the low concentration experiment.

Determination of Line Widths and Peak Separation for Line Shape Analysis

Line-shape analysis was performed at different temperatures in order to calculate rate constants (k). Therefore, three different temperature regimes were considered: $T < T_C$, $T = T_C$ and $T > T_C$. Additionally, depending on the regime, there are different relationships between the line widths, the differences in chemical shifts and the rate constant. In order to perform the analysis, line widths for the IF₂ signals were determined using Bruker TopSpin 4.0.2. The data are listed in **Table S 3** and **Table S 4**. The values for Δ_{FWHM} are the only values needed for the calculation of k in the low temperature regime. For the determination of k at coalescence or above, one needs the maximum observed chemical shift difference $|(v_A - v_B)|$ between the two distinct IF₂ fluorine signals below coalescence.

Table S 3. Values for the full width at half maximum (Δ_{FWHM}) obtained during the high concentration experiment for the IF₂ signal of probe molecule at different temperatures.

Temperature [K]	$\Delta_{\rm FWHM}$ [Hz]	Temperature [K]	$\Delta_{\rm FWHM}$ [Hz]
168 ± 4	31.5	236 ± 2	-
179 ± 4	32.5	247 ± 2	153.4
190 ± 3	57.7	259 ± 2	68.4
202 ± 3	206.5	270 ± 3	34.0
213 ± 2	-	281 ± 3	18.7
224 ± 2	-	298 ± 4	12.3
228 ± 2	coalescence		

Table S 4. Values for the full width at half maximum (Δ_{FWHM}) obtained during the low concentration experiment for the IF₂ signal of probe molecule at different temperatures.

Temperature [K]	$\Delta_{\rm FWHM}$ [Hz]	Temperature [K]	$\Delta_{\rm FWHM}$ [Hz]
170 ± 4	24.5	236 ± 2	-
181 ± 3	28.5	247 ± 2	137.2
192 ± 3	53.2	258 ± 2	71.6
203 ± 2	202.7	269 ± 2	33.9
214 ± 2	-	280 ± 3	19.0
224 ± 2	-	296 ± 3	11.6
226 ± 2	coalescence		

It was found that the two signals reach a maximum in separation at 202 ± 3 K and 203 ± 2 K, respectively. Upon further cooling to 168 ± 4 K (170 ± 4 K), the signals seem to converge. One explanation for this observation is a different temperature dependence of the ¹⁹F chemical shifts assigned to the two distinct IF₂ signals. This observation complicates the elucidation of a clear value for $|(v_A - v_B)|$, which further affects the values calculated for the rate constants k at and above coalescence. In order to handle this problem, the data was analyzed using different assumptions for the chemical shift difference $|(v_A - v_B)|$. First, the rate constants k were calculated using the values for $|(v_A - v_B)|$ at maximal (202 ± 3 K and 203 ± 2 K) and minimal observed peak separation (168 ± 4 K and 170 ± 4 K).

Table S 5. Chemical shift differences $|(v_A - v_B)|$ calculated under different assumptions for the high concentration measurement.

Temperature [K]	$ (\nu_A - \nu_B) $ [Hz]	Assumption
168 ± 4	989	(1) Lowest peak separation observed
202 ± 3	1152	(2) Largest peak separation observed

 $\textbf{Table S 6. Chemical shift differences } |(v_A - v_B)| \text{ calculated under different assumptions for the low concentration measurement..}$

Temperature [K]	$ (\nu_A - \nu_B) $ [Hz]	Assumption
170 ± 4	987	(1) Lowest peak separation observed
203 ± 2	1095	(2) Largest peak separation observed

With the values for $|(v_A - v_B)|$ and Δ_{FWHM} in hand, it was possible to calculate the rate constants k under the different assumptions given above.

Calculation of Rate Constants

With the values for $|(v_A - v_B)|$ and Δ_{FWHM} in hand, it was possible to calculate the rate constants k under the different assumptions given above.

High	Concentratio	n	Low	Concentratio	n
Temperature [K]	$k_{(1)} [s^{-1}]$	$k_{(2)} [s^{-1}]$	Temperature [K]	$k_{(1)} [s^{-1}]$	$k_{(2)} [s^{-1}]$
168 ± 4	99	99	170 ± 4	77	77
179 ± 4	102	102	181 ± 3	90	90
190 ± 3	181	181	192 ± 3	167	167
202 ± 3	649	649	203 ± 2	637	637
228 ± 2	2197	2559	226 ± 2	2193	2432
247 ± 2	10016	13589	247 ± 2	11153	13728
259 ± 2	22462	30477	258 ± 2	21372	26305
270 ± 3	45189	61312	269 ± 2	45139	55558
281 ± 3	82162	111476	280 ± 3	80538	99128
298 ± 4	123913	169480	296 ± 3	131916	162364

Table S 7. Rate constants determined for the rotation around the C-I-bond in the probe molecule under the different assumptions given in the tables above. The subscript at the k-values denote the assumption made for the calculation. Coalescence is shaded grey.

As seen above, the influence of the chosen chemical shift differences $|(v_A - v_B)|$ on the rate constants k is significant over a range of temperatures. The activation energies were determined using the linearized Arrhenius equation (see equation (4)). The corresponding Arrhenius plots are shown below (Figure S 2) and the slopes and intercepts obtained from the regression lines are listed in Table S 8. Note that the data points corresponding to the rate constants determined at extremely low temperatures as well as the ones determined at 298 ± 4 K (or 296 ± 3 K, depending on concentration), deviate from the linear behavior, and thus were not included in the linear regression. The reason for the deviation is potentially the increasing contribution of the natural line width (T₂ relaxation) to Δ_{FWHM} , which is not in agreement with the assumptions made for the calculation of the rate constants. The activation energies E_A were calculated using the two assumptions shown in Table S 5 and Table S 6 and are listed in Table S 8. The activation energies E_A were computed in kcal using the slopes obtained from the Arrhenius plots and the ideal gas constant R (1.99 $\cdot 10^{-3}$ kcal/mol K).

Table S 8. Results obtained from the Arrhenius plots assuming different values for $|(v_A - v_B)|$ at different concentrations of the probe molecule (HC: high concentration, LC, low concentration).

Assumption ^[a]	Slope ^[b]	Intercept ^[b]	E _A [kcal/mol] ^[b]
(1) HC	-3500 ± 470	23.5 ± 2.0	7.0 ± 0.9
(2) HC	-3720 ± 450	24.7 ± 2.0	7.4 ± 0.9
(1) LC	-3670 ± 360	24.3 ± 1.6	7.3 ± 0.7
(2) LC	-3830 ± 330	25.1 ± 1.5	7.6 ± 0.7

^[a] The assumptions are based on different values used for $|(v_A - v_B)|$ as shown in Table S 5 and Table S 6. ^[b] Since the uncertainties for the temperature values were extremely small, they were neglected when calculating the values for E_A .

Figure S 2. Arrhenius plots obtained for the rate constants k using the different assumptions shown in Table S 5 and Table S 6 and different concentrations (HC: high concentration, LC: low concentration). The red dots were not taken into account, since they deviate from the expected linearity. For the red dots, the line shape is dominated by the natural line width.

Subsequently, other thermodynamic quantities such as enthalpy of activation ($\Delta^{\ddagger}H^{\Theta}$) and entropy of activation ($\Delta^{\ddagger}S^{\Theta}$) were determined using the linearized form of the Eyring equation (see equation (5)). Based on this equation, 1/T was plotted against ln(k/T) (Eyring plots). A linear regression model was chosen to fit the data points. Similar to the activation energy, it is possible to calculate $\Delta^{\ddagger}H^{\Theta}$ directly from the slope of the regression line. The values for $\Delta^{\ddagger}S^{\Theta}$ were derived from the intercept of the regression line (see Table S 9).

Table S 9. Regression line data and values for $\Delta^{\ddagger}H^{\Theta}$ and $\Delta^{\ddagger}S^{\Theta}$ computed for the rotation around the C-I bond in the probe molecule. The values are listed for two different concentrations of the probe molecule (HC: high concentration, LC, low concentration).

Assumption ^[a]	Slope ^[b]	Intercept ^[b]	$\Delta^{\ddagger} H^{\Theta} [\text{kcal/mol}]^{[b]}$	$\Delta^{\ddagger} S^{\Theta} [cal/(mol \ K)]^{[b]}$
(1) HC	-3270 ± 460	17.1 ± 2.0	6.5 ± 0.9	-13 ± 4
(2) HC	-3490 ± 440	18.2 ± 1.8	6.9 ± 0.9	-11 ± 4
(1) LC	-3420 ± 280	17.7 ± 1.1	6.8 ± 0.6	-12 ± 3
(2) LC	-3560 ± 260	18.4 ± 1.1	7.2 ± 0.6	-10 ± 3

^[a] The assumptions are based on different values used for $|(v_A - v_B)|$ as shown in Table S 5 and Table S 6. ^[b] Since the uncertainties for the temperature values were extremely small, they were neglected when calculating the values for $\Delta^{\ddagger}H^{\Theta}$ and $\Delta^{\ddagger}S^{\Theta}$.

Figure S 3. Eyring plots obtained for the rate constants k using the different assumptions shown in Table S 5 and Table S 6 and different concentrations (HC: high concentration, LC: low concentration). The red dots were not taken into account, since they deviate from the expected linearity. For the red dots, the line shape is dominated by the natural line width.

Important Equations for Dynamic NMR Analyses

Formula	Comment	Number
$k \cong \pi \Delta_{FWHM}$	$T < T_C$	(1)
$k = \frac{\pi \Delta v}{\sqrt{2}} = \frac{\pi (v_A - v_B)}{\sqrt{2}}$	$T = T_C$	(2)

$$k = \frac{\pi \Delta (v_A - v_B)^2}{2\Delta_{FWHM}} \qquad \qquad T > T_C \qquad (3)$$

$$\ln k = \frac{-E_A}{RT} + \ln A \qquad \text{Linearized Arrhenius Equation} \tag{4}$$

$$\ln\left(\frac{k}{T}\right) = \frac{-\Delta^{\dagger}H}{RT} + \ln\frac{k_B}{h} + \frac{\Delta^{\dagger}S}{R} \qquad \text{Linearized Eyring Equation} \qquad (5)$$

Figure S 4. ¹H NMR spectrum of difluoro(2-(trifluoromethyl)phenyl)- λ^3 -iodane (compound 2).

Figure S 5. ¹⁹F NMR spectrum of difluoro(2-(trifluoromethyl)phenyl)- λ^3 -iodane (compound 2).

Figure S 6. ¹³C {¹H} NMR spectrum of difluoro(2-(trifluoromethyl)phenyl)- λ^3 -iodane (compound 2).

Figure S 7. ¹H NMR spectrum of (4-fluoro-2-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (compound **3**).

Figure S 8. ¹⁹F NMR spectrum of (4-fluoro-2-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (compound 3).

Figure S 9. ¹³C{¹H} NMR spectrum of (4-fluoro-2-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (compound 3).

Figure S 10. ¹H NMR spectrum of (4-chloro-2-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (compound 4).

Figure S 11. ¹⁹F NMR spectrum of (4-chloro-2-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (compound 4).

Figure S 12. ${}^{13}C{}^{1}H$ NMR spectrum of (4-chloro-2-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (compound 4).

Figure S 13. ¹H NMR spectrum of (4-bromo-2-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (compound 5).

Figure S 14. ¹⁹F NMR spectrum of (4-bromo-2-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (compound 5).

Figure S 15. ${}^{13}C{}^{1}H$ NMR spectrum of (4-bromo-2-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (compound 5).

Figure S 16. ¹H NMR spectrum of ethyl 4-(difluoro- λ^3 -iodanyl)-3-(trifluoromethyl)benzoate (compound 6).

Figure S 17. ¹⁹F NMR spectrum of ethyl 4-(difluoro- λ^3 -iodanyl)-3-(trifluoromethyl)benzoate (compound 6).

Figure S 18. ${}^{13}C{}^{1}H$ NMR spectrum of ethyl 4-(difluoro- λ^3 -iodanyl)-3-(trifluoromethyl)benzoate (compound 6).

Figure S 19. ¹H NMR spectrum of difluoro(4-nitro-2-(trifluoromethyl)phenyl)- λ^3 -iodane (compound 7).

Figure S 20. ¹⁹F NMR spectrum of difluoro(4-nitro-2-(trifluoromethyl)phenyl)- λ^3 -iodane (compound 7).

 $\label{eq:Figure S 21. } \mbox{$^{13}C{^{1}H}$ NMR spectrum of diffuoro(4-nitro-2-(triffuoromethyl)phenyl)-$$\lambda^{3}$-iodane (compound 7).}$

Figure S 22. ¹H NMR spectrum of (2-chloro-6-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (compound 8).

Figure S 23. ¹⁹F NMR spectrum of (2-chloro-6-(trifluoromethyl)phenyl)difluoro- λ^3 -iodane (compound 8).

 $\label{eq:Figure S 24. } \ensuremath{^{13}C}{^{1}H}\ NMR\ spectrum\ of\ (2-chloro-6-(trifluoromethyl)phenyl) difluoro-\lambda^3-iodane\ (compound\ 8).$

Figure S 25. ¹H NMR spectrum of methyl 2-(difluoro- λ^3 -iodanyl)-3-(trifluoromethyl)benzoate (compound 9).

Figure S 26. ¹⁹F NMR spectrum of methyl 2-(difluoro- λ^3 -iodanyl)-3-(trifluoromethyl)benzoate (compound 9).

 $\label{eq:Figure S 27. } \ensuremath{^{13}C}{^{1}H}\ NMR\ spectrum\ of\ methyl\ 2-(\ difluoro-\lambda^3-iodanyl)-3-(trifluoromethyl) benzoate\ (compound\ 9).$

Figure S 28. ¹H NMR spectrum of difluoro(2-(trifluoromethoxy)phenyl)- λ^3 -iodane (compound 10).

Figure S 29. ¹⁹F NMR spectrum of difluoro(2-(trifluoromethoxy)phenyl)- λ^3 -iodane (compound 10).

Figure S 30. ${}^{13}C{}^{1}H$ NMR spectrum of difluoro(2-(trifluoromethoxy)phenyl)- λ^3 -iodane (compound 10).

Figure S 31. ¹⁹F NMR spectrum of difluoro(perfluorophenyl)- λ^3 -iodane (compound **11**) with PhCF₃ as an internal standard. SM denotes the starting material perfluoroiodobenzene.

Figure S 32. ¹H NMR spectrum of (2,6-difluorophenyl)difluoro- λ^3 -iodane (compound 12).

Figure S 33. ¹⁹F NMR spectrum of (2,6-difluorophenyl)difluoro- λ^3 -iodane (compound 12).

Figure S 34. ${}^{13}C{}^{1}H$ NMR spectrum of (2,6-difluorophenyl)difluoro- λ^3 -iodane (compound 12).

Figure S 35. ¹H NMR spectrum of (2,4-difluorophenyl)difluoro- λ^3 -iodane (compound 13).

Figure S 36. ¹⁹F NMR spectrum of (2,4-difluorophenyl)difluoro- λ^3 -iodane (compound 13).

Figure S 37. ¹³C{¹H} NMR spectrum of (2,4-difluorophenyl)difluoro- λ^3 -iodane (compound 13).

Figure S 38. ¹H NMR spectrum of (2-chloro-4-fluorophenyl)difluoro- λ^3 -iodane (compound 14).

Figure S 39. ¹⁹F NMR spectrum of (2-chloro-4-fluorophenyl)difluoro- λ^3 -iodane (compound 14).

Figure S 40. ${}^{19}F{}^{1}H$ NMR spectrum of (2-chloro-4-fluorophenyl)difluoro- λ^3 -iodane (compound 14).

 $\label{eq:Figure S 41. } Figure S 41. \ ^{13}C\{^{1}H\} \ NMR \ spectrum \ of \ (2-chloro-4-fluorophenyl) difluoro-\lambda^{3}-iodane \ (compound \ 14).$

Figure S 42. ¹H NMR spectrum of (2-bromo-4-fluorophenyl)difluoro- λ^3 -iodane (compound 15).

Figure S 43. ¹⁹F NMR spectrum of (2-bromo-4-fluorophenyl)difluoro- λ^3 -iodane (compound 15).

Figure S 44. ${}^{13}C{}^{1}H$ NMR spectrum of (2-bromo-4-fluorophenyl)difluoro- λ^3 -iodane (compound 15).

Figure S 45. ¹H NMR spectrum of methyl 2-(difluoro- λ^3 -iodaneyl)-5-fluorobenzoate (compound 16).

Figure S 46. ¹⁹F NMR spectrum of methyl 2-(difluoro- λ^3 -iodaneyl)-5-fluorobenzoate (compound 16).

Figure S 47. ${}^{13}C{}^{1}H$ NMR spectrum of methyl 2-(difluoro- λ^3 -iodaneyl)-5-fluorobenzoate (compound 16).

Figure S 48. ¹H NMR spectrum of difluoro(4-fluoro-2-nitrophenyl)- λ^3 -iodane (compound 17).

Figure S 49. ¹⁹F NMR spectrum of difluoro(4-fluoro-2-nitrophenyl)- λ^3 -iodane (compound 17).

Figure S 50. ${}^{13}C{}^{1}H$ NMR spectrum of difluoro(4-fluoro-2-nitrophenyl)- λ^3 -iodane (compound 17).

Figure S 51. ¹H NMR spectrum of (4-fluoro-2-methylphenyl)difluoro- λ^3 -iodane (compound 18).

Figure S 52. ¹⁹F NMR spectrum of (4-fluoro-2-methylphenyl)difluoro- λ^3 -iodane (compound 18).

 $\label{eq:Figure S 53. } \ensuremath{^{19}\text{F}}\ensuremath{^{1}\text{H}}\ensuremath{\}} \ NMR \ spectrum \ of \ (4-fluoro-2-methylphenyl) \ difluoro-\lambda^3-iodane \ (compound \ 18).$

 $\label{eq:Figure S 54.} \ {}^{13}C\{ {}^{1}H\} \ NMR \ spectrum \ of \ (4-fluoro-2-methylphenyl) difluoro-\lambda^3-iodane \ (compound \ 18).$

Figure S 55. ¹H NMR spectrum of difluoro(2-(1-fluoroethyl)phenyl)- λ^3 -iodane (compound 19).

Figure S 56. ¹⁹F NMR spectrum of difluoro(2-(1-fluoroethyl)phenyl)- λ^3 -iodane (compound 19).

Figure S 57. ${}^{13}C{}^{1}H$ NMR spectrum of difluoro(2-(1-fluoroethyl)phenyl)- λ^3 -iodane (compound 19).

Figure S 58. ¹H NMR spectrum of difluoro(2-(fluoro(4-fluorophenyl)methyl)phenyl)- λ^3 -iodane (compound 20).

Figure S 59. ¹⁹F NMR spectrum of difluoro(2-(fluoro(4-fluorophenyl)methyl)phenyl)- λ^3 -iodane (compound 20).

Figure S 60. ${}^{13}C{}^{1}H$ NMR spectrum of difluoro(2-(fluoro(4-fluorophenyl)methyl)phenyl)- λ^3 -iodane (compound 20).

Figure S 61. ¹H NMR spectrum of (4-bromo-8-fluoro-5,6,7,8-tetrahydronaphthalen-1-yl)difluoro- λ^{3-i} iodane (compound 21).

Figure S 62. ¹⁹F NMR spectrum of (4-bromo-8-fluoro-5,6,7,8-tetrahydronaphthalen-1-yl)difluoro- λ^{3-i} iodane (compound 21).

Figure S 63. ¹³C{¹H} NMR spectrum of (4-bromo-8-fluoro-5,6,7,8-tetrahydronaphthalen-1-yl)difluoro- λ^3 -iodane (compound 21).

Figure S 64. ¹⁹F NMR spectrum of tetrafluoro(phenyl)- λ^5 -iodane (compound 25).

Figure S 65. ¹H NMR spectrum of tetrafluoro(4-fluorophenyl)- λ^5 -iodane (compound 26).

Figure S 66. ¹⁹F NMR spectrum of tetrafluoro(4-fluorophenyl)- λ^5 -iodane (compound 26).

Figure S 67. ${}^{13}C{}^{1}H$ NMR spectrum of tetrafluoro(4-fluorophenyl)- λ^5 -iodane (compound 26).

Figure S 68. ¹⁹F NMR spectrum of tetrafluoro(4-chlorophenyl)- λ^5 -iodane (compound 27).

Figure S 69. ¹⁹F NMR spectrum of tetrafluoro(4-bromophenyl)- λ^5 -iodane (compound 28).

Figure S 70. ¹⁹F NMR spectrum of tetrafluoro(3-(trifluoromethyl)phenyl)- λ^5 -iodane (compound 29).

Figure S 71. ¹⁹F NMR spectrum of tetrafluoro(4-(trifluoromethyl)phenyl)- λ^5 -iodane (compound 30).

Figure S 72. ¹⁹F NMR spectrum of 1-(4-(tetrafluoro- λ^5 -iodaneyl)phenyl)ethan-1-one (compound 31).

Figure S 73. ¹⁹F NMR spectrum of pentafluoro(4-(tetrafluoro- λ^5 -iodaneyl)phenyl)- λ^6 -sulfane (compound **32**).

Figure S 74. ¹⁹F NMR spectrum of tetrafluoro(4-tolyl)- λ^5 -iodane (compound 33).

Figure S 75. ¹⁹F NMR spectrum of tetrafluoro(4-nitrophenyl)- λ^5 -iodane (compound 34).

Figure S 76. ¹⁹F NMR spectrum of 1,1,1-trifluoro-3,3-dimethyl-1,3-dihydro- $1\lambda^5$ -benzo[d][1,2]iodaoxole (compound 37).

Figure S 77. ¹H NMR spectrum of 1-(2-iodophenyl)ethan-1-ol.

Figure S 78. ${}^{13}C{}^{1}H$ NMR spectrum of 1-(2-iodophenyl)ethan-1-ol.

Figure S 79. ¹H NMR spectrum of 1-(1-fluoroethyl)-2-iodobenzene.

Figure S 80. ¹⁹F NMR spectrum of 1-(1-fluoroethyl)-2-iodobenzene.

Figure S 81. ${}^{13}C{}^{1}H$ NMR spectrum of 1-(1-fluoroethyl)-2-iodobenzene.

Figure S 82. ¹H NMR spectrum of (4-fluorophenyl)(2-iodophenyl)methanol.

Figure S 83. ¹⁹F NMR spectrum of (4-fluorophenyl)(2-iodophenyl)methanol.

Figure S 84. ${}^{13}C{}^{1}H$ NMR spectrum of (4-fluorophenyl)(2-iodophenyl)methanol.

Figure S 85. ¹H NMR spectrum of 1-(fluoro(4-fluorophenyl)methyl)-2-iodobenzene.

Figure S 86. ¹⁹F NMR spectrum of 1-(fluoro(4-fluorophenyl)methyl)-2-iodobenzene.

Figure S 87. ¹³C{¹H} NMR spectrum of 1-(fluoro(4-fluorophenyl)methyl)-2-iodobenzene.

Figure S 88. ¹H NMR spectrum of N-(5,6,7,8-tetrahydronaphthalen-1-yl)acetamide.

Figure S 89. ¹³C{¹H} NMR spectrum of N-(5,6,7,8-tetrahydronaphthalen-1-yl)acetamide.

Figure S 90. ¹H NMR spectrum of N-(4-bromo-5,6,7,8-tetrahydronaphthalen-1-yl)acetamide.

Figure S 91. ¹³C{¹H} NMR spectrum of N-(4-bromo-5,6,7,8-tetrahydronaphthalen-1-yl)acetamide.

Figure S 92. ¹H NMR spectrum of N-(4-bromo-8-oxo-5,6,7,8-tetrahydronaphthalen-1-yl)acetamide.

Figure S 93. ¹³C{¹H} NMR spectrum of N-(4-bromo-8-oxo-5,6,7,8-tetrahydronaphthalen-1-yl)acetamide.

Figure S 94. ¹H NMR spectrum of 8-amino-5-bromo-3,4-dihydronaphthalen-1(2H)-one.

Figure S 95. ¹³C{¹H} NMR spectrum of 8-amino-5-bromo-3,4-dihydronaphthalen-1(2H)-one.

Figure S 96. ¹H NMR spectrum of 5-bromo-8-iodo-3,4-dihydronaphthalen-1(2H)-one.

 $\label{eq:Figure S 97. } \ensuremath{^{13}C\{^{1}H\}}\ NMR\ spectrum\ of\ 5\mbox{-bromo-8-iodo-3,4-dihydronaphthalen-1(2H)-one.}$

Figure S 98. ¹H NMR spectrum of 5-bromo-8-iodo-1,2,3,4-tetrahydronaphthalen-1-ol.

Figure S 99. ¹³C{¹H} NMR spectrum of 5-bromo-8-iodo-1,2,3,4-tetrahydronaphthalen-1-ol.

Figure S 100. ¹H NMR spectrum of 5-bromo-1-fluoro-8-iodo-1,2,3,4-tetrahydronaphthalene.

Figure S 101. ¹⁹F NMR spectrum of 5-bromo-1-fluoro-8-iodo-1,2,3,4-tetrahydronaphthalene.

Figure S 102. ¹³C{¹H} NMR spectrum of 5-bromo-1-fluoro-8-iodo-1,2,3,4-tetrahydronaphthalene.

Figure S 103. ${}^{13}C{}^{1}H$ NMR spectrum of trichloroisocyanuric acid (TCICA).

VT-NMR Overlay of ¹H NMR Spectra for 21

Figure S 104. Overlay of ¹H NMR spectra of compound 21 in CD₂Cl₂ at various temperatures.

Controlled Hydrolysis Experimental Data

Experimental Procedure for Hydrolysis Experiments

- 1. The aryl-IF₂ compounds were formed under standard reaction conditions (0.375 mmol of aryl iodide) using a mixture of CD₃CN (40%) and CH₃CN as a solvent.
- 2. Internal standard, either fluorobenzene or trifluoromethylbenzene (30 μ L), were added to the reaction mixture.
- 3. The reaction mixture was filtered into a separate microwave vial under an argon atmosphere.
- 4. Three NMR samples were prepared, each containing 0.5 mL of filtered reaction mixture. The NMR tubes were previously capped with a rubber septum and put under an argon atmosphere.
- 5. A ¹⁹F NMR spectrum was measured before the addition of water.
- 6. 0.1 mL of water was added to the NMR tube and a ¹⁹F NMR spectrum was measured every 30 s. The starting time of the first measurement after the water addition was denoted separately.

Note: For all the measurements, the experimental parameters were kept constant:

Number of scans: 4; Number of dummy scans: 0; Relaxation delay: 5.00 s; time difference between two measurements: 30.00 s

Data Analysis for Hydrolysis Experiments

The hydrolytic decay of the aryl-IF₂ compound was monitored looking the relative integral of the IF₂ signal with respect to an internal standard. Therefore, the integral of the IF₂ signal was set to 1.00 and relative integral of the standard signal was determined (denoted as relative integral). Within the plots, the relative integral is denoted as the concentration of the aryl-IF₂ compound, since the concentration is directly correlated to the relative integral. For simplicity, all integrals were normalized, which allowed to compare the different runs and experiments.

Run 1			Run2	Run 3	
Time [min]	Relative Integral	Time [min]	Relative Integral	Time [min]	Relative Integral
0.00	0.31	0.00	0.29	0.00	0.30
0.55	0.44	0.53	0.40	0.43	0.49
1.05	0.47	1.03	0.44	0.93	0.56
1.55	0.47	1.53	0.46	1.43	0.59
2.05	0.50	2.03	0.47	1.93	0.61
2.55	0.52	2.53	0.49	2.43	0.66
3.05	0.55	3.03	0.49	2.93	0.72
3.55	0.59	3.53	0.52	3.43	0.80
4.05	0.64	4.03	0.56	3.93	0.90
4.55	0.73	4.53	0.65	4.43	1.07
5.05	0.83	5.03	0.73	4.93	1.27
5.55	0.99	5.53	0.88	5.43	1.56
6.05	1.19	6.03	1.04	5.93	2.02
6.55	1.59	6.53	1.34	6.43	2.63
7.05	2.08	7.03	1.71	6.93	3.56
7.55	2.82	7.53	2.41	7.43	4.81
8.05	4.01	8.03	3.24	7.93	6.80
8.55	5.54	8.53	4.58	8.43	9.92
9.05	8.15	9.03	6.75	8.93	14.6
9.55	12.1	9.53	10.2	9.43	22.0
10.05	18.9	10.03	14.0	9.93	33.4
10.55	26.2	10.53	21.8	10.43	45.4
11.05	41.6	11.03	30.6	10.93	74.2
11.55	49.4	11.53	39.5	11.43	101
12.05	58.3	12.03	59.4	11.93	119
12.55	89.3	12.53	86.6	12.43	177
13.05	134	13.03	88.9	12.93	321
13.55	120	13.53	230	13.43	233
14.05	143	14.03	95.2	13.93	329
14.55	225	14.53	136	14.43	206
15.05	138	15.03	122	14.93	256

Run 1			Run2	Run 3	
Time [min]	Relative Integral	Time [min]	Relative Integral	Time [min]	Relative Integral
0.00	1.32	0.00	1.19	0.00	1.33
0.48	2.16	0.48	2.71	0.46	3.37
0.98	2.91	0.98	3.53	0.96	4.11
1.48	3.18	1.48	3.92	1.46	4.54
1.98	3.48	1.98	4.25	1.96	5.06
2.48	3.83	2.48	4.61	2.46	5.66
2.98	4.16	2.98	5.09	2.96	6.13
3.48	4.56	3.48	5.88	3.46	6.82
3.98	5.06	3.98	6.35	3.96	7.76
4.48	5.87	4.48	7.47	4.46	8.74
4.98	6.44	4.98	8.21	4.96	9.91
5.48	7.12	5.48	9.64	5.46	11.5
5.98	8.00	5.98	11.3	5.96	12.9
6.48	8.90	6.48	11.9	6.46	14.0
6.98	9.91	6.98	14.7	6.96	18.1
7.48	11.7	7.48	15.8	7.46	22.3
7.98	14.0	7.98	18.5	7.96	24.9
8.48	17.3	8.48	22.1	8.46	30.1
8.98	21.0	8.98	27.0	8.96	35.4
9.48	25.5	9.48	38.3	9.46	41.4
9.98	27.3	9.98	37.3	9.96	44.0
10.48	36.9	10.48	45.1	10.46	80.3
10.98	56.6	10.98	58.0	10.96	69.3
11.48	78.4	11.48	82.1	11.46	136
11.98	70.2	11.98	105	11.96	170
12.48	127	12.48	120	12.46	370
12.98	204	12.98	200	12.96	700

Run 1			Run2	Run 3		
Time [min]	Relative Integral	Time [min]	Relative Integral	Time [min]	Relative Integral	
0.00	2.13	0.00	2.37	0.00	3.27	
0.42	2.88	0.50	3.27	0.43	3.95	
0.92	3.19	1.00	3.71	0.93	4.67	
1.42	3.33	1.50	3.90	1.43	4.88	
1.92	3.44	2.00	4.15	1.93	5.13	
2.42	3.71	2.50	4.41	2.43	5.47	
2.92	3.83	3.00	4.60	2.93	5.87	
3.42	4.08	3.50	5.00	3.43	6.12	
3.92	4.29	4.00	5.16	3.93	6.47	
4.42	4.52	4.50	5.50	4.43	7.05	
4.92	4.80	5.00	6.09	4.93	7.45	
5.42	5.15	5.50	6.62	5.43	8.05	
5.92	5.48	6.00	7.22	5.93	8.81	
6.42	5.94	6.50	7.88	6.43	9.40	
6.92	6.32	7.00	8.20	6.93	10.5	
7.42	6.92	7.50	9.16	7.43	11.1	
7.92	7.27	8.00	10.2	7.93	12.3	
8.42	8.06	8.50	11.6	8.43	13.5	
8.92	8.85	9.00	12.2	8.93	15.1	
9.42	9.90	9.50	14.6	9.43	16.6	
9.92	10.3	10.00	15.2	9.93	19.3	
10.42	11.0	10.50	17.7	10.43	22.2	
10.92	12.7	11.00	19.2	10.93	24.2	
11.42	14.0	11.50	23.5	11.43	26.3	
11.92	15.6	12.00	23.5	11.93	31.0	
12.42	18.2	12.50	28.6	12.43	38.7	
12.92	20.7	13.00	33.0	12.93	49.0	
13.42	20.5	13.50	46.0	13.43	47.7	
13.92	27.0	14.00	48.2	13.93	56-4	
14.42	29.2	14.50	49.8	14.43	72.4	
14.92	34.4	15.00	73.1	14.93	102	
15.42	38.9	15.50	77.1	15.43	116	
15.92	51.1	16.00	110	15.93	147	
16.42	56.6	16.50	130	16.43	173	

Run 1		Run2		Run 3	
Time [min]	Relative Integral	Time [min]	Relative Integral	Time [min]	Relative Integral
0.00	1.29	0.00	1.30	0.00	1.34
0.48	1.56	0.45	1.47	0.57	1.68
0.98	1.93	0.95	1.82	1.07	2.02
1.48	2.54	1.45	2.30	1.57	2.88
1.98	3.75	1.95	3.24	2.07	4.16
2.48	5.59	2.45	4.86	2.57	6.21
2.98	7.73	2.95	7.88	3.07	9.80
3.48	12.9	3.45	12.1	3.57	16.1
3.98	21.5	3.95	21.4	4.07	27.6
4.48	34.4	4.45	32.8	4.57	42.1
4.98	58.9	4.95	64.2	5.07	72.0
5.48	105	5.45	114	5.57	91.7
5.98	89.9	5.95	129	6.07	138
6.48	162	6.45	213	6.57	105
6.98	98.0	6.95	365	7.07	127

Run 1			Run2	Run 3	
Time [min]	Relative Integral	Time [min]	Relative Integral	Time [min]	Relative Integral
0.00	1.16	0.00	1.22	0.00	1.18
0.58	1.27	0.45	1.33	0.45	1.29
1.08	1.41	0.95	1.52	0.95	1.46
1.58	1.52	1.45	1.67	1.45	1.64
2.08	1.73	1.95	1.93	1.95	1.89
2.58	1.99	2.45	2.34	2.45	2.28
3.08	2.49	2.95	3.01	2.95	2.86
3.58	3.20	3.45	3.91	3.45	3.69
4.08	4.11	3.95	5.30	3.95	5.12
4.58	5.70	4.45	7.79	4.45	7.24
5.08	7.91	4.95	12.0	4.95	10.7
5.58	12.2	5.45	18.3	5.45	16.5
6.08	18.0	5.95	28.2	5.95	26.4
6.58	28.7	6.45	43.7	6.45	40.3
7.08	43.3	6.95	65.8	6.95	62.9
7.58	53.8	7.45	82.8	7.45	80.0
8.08	81.4	7.95	117	7.95	109
8.58	102	8.45	175	8.45	147
9.08	129	8.95	204	8.95	175
9.58	119	9.45	297	9.45	137
10.08	193	9.95	798	9.95	136

Run 1		Run2		Run 3	
Time [min]	Relative Integral	Time [min]	Relative Integral	Time [min]	Relative Integral
0.00	1.27	0.00	1.26	0.00	1.23
0.45	1.48	0.43	1.47	0.52	1.41
0.95	1.68	0.93	1.69	1.02	1.55
1.45	1.94	1.43	1.88	1.52	1.75
1.95	2.37	1.93	2.30	2.02	2.08
2.45	3.04	2.43	2.82	2.52	2.58
2.95	4.32	2.93	3.80	3.02	3.50
3.45	6.89	3.43	5.52	3.52	5.00
3.95	11.5	3.93	9.05	4.02	7.98
4.45	21.5	4.43	15.2	4.52	14.1
4.95	47.4	4.93	27.6	5.02	25.2
5.45	205	5.43	61.1	5.52	51.3
5.95	641	5.93	135	6.02	113
6.45	3736	6.43	487	6.52	351
6.95	1159	6.93	532	7.02	567

Run 1			Run2	Run 3		
Time [min]	Relative Integral	Time [min]	Relative Integral	Time [min]	Relative Integral	
0.00	0.27	0.00	0.30	0.00	0.34	
0.43	0.36	0.50	0.47	0.48	0.48	
0.93	0.42	1.00	0.52	0.98	0.57	
1.43	0.43	1.50	0.54	1.48	0.60	
1.93	0.45	2.00	0.56	1.98	0.65	
2.43	0.44	2.50	0.62	2.48	0.79	
2.93	0.48	3.00	0.65	2.98	0.89	
3.43	0.52	3.50	0.71	3.48	1.03	
3.93	0.57	4.00	0.80	3.98	1.24	
4.43	0.64	4.50	0.89	4.48	1.51	
4.93	0.73	5.00	1.09	4.98	1.89	
5.43	0.85	5.50	1.31	5.48	2.43	
5.93	0.98	6.00	1.64	5.98	3.20	
6.43	1.18	6.50	2.15	6.48	4.38	
6.93	1.38	7.00	2.79	6.98	6.08	
7.43	1.63	7.50	3.85	7.48	8.43	
7.93	1.91	8.00	5.82	7.98	12.2	
8.43	2.35	8.50	8.00	8.48	18.5	
8.93	3.09	9.00	11.1	8.98	28.8	
9.43	3.57	9.50	16.4	9.48	36.0	
9.93	4.19	10.00	23.1	9.98	57.7	
10.43	5.29	10.50	32.4	10.48	74.3	
10.93	6.41	11.00	50.0	10.98	89.4	
11.43	7.74	11.50	61.4	11.48	140	
11.93	9.37	12.00	92.5	11.98	131	
12.43	11.7	12.50	96.4	12.48	143	
12.93	13.2	13.00	89.0	12.98	210	
13.43	15.4	13.50	141	13.48	136	
13.93	19.2	14.00	115	13.98	274	
14.43	20.4	14.50	154	14.48	316	
14.93	24.7	15.00	112	14.98	327	
15.43	25.4	15.50	243	15.48	362	
15.93	28.0	16.00	89.2	15.98	366	

Run 1		Run2		Run 3	
Time [min]	Relative Integral	Time [min]	Relative Integral	Time [min]	Relative Integral
0.00	1.73	0.00	1.72	0.00	1.77
0.45	1.90	0.45	2.10	0.45	1.98
1.05	2.17	0.95	2.38	1.05	2.33
1.55	2.47	1.45	2.78	1.55	2.70
2.05	2.89	1.95	3.40	2.05	3.78
2.55	3.47	2.45	4.21	2.55	4.59
3.05	4.15	2.95	5.11	3.05	5.39
3.55	5.12	3.45	5.88	3.55	6.47
4.05	6.36	3.95	8.02	4.05	9.19
4.55	8.28	4.45	11.6	4.55	13.7
5.05	10.7	4.95	16.6	5.05	20.7
5.55	15.0	5.45	24.5	5.55	27.4
6.05	18.6	5.95	32.3	6.05	44.2
6.55	27.0	6.45	48.9	6.55	56.6
7.05	37.7	6.95	48.3	7.05	68.7
7.55	45.3	7.45	98.7	7.55	98.0
8.05	55.4	7.95	75.0	8.05	143
8.55	64.6	8.45	68.0	8.55	145

Run 1		Run2		Run 3	
Time [min]	Relative Integral	Time [min]	Relative Integral	Time [min]	Relative Integral
0.00	1.48	0.00	1.52	0.00	1.32
0.48	2.44	0.43	2.32	0.50	1.81
0.98	3.03	0.93	3.45	1.00	2.21
1.48	3.29	1.43	3.66	1.50	2.33
1.98	3.90	1.93	4.67	2.00	2.78
2.48	4.76	2.43	6.45	2.50	3.21
2.98	6.30	2.93	8.66	3.00	4.09
3.48	8.08	3.43	12.1	3.50	5.47
3.98	11.3	3.93	18.5	4.00	7.48
4.48	17.2	4.43	33.0	4.50	11.3
4.98	32.4	4.93	61.0	5.00	17.4
5.48	58.0	5.43	152	5.50	28.2
5.98	108	5.93	708	6.00	48.0
6.48	304	6.43	480	6.50	92.5

Run 1		Run2		Run 3	
Time [min]	Relative Integral	Time [min]	Relative Integral	Time [min]	Relative Integral
0.00	0.42	0.00	0.47	0.00	0.63
0.42	1.36	0.42	1.72	0.43	2.07
0.92	2.06	0.92	2.62	0.93	3.29
1.42	2.93	1.42	3.83	1.43	4.89
1.92	4.33	1.92	5.71	1.93	7.36
2.42	6.55	2.42	6.78	2.43	11.5
2.92	9.56	2.92	13.2	2.93	16.9
3.42	15.4	3.42	21.4	3.43	27.3
3.92	24.1	3.92	32.0	3.93	41.9
4.42	34.7	4.42	52.1	4.43	70.7
4.92	52.8	4.92	78.4	4.93	95.0
5.42	84.8	5.42	111	5.43	187
5.92	146	5.92	223	5.93	296

Figure S 105. Overlay of hydrolysis data comparing a variety of *ortho*-substituents, as well as probe molecule 21.

Figure S 106. Overlay of hydrolysis data comparing ortho-, meta-, and para-trifluoromethyl substituted isomers.
Computational Data

 Table S 10. Coordinates for calculated structure of compound 2.

Compound	2 F	Re	atomic coordinates	(Angstroms)	and total energy	(Hartree)
С			-2.45308564	2.42808429	-0.26126747	
С			-2.58121925	1.05458712	-0.09186804	
С			-1.45995599	0.22308103	0.00756419	
С			-0.19976895	0.82504744	-0.07507097	
С			-0.05601404	2.20315990	-0.21327767	
С			-1.18858654	3.00573838	-0.30800526	
Н			-3.34720486	3.04777906	-0.33776606	
Н			-3.57079152	0.60589750	-0.01460360	
Н			0.93990417	2.64315945	-0.21564040	
Н			-1.07249387	4.08435939	-0.42043685	
I			1.64719281	-0.23135318	-0.04635436	
F			2.32283879	1.32566742	1.05062156	
F			0.77632416	-1.60634625	-1.21270632	
С			-1.73722783	-1.25209651	0.24310225	
F			-0.78273270	-1.84936142	0.96684023	
F			-1.89789800	-1.92551611	-0.89511096	
F			-2.88469710	-1.39389770	0.93904059	

E(RwB97XD) = -1063.88312776 au

Compound	21	Re	atomic	coordinate	s (Angstroms	s) and	total	energy
(Hartree)								
С			-0.	.52146700	2.01315100	-0	.004542	200
С			0.	.40897000	3.16293500	- 0	.32042	500
С			1.	.70131900	3.02320100	0	.468672	200
С			2.	.43727900	1.75963000	0	.04105	900
Н			-1.	.38887200	2.02214600	-0	.67543	000
Н			0.	.61289800	3.16253500	-1	.40473	600
Н			-0.	.11654500	4.09912100	-0	.085703	100
Н			2 .	.35239900	3.89685900	0	.32559	600
Н			1.	45654300	2.96876700) 1	.54142	500
Н			2.	.89161300	1.90570600	-0	.95572	400
Н			3 .	.27423600	1.55477400	0	.723562	200
С			1.	.33229700	-1.90586800	- 0	.06110	300
С			-0.	.05232000	-1.79397700	- 0	.059572	200
С			-0.	.61136100	-0.52525400	-0	.08405	700
С			Ο.	.14711400	0.64993300	-0	.06121	400
С			1.	.55180300	0.53406600	-0	.024003	300
С			2.	.10958900	-0.75400300	-0	.05855	700
Н			1.	.80366300	-2.88786500	-0	.064273	300
Н			-0.	.67758000	-2.68456600	-0	.02289	700
F			-1.	.00921900	2.17803700) 1	.30342	000
Br			3.	.99700700	-0.98486100	-0	.09621	400
I			-2	.73571800	-0.50283200	- 0	.086354	400
F			-2	.65052200	0.75644500	-1	.67478	900
F			-2	.57691400	-1.81227400) 1	.43191	400

 Table S 11. Coordinates for calculated structure of compound 21.

E(RwB97XD) = -3555.74338716 au

Table S 12. Coordinates for calculated structure of compound 21-iso.

Compound 21-iso local minimum atomic coordinates (Angstroms) and total energy (Hartree)

cncrgj	(mar crec)			
С	0.43417500	1.93546700	0.12722700	
С	-0.46644500	3.06374700	0.57970400	
С	-1.76671700	3.03438100	-0.21034200	
С	-2.52927300	1.74746200	0.08310600	
Н	1.31061500	1.85250200	0.78511900	
Н	-0.66405900	2.94488700	1.65857900	
Н	0.07357600	4.01133500	0.44548900	
Н	-2.39721300	3.90155900	0.03136300	
Н	-1.52780100	3.09339900	-1.28414800	
Н	-2.99270300	1.80379200	1.08457900	
Н	-3.36278400	1.62660800	-0.62388000	
С	-1.48330400	-1.93519000	-0.06847600	
С	-0.09392300	-1.83581400	-0.08486400	
С	0.50821600	-0.58346800	-0.02915900	
С	-0.26179500	0.58912400	0.04905000	
С	-1.66444200	0.50690500	0.03672300	
С	-2.24266200	-0.77531600	-0.00479500	
Н	-1.97033100	-2.90943500	-0.09660900	
Н	0.50597200	-2.74732700	-0.12701000	
F	0.91839600	2.23773700	-1.15797100	
Br	-4.13411200	-0.97538400	0.04120600	
I	2.65068900	-0.57939200	-0.24223700	
F	4.59781200	-0.46391500	0.28627800	
F	2.55370000	0.09119500	1.61100700	

E(RwB97XD) = -3555.70250332 au

Table S 13. Coordinates for calculated structure of compound 22.

Compound	22	Re	atomic	coordinates	(Angstroms)	and	total energy	(Hartree)
С			-2	.14949900	1.78796600	-0	.01087100	
С			-2	.05746700	0.39867600	-0	.01384500	
С			-0	.81470000	-0.23809100	-0	.01133900	
С			0	.31298200	0.56574600	-0	.00137700	
С			0	.26664600	1.95490500	0	.00341600	
С			-0	.98849400	2.55909100	-0	.00175900	
Н			-3	.12806600	2.26637100	-0	.01846700	
Н			1	.18928600	2.53329900	0	.00907700	
Н			-1	.05795800	3.64756200	-0	.00053100	
I			2	.22278600	-0.38455800	0	.00039900	
F			3	.01928500	1.46880800	0	.00490700	
F			1	.22339500	-2.13648500	-0	.00429400	
С			-3	.29708200	-0.45946200	-0	.00004600	
F			-4	.41004900	0.25949900	-0	.21383500	
F			-3	.44586600	-1.08378300	1	.18033900	
F			-3	.24499200	-1.41414800	-0	.94236500	
Н			-0	.72120700	-1.32364800	-0	.01905900	

E(RwB97XD) = -1063.89879005 au

 Table S 14. Coordinates for calculated structure of compound 23.

Compound	23 Re a	tomic coordina	ates (Angstroms)	and	total	energy	(Hartree)
С	2.33535	9 0.024911	0.000019				
С	1.63922	6 1.230154	0.000040				
С	0.24447	1 1.234364	0.000032				
C ·	-0.40346	1 0.008408	0.000005				
С	0.25947	8 -1.213288	-0.000014				
С	1.65023	4 -1.191595	-0.000006				
H ·	-0.30205	4 -2.146243	-0.000032				
Н	2.20227	1 -2.132237	-0.000015				
I ·	-2.53564	3 -0.004386	-0.000003				
F ·	-2.42562	3 -2.017839	0.000028				
F ·	-2.45061	9 2.009917	-0.000030				
H ·	-0.32648	3 2.161543	0.000051				
6	3.84211	3 0.004303	-0.000002				
F	4.32236	8 -0.637531	-1.078825				
F	4.32239	2 -0.638084	1.078481				
F	4.36810	5 1.238055	0.000306				
Н	2.18122	9 2.175167	0.000066				

E(RwB97XD) = -1063.89881725 au

Figure S 107. Rotational scan for compound **21**. Compound **21** was optimized at the wB97xD/cc-pvdz level of theory (cc-pvdz-PP for the iodine atom), and then the IF₂ group was rotated 180° about the C-I bond in 12° increments.

Table S 15. Coordinates for highest-energy calculated structure of compound 21 in Figure S 107.

Compound 21 atomic coordinates (Angstroms) and total energy (Hartree) at maximum point of potential curve (see: Figure S 107) for rotation about C-I bond

С	-0.53315523	1.95794117	-0.35556356
С	0.40483503	3.00301751	-0.92299284
С	1.66796176	3.06598829	-0.07804499
С	2.42403628	1.74742107	-0.17891451
Н	-1.38299308	1.80604478	-1.03964619
Н	0.64552343	2.74004972	-1.96725193
Н	-0.12709149	3.96448228	-0.93847868
Н	2.31948020	3.89145337	-0.39671952
Н	1.38144659	3.25910484	0.96765185
Н	2.94963220	1.68691618	-1.14876409
Н	3.21018277	1.69409225	0.58833166
С	1.34641383	-1.90902299	0.16159121
С	-0.03942756	-1.80905422	0.14503632
С	-0.61691788	-0.55122575	0.04612122
С	0.13789144	0.61922819	-0.10447884
С	1.54287616	0.52342063	-0.05546204
С	2.11246096	-0.75384275	0.07228243
Н	1.82687525	-2.88298443	0.24642046
Н	-0.64976208	-2.70832238	0.21599999
F	-1.05903217	2.43378364	0.84317381
Br	4.00210816	-0.96187253	0.10185641
I	-2.72736861	-0.52251480	0.00019069
F	-2.51825398	-1.27053788	-1.86395312
F	-2.68697960	0.23061637	1.85632697

E(RwB97XD) = -3555.73436000 au

Single-crystal X-ray Structural Data

General

Single crystalline samples were measured on a Rigaku Oxford Diffraction XtaLAB Synergy-S Dualflex kappa diffractometer equipped with a Dectris Pilatus 300 HPAD detector and using microfocus sealed tube Cu- $K\alpha$ radiation with mirror optics ($\lambda = 1.54178$ Å, **21&26**) and a Bruker APEX-II fixed-chi diffractometer with sealed tube, graphite-monochromated Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å, **37**). All measurements were carried out at 100K using an Oxford Cryosystems Cryostream 800 or Bruker Kryoflex sample cryostat. Samples **21&26** were retrieved, prepared and mounted on Kapton micromounts (MiTeGen) under a nitrogen atmosphere at low temperatures (253 to 273K) using a μ CHILL microscopy stage to prevent crystal damage.¹¹

Data collected on the Bruker instrument were integrated using SAINT from the Bruker Apex-II program. Data collected on the Rigaku instrument were integrated using CrysAlisPro and corrected for absorption effects using a combination of empirical (ABSPACK) and numerical corrections.¹² The structures were solved using SHELXS¹³ or SHELXT¹⁴ and refined by full-matrix least-squares analysis (SHELXL)^{13,15} using the program package OLEX2.¹⁶ Non-hydrogen atoms were refined anisotropically and hydrogen atoms were constrained to ideal geometries and refined with fixed isotropic displacement parameters (in terms of a riding model). CCDC 1913138-1913140 contain the supplementary crystallographic data for this paper, including structure factors and refinement instructions. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK +44(1223)-336-033;e-mail: deposit@ccdc.cam.ac.uk), (fax: or via https://www.ccdc.cam.ac.uk/structures.

¹¹ M. Solar and N. Trapp, *J. Appl. Cryst.*, 2018, **51**, 541.

¹² CrysAlisPro and ABSPACK. Rigaku Oxford Diffraction, 2016.

¹³ G. M. Sheldrick, *Acta Cryst.*, 2008, **A64**, 112.

¹⁴ G. M. Sheldrick, *Acta Cryst.*, 2015, **A71**, 3.

¹⁵ G. M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3.

¹⁶ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339.

Crystal structure data

	21	26	37
CCDC No.	1913138	1913139	1913140
Empirical formula	$C_{10}H_9BrF_3I$	$C_6H_4F_5I$	$C_9H_{10}F_3IO$
Formula weight	392.98	297.99	318.07
Temperature/K	100.0(1)	100.0(1)	100.0(2)
Crystal system	monoclinic	monoclinic	monoclinic
Space group	C2/c	$P2_{1}/n$	$P2_{1}/c$
a/Å	23.483(2)	8.90830(10)	15.2690(11)
b/Å	8.4119(3)	6.03640(10)	10.8007(9)
c/Å	15.9818(15)	14.1452(2)	13.7770(11)
β/°	134.610(17)	91.6270(10)	116.7259(14)
Volume/Å ³	2247.4(6)	760.338(19)	2029.3(3)
Ζ	8	4	8
$\rho_{calc} g/cm^3$	2.323	2.603	2.082
μ/mm^{-1}	26.661	33.528	3.164
<i>F</i> (000)	1472.0	552.0	1216.0
Crystal size/mm ³	$0.129\times0.108\times0.014$	$0.168\times0.127\times0.061$	$0.078\times0.031\times0.025$
Crystal description	clear colourless plate	clear colourless block	clear colourless plate
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	$CuK\alpha$ ($\lambda = 1.54184$)	Mo $K\alpha$ ($\lambda = 0.71073$)
2Θ range for data collection/°	10.584 to 156.888	11.592 to 156.632	2.986 to 61.238
Index ranges	$\begin{array}{l} -28 \leq h \leq 29 \\ -10 \leq k \leq 10 \\ -18 \leq l \leq 20 \end{array}$	$-11 \le h \le 11$ $-7 \le k \le 5$ $-17 \le 1 \le 17$	$\begin{array}{l} -21 \leq h \leq 21 \\ -15 \leq k \leq 15 \\ -19 \leq l \leq 19 \end{array}$
Reflections collected	11254	7652	33393
Independent reflections	2383 $R_{\rm int} = 0.0334$ $R_{\rm sigma} = 0.0188$	$1608 R_{int} = 0.0380 R_{sigma} = 0.0196$	6167 $R_{\rm int} = 0.1044$ $R_{\rm sigma} = 0.0783$
Data/restraints/parameters	2383/86/173	1608/0/109	6167/0/258
Goodness-of-fit on F^2	1.109	1.141	0.989
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0310$ w $R_2 = 0.0841$	$R_1 = 0.0276$ w $R_2 = 0.0784$	$R_1 = 0.0464$ w $R_2 = 0.0842$
Final R indexes [all data]	$R_1 = 0.0322$ w $R_2 = 0.0848$	$R_1 = 0.0278$ w $R_2 = 0.0787$	$R_1 = 0.0676$ w $R_2 = 0.0909$
Largest diff. peak/hole /eÅ-3	0.98/-1.49	0.81/-1.57	2.83/-2.30

(4-Bromo-8-fluoro-5,6,7,8-tetrahydronaphthalen-1-yl)difluoro- λ^3 -iodane (21)

Clear colourless platelet crystals of **21** were obtained by slow solvent evaporation of a mixture of DCM and n-hexane under inert atmosphere in a PFA vessel. The structure contains one molecule per asymmetric unit and exhibits a special kind of disorder, in which both possible enantiomers cocrystallize on the same position. Atoms outside the fluorinated hexyl subunit almost exactly overlap, with slightly expanded anisotropic displacement parameters observed for the fluorine atoms connected to iodine (Figure S108).

Figure S 108. Asymmetric unit of the crystal structure of 21, ellipsoids depicted at 50% probability, minor part of disorder drawn in magenta.

Figure S 109. Closest C-I...F contacts in the crystal structure of 21, ellipsoids depicted at 50% probability.

Figure S 110. Comparison of the geometry of 21 with both symmetry-independent moieties observed in the known crystal structure of 1-(Difluoroiodo)-4-methylbenzene, recorded at 100K (red/blue, coordinates as deposited under CCDC 1555065).¹⁷

Table S 16. Selected geometrical parameters from the crystal structure of 21 compared to previously reported compounds. For multiple occurrences (partly due to multiple symmetrically independent moieties within the same structures), averaged values are printed in italics. C_{ortho} refers to the unsubstituted side for compound 21 and to the torsion angles < 90° for all other compounds.

	21	1-(Difluoroiodo)-4-methylbenzene ¹⁷	all known compounds ^{17,18,19,20,21,22}
d(C-I)/Å	2.097(7)	2.088	2.089
(range/Å)		2.083-2.093	2.051-2.115
d(I-F)/Å	<i>1.998</i>	<i>2.013</i>	2.003
(range/Å)	1.998(3)-1.998(4)	1.993-2.036	1.96-2.032
F-I-F/°	171.9(2)	<i>172.0</i>	<i>168.2</i>
(range/°)		170.8-173.3	158.6-174.4
C-I-F/°	<i>86.0</i>	<i>86.2</i>	84.0
(range/°)	85.5(2)-86.5(2)	85.08-87.62	79.2-88.3
C _{ortho} -C _{ipso} -I-F/°	<i>82.9</i>	70.0	70.0
(range/°)	82.4(3)-83.4(3)	60.9-79.3	60.9-79.3
shortest C-IF-I/Å	2.888(3)	2.905	2.742
shortest I-FF-I/Å	2.891(3)	2.793	2.766

 ¹⁷ J. C. Sarie, C. Thiehoff, R. J. Mudd, C. G. Daniliuc, G. Kehr, and R. Gilmour, *J. Org. Chem.*, 2017, 82, 11792.
 ¹⁸ CCDC 1555065, ¹⁷ 273254, ¹⁹ 139385, ²⁰ 938893, ²¹ 760658, ²² 760659, ²² 760660. ²²
 ¹⁹ C. Ye, B. Twamley, and J. M. Shreeve, *Org. Lett.*, 2005, 7, 3961.
 ²⁰ F. Bailly, P. Barthen, W. Breuer, H.-J. Frohn, M. Giesen, J. Helber, G. Henkel, and A. Priwitzer, *Z. Anorg.*

Allg. Chem., 2000, **626**, 1406. ²¹ U. Flörke, *CSD Private Communication*, 2013.

²² H.-J.Frohn, M. E. Hirschberg, U. Westphal, U. Flörke, R. Boese, and D. Bläser, Z. Anorg. Allg. Chem., 2009, 635, 2249.

Tetrafluoro(4-fluorophenyl)- λ^5 -iodane (26)

Clear colourless block-shaped crystals of **26** were obtained by cooling a concentrated solution in n-hexane in a PFA vessel to ca. -20 °C in a glove box freezer. The structure contains one molecule per asymmetric unit (Figure S111).

Figure S 111. Asymmetric unit of the crystal structure of 26, ellipsoids depicted at 50% probability.

Figure S 112. Overlay of the geometries of **26** (green) and two known tetrafluoro-iodane crystal structures, CCDC 216480 (red, RT)²⁵ and CSD 59004/FIZ Karlsruhe (two symmetry-independent moieties depicted blue/light blue, 150K).²⁴

C C F O H

Figure S 113. Packing motif of 26, ellipsoids depicted at 50% probability.

Figure S 114. Intermolecular I...F (purple broken lines) and F...F contacts (green broken lines) within the sum of van-der-Waals radii in the crystal structure of **26**, ellipsoids depicted at 50% probability.

Table S 17. Selected geometrical parameters from the crystal structure of 26 compared to previously reported compounds. For
multiple occurrences (partly due to multiple symmetrically independent moieties within the same structures), averaged values
are printed in italics. In the structure of pentafluorophenyl-tetrakis(fluoro)iodine, ^{23,24} one of two symmetry-independent
moieties is located on a crystallographic 2-fold axis through the C-I bond.

	26	Phenyl-tetrafluoro-iodine ^{23,25}	Pentafluorophenyl- tetrakis(fluoro)iodine ^{23,24}
d(C-I)/Å (range/Å)	2.078(4)	2.082	2.085 2.082-2.088
d(I-F)/Å	<i>1.939</i>	<i>1.935</i>	<i>1.917</i>
(range/Å)	1.915(1)-1.960(1)	1.922-1.951	1.906-1.928
<i>trans</i> F-I-F/°	<i>170.1</i>	<i>170.5</i>	<i>168.5</i>
(range/°)	169.9(1)-170.4(1)	170.0-171.0	167.8-169.3
<i>cis</i> F-I-F/°	<i>89.6</i>	<i>89.6</i>	<i>89.4</i>
(range/°)	87.6(1)-90.7(1)	87.1-91.2	87.3-91.3
C-I-F/°	<i>85.1</i>	<i>85.4</i>	<i>84.3</i>
(range/°)	83.9(1)-86.7(1)	84.4-85.9	83.1-84.9
C _{ortho} -C _{ipso} -I-F /°	<i>44.7</i>	<i>44.8</i>	<i>45.6</i>
(range/°)	42.0(1)-47.8(1)	41.8-48.8	44.4-46.8
shortest C-IF-I/Å	2.999(1)	3.072	3.046
shortest I-FF-I/Å	2.876(2)	3.035	2.744

1,1,1-Trifluoro-3,3-dimethyl-1,3-dihydro- $1\lambda^5$ -benzo[d][1,2]iodaoxole (37)

Clear colourless platelet crystals of 37 were obtained by sublimation. The structure contains two symmetry-independent molecules per asymmetric unit with slightly differing rotation angles about the C-I axes (O-I-C1-C2 torsion angles 172.9° vs. 174.7°).

Figure S 115. Asymmetric unit of the crystal structure of 37, ellipsoids depicted at 50% probability.

 ²³ CCDC 216480,²⁵ CSD 59004 (FIZ Karlsruhe).²⁴
 ²⁴ H.-J. Frohn, S. Görg, G. Henkel, and M. Läge, *Z. Anorg. Allg. Chem.*, 1995, 621, 1251.
 ²⁵ S. Hoyer and K. Seppelt, *J. Fluorine Chem.*, 2004, 125, 989.

C C F O H U I

Figure S 116. Packing motif of 37, ellipsoids depicted at 50% probability.

Figure S 117. Intermolecular I...F (purple broken lines) and F...F contacts (green broken lines, all equivalent) within the sum of van-der-Waals radii in the crystal structure of **37**, ellipsoids depicted at 50% probability.

Table S 18. Selected	d geometrical parar	neters for both moiet	ies in the crystal	structure of 37.	Cortho refers to the	substituted side
of the molecule.						

	moiety A	moiety B	av.
d(C-I)/Å	2.076(7)	2.068(7)	2.072
d(I-O)/Å	1.925(5)	1.922(4)	1.924
d(I-F _{trans})/Å	1.974(4)	1.984(4)	1.979
d(I-F _{cis})/Å	1.956(4), 1.972(4)	1.961(4), 1.963(4)	1.963
d(C-O)/Å	1.454(7)	1.465(8)	1.460
trans O-I-F/°	167.2(2)	168.6(2)	167.9
trans F-I-F/°	169.0(2)	167.9(2)	168.5
cis O-I-F/°	90.6(2), 95.8(2)	90.2(2), 95.0(2)	92.9
cis F-I-F/°	83.9(2), 88.0(2)	84.8(2), 88.0(2)	86.2
C-I-O/°	82.7(2)	82.2(2)	82.5
C-I-F range/°	84.5(3)-87.5(3)	84.9(3)-87.2(2)	85.8
O-C-C _{ortho} /°	107.8(5)	108.0(5)	107.9
$ C_{\textit{ortho}}\text{-}C_{\textit{ipso}}\text{-}I\text{-}F_{\textit{trans}} /^{\circ}$	172.4(6)	171.3(6)	171.9
$ C_{\textit{ortho}}\text{-}C_{\textit{ipso}}\text{-}\text{I-}F_{\textit{cis}} /^{\circ}$	88.4(6), 99.2(6)	86.3(6), 100.4(6)	87.4, 99.8
shortest C-IF-I/Å		3.038(4)	
shortest I-FF-I/Å		2.858(6)	