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Supporting information 

Rod intrusion 

We excluded TCSF data from the model development that was likely to be influenced by rod-

mediated detection of the flicker. Except for the TCSF experiments of Stockman et al. [1] shown in 

Fig 5, in which rod-mediated detection was precluded, little attempt was made to exclude rod 

involvement at lower light levels in most TCSF studies. Some rod intrusion could be expected at the 

lower levels in the experiments of De Lange [2], Kelly [3], Roufs [4] and Rovamo et al. [5], who used 

circular 2°, 68°, 1°, and 1.66° centrally-viewed white flickering targets, respectively. With good 

fixation control, the small centrally-viewed targets used by all but Kelly might be expected to fall 

mainly in the rod-free fovea and thus produce mainly cone-detected flicker. However, the need for 

Roufs to dark-adapt his subjects for up to 45 minutes at low light levels (see p. 263 of [4]) and De 

Lange for 15 minutes [“with the (room) light switched off” at lower levels (see p. 49 of [6]) suggests 

that rod detection was important and central fixation was not necessarily well maintained. Rod 

intrusion should be less for Swanson et al. [7], who used a light that was metameric with 600 nm, 

and least for von Wiegand et al. [8], who used a 635-nm target light, but in both cases some rod 

intrusion is possible at low temporal frequencies and low luminances (e.g. [9, 10]).   

Since there is likely to be rod intrusion in the data at low levels in Figs 2-4 and 6, we were faced 

with the problem of determining which levels should be excluded from our analysis so that we could 

be confident that we were modelling cone-mediated vision. 

Broadly speaking, rod saturation begins at about 100 scotopic trolands [11-13], which 

corresponds, for example, to about 40 to 70 photopic trolands for standard whites such as 

Illuminants D65 and A (Table 1(2.4.4) of [14]). Thus, a conservative cut-off might be about 40 

photopic trolands. However, based on the form of the data and the fact that the experimental 

conditions for De Lange and Roufs did not favour rod-detection, we have chosen a lower cut-off near 

10 photopic trolands. Additionally, this cut-off coincides with the level below which the parameter k 

in the model, when allowed to vary, began to decrease and the TCSF to change in shape from band-

pass to low-pass. Consequently, a plausible simplification, and an assumption that we adopted in our 

modelling, is that k is constant for cone-mediated vision.  
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Time-domain representation of the model 

Going from the frequency domain to the time domain strictly requires knowledge of the phase 

response as well as amplitude response (Equation (2)) of the system. However, we note that the 

phase responses of LP-stages are determined by their temporal response (which is an exponential 

decay over time), and our model can be represented in the complex Fourier domain as, 
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where 1i = − . The triphasic temporal response, R(t), of the model is found by taking the inverse 

Fourier transform of Equation (A), which gives in terms of time constants, i.e., 
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Equation (B) has been plotted in the lower right orange panel of Fig 8 with k=0.80,  fc=15 and fcL=30; g 

has been chosen to normalise the peak to 1. 
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The amplitude response of a cascade of leaky integrators is asymptotically a 

power law, but exponential for a range of visually significant frequencies 

The amplitude response, A(f), of a single stage of leaky integration (low-pass filtering), or an 

“LP-stage” for short, is given by, 

( )
2 2

c

cA f
f f

=
+

 or  ( )( ) ( )2 2
10 10

1log log
2 cA f C f f= − + ,  (C) 

where f is frequency in Hz, ( )10logC c=  is the logarithm of the overall gain, 1 2cf πτ= is the corner 

(or cut-off) frequency of the low-pass filter where τ (seconds) is the time constant (or integration 

time) of the leaky integrator. This logarithmic form of Equation (C) has been plotted against 

frequency in Panels [A] and [B] of Fig 12 as the solid cream lines. The high frequency asymptote, 

when f is large compared to fc, is given by, 

   ( ) 1A f c f −≈  or ( )( ) ( )10 10log logA f C f≈ − ,  (D) 

which is a power law function of f, with an exponent of minus one. Plotted on double logarithmic co-

ordinates (see the dashed red line in Panel [B] of Fig 12) this becomes a straight line with a slope of 

minus one. However, this approximation is valid only when the frequency is high, say above 3 times 

the corner frequency, as shown by the red shaded region in Fig 12. At lower frequencies the 

amplitude response is much better approximated by an exponential function, which is a straight line 

when log amplitude is plotted on a linear frequency scale (Panel [A]). To understand why, consider 

the Taylor series expansion of the logarithmic response function (Equation (C)) around f=fc. (We 

choose to expand around fc as it is an inflection point of log10(A), i.e., the second derivative is equal 

to zero at this point and there is no second-order term in the Taylor expansion and so log10(A) will be 

closest to a straight line at this point.) 
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For values of f close to fc the expansion will be dominated by the constant and linear terms, i.e., 
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where 
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D C A f= − = . This function has been plotted in both panels of Fig 12 as 

the dashed black line and can be seen to be a good approximation to the filter shape between about 

0.36fc and 1.92fc (i.e., the error is between ±3.5% in the green shaded region), over which sensitivity 

declines by about 0.31 log10 units (i.e., by about 51%). 

For a cascade of LP-stages in a linear system the convolution theorem states that the total 

response of the cascade is equal to the product of the responses of the individual stages. Or, 

equivalently, the logarithm of the cascade response is the sum of the logarithms of the individual 

responses. At high frequencies n LP-stages will tend toward a power law with an exponent of minus 

n (a straight line of slope minus n when plotted on double logarithmic coordinates). This result has 

been noted many times before [15, 16] and has occasionally been used as justification for rejecting a 

leaky integrator model altogether [17] because the measurements at high frequencies don't assume 

this form. However, between about 0.36fc and 1.92fc a cascade of n identical LP-stages has an 

approximately exponential frequency response with an exponent of ( )2log 10e cn f−    , and 

sensitivity will decline by about 0.31n log10 units. A cascade of six such stages will have an 

approximately exponential response over 1.86 log10 units, close to the maximum flicker sensitivity 

range seen in TCSFs. This range crucially depends on the LP-stages having the same corner 

frequencies, if the corner frequencies differ the frequency ranges over which they each approximate 

an exponential function will only partially overlap and the good exponential approximation to the 

TCSF will cover a smaller region. The value of the exponent of the approximation in this region, i.e., 

the slope of the linear region when log sensitivity is plotted against linear frequency, will be 

( ) 1

1 1
2log 10

n

je cjf=

− ∑  where fcj denotes the corner frequency of the jth LP-stage.  

 

For a cascade of leaky integrators all the corner frequencies (or equivalently, 

all the time constants) should take similar values. 

In addition to producing the largest range of frequencies over with the TCSF is approximately 

exponential, it is also the case that having identical corner frequencies produces maximal temporal 
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contrast sensitivity at all frequencies. Consider the simplest case with two stages with corner 

frequencies C1 and C2. The amplitude response, A(f), is then given by: 

1 2
2 2 2 2

1 2
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A f
f C f C

=
+ +

,    (G) 

where f is temporal frequency in Hz. Note that the numerator is the product of the corner 

frequencies in order to set the low frequency asymptote to 1. The high-frequency asymptote on a 

log-log plot is then a straight line with slope -2 which passes through the point (C1C2, 1). The way we 

have defined our amplitude response means the low-frequency limb is fixed at A=1 for all C1 and C2 

and the location of the high-frequency limb depends solely on the product of C1 and C2, so the family 

of curves that have the same low- and high-frequency limbs can be parametrised as 1C C X=  and 

2C CX=   , for some C (which is the geometric mean of C1 and C2). C and X are both greater than 0. In 

the case when the corner frequencies are identical, i.e., X=1, Equation (G) reduces to: 
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where the subscripts s and d denote corner frequencies that are the same or different. The question 

is which of these two amplitude responses is larger for any given frequency. We note that C, X and f 

are all strictly positive and so both As and Ad are positive, which therefore means that s dA A>  if, and 

only if, 2 2
s dA A> . We have: 
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so that (by inspection of the denominators in Equations (J)), 2 2
s dA A>  if, and only if, 2

2

1
2 X

X
< +  and 

this is clearly true for all 1X ≠   and is independent of f. So, we see that having stages with identical 

corner frequencies will always lead to optimal sensitivity at all frequencies compared to two stages 
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with different corner frequencies. The above reasoning can be easily extended to the case of more 

than two filters. 

A more intuitive explanation of why having identical corner frequencies is optimal is to consider 

a serial cascade of two filters (leaky integrators), one of which is slower (has a lower corner 

frequency) than the other. If the slower filter comes first, then the second filter will be capable of 

passing higher frequencies than it receives as input and its sensitivity would be wasted. Similarly, if 

the slower filter comes second then the first filter passes high frequencies which the second 

attenuates, which again would be wasteful. If the filters have the same corner frequency, then they 

are optimally tuned to pass (or attenuate) the same set of frequencies. While it is highly unlikely that 

all the significant LP-stages of light adaptation in the visual system have identical time constants, any 

process which seeks to optimise the efficiency of the system might be expected to make them as 

near to identical as possible. 

 

Subtractive inhibition maintains the exponential fall-off but reduces its slope 

and shifts it to higher frequencies 

While a cascade of LP-stages can produce an exponential decline in sensitivity over the visible 

range of flicker frequencies, it does not explain the loss of sensitivity at low frequencies. We model 

the loss of low-frequency sensitivity as the result of inhibition. A standard high-pass filter can be 

constructed by passing a signal through a leaky integrator with unity DC gain and subtracting the 

result from the original signal. If the DC gain is less than unity, the filter will only partially cancel 

signals at low frequencies. These kinds of filter can be thought of as partial high-pass filters and are 

often used in electric engineering (where they are referred to as “lead-compensators”) in order to 

increase stability in control circuits and sharpen the temporal response. The amplitude response of 

such a filter is given by: 

( )
( )( )22

2 2

1 c

c

f k f
A f

f f

+ −
=

+
 ,    (K) 

where k is the gain of the filter whose response is to be subtracted and can be thought of as the 

strength of inhibition. Note that when k=1 there is complete inhibition at low frequencies; i.e., a 

standard high-pass filter, while for k=0 there is no inhibition and the numerator and denominator in 

Equation (K) cancel, i.e., an all-pass filter. Our model is made up of 6 LP-stages and two lead-
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compensators with the same DC gain. Based on previous work we assume that two central LP-stages 

do not light adapt while the other four LP-stages do. This is also consistent with the idea that a major 

limiting factor of visual sensitivity is the dynamic range of post-receptoral spiking neurons, so the 

processes of light adaptation should be most pronounced early in the visual pathway. For simplicity, 

and to account for the large frequency range of exponential approximation, we assume that the 

variable LP-stages change together and the filters in the inhibition adapt in the same way. The 

equation for this model is given by, 

( ) ( )( )
( ) ( )

+ −
=

+ +

22

32 2 2 2
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f k f
A f g

f f f f
  or 

( )( ) ( )( )( ) ( ) ( )= + + − − + − +
22 2 2 2 2

10 10 10 10log log 1 3log logc c cLA f G f k f f f f f , (L) 

where fc and fcL are the corner frequencies of the variable and fixed stages, respectively. This 

function, where G=log10(g), was fitted to the TCSF data by varying G, fc, fcL and k using a nonlinear 

least squares procedure in SigmaPlot or MATLAB. Note that fcL was fixed across observers and light 

levels, k was fixed separately for each observer (except at low levels), and G and fc varied both with 

observer and with light level. The fits are plotted as the black or gray lines in Figs 2-6. The shape of 

Equation (L) depends on k, fc and fcL. 

The general equation for our full model does not lend itself to a simple Taylor series expansion 

as it did in the single leaky integrator case, so instead we use a technique from computer vision to 

examine the approximate straight-line portion of the log sensitivity versus linear frequency plot, 

namely the Hough transform [18]. Any straight-line can be parameterised by two quantities, one 

denoting a direction and one denoting a position, often given as the slope and the intercept of the y-

axis. In the Hough transform these quantities are typically taken as the orientation of the line, θ, and 

its shortest distance to the centre of the image, ρ. In computer vision, the transform is used to map 

each point in an image to a segment of a sinusoidal curve through θ-ρ space. Points that are 

collinear will produce curves that intersect at a single point (θ, ρ); i.e., a straight-line in the image 

will appear as a peak in the summed distribution of curves in θ-ρ space. We generated an image of 

the TCSF curve (with values of fc=15, fcL=30 and k=0.8) and applied the Hough transform to extract 

the largest (approximately) straight line in the image. From this we can find the range of the linear fit 

in terms of sensitivity (~1.75 log10 units) and frequency (in this case, between about 13.1 and 47.1 

Hz), and the slope is -19.4 Hz/decade. 
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High-frequency linearity and low frequency Weber’s law 

At high frequencies (when f >> fc & fcL) the equation for our model (J) simplifies to: 

( ) 6

gA f
f

≈ ,      (M) 

which, in the traditional double logarithmic coordinates of Bode [19], is a straight-line with slope 

of -6 passing through log10(g) at 1 Hz where -6 log10(f) = 0. If the high-frequency power law region of 

each TCSF were within the visible range, then high-frequency linearity would hold if and only if g 

were constant. Inspection of Panel [B] of Fig 9 shows this is approximately true up to about 3.5 log10 

Tds. However, as noted above, the region where the power law approximation holds lies largely 

above the temporal acuity limit above which sensitivity cannot be measured and below which TCSFs 

are approximately exponential functions. In semi-logarithmic coordinates the exponential losses in 

sensitivity appear as straight-lines of different slopes, and so cannot strictly conform to "high-

frequency linearity", i.e., they could only coincide at a single intersection point, not over an 

extended range. Plotted on a logarithmic frequency scale, however, these lines accelerate 

downwards and only appear to coincide. We suggest that the notion of high-frequency linearity is an 

inappropriate inference based on the way in which amplitude sensitivity has been plotted in the 

past; it is not a feature of visual sensitivity. 

At low frequencies (when f << fc & fcL) our model (J) simplifies to: 

   ( ) ( )−
=

2

4 2

1
0

c cL

g k
A

f f
      (N) 

Now Weber's Law holds if ΔI/I is constant, where ΔI=A is the amplitude threshold. In our model k 

and fcL are fixed across light levels, but g and fc vary, and, from Equation (N), Weber’s law will hold if: 

=
4

cf W
Ig

,      (O) 

where W is a constant that is proportional to the Weber fraction. Below about 3.4 log10 Td, g is 

constant (Fig 9[B]) so Weber’s law will hold if fc increases in proportion to the 4th root of I. However, 

the best fitting power law function relating fc to I (see Equation (3), plotted as the blue curve in Fig 

9[A]) has an exponent of 0.181, which corresponds to the 5.5th root of I. Above 3.4 log10 Td, fc is 

constant while g decreases in proportion to I (see Equation (4) and Fig 9[B]), so here W will be 

constant. Thus, according to our model, Weber’s law is not strictly maintained at low frequencies at 
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low- to mid-light levels. Note that low-frequency flicker thresholds are distinct from flash thresholds, 

which do indeed show good adherence to Weber’s law over a large range of light levels [20], but this 

will likely depend on the shape and size of the impulse response rather than flicker sensitivity at any 

specific frequency. 
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Tables 

Level 
De Lange (1958) Kelly (1961) Roufs (1972) Stockman et al. (2006) 

V L DHK HJM RK ML MM 
Slope R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope R2 

1 -12.61 
±0.35 0.997 -12.05 

±0.31 0.994 -13.40 
±0.83 0.986 -8.64 

±0.56 0.967 -6.64 
±0.38 0.981 -11.69 

±0.00 1.000 -9.17 
±0.55 0.989 

2 -13.38 
±0.47 0.991 -12.53 

±0.53 0.989 -10.15 
±0.38 0.994 -8.58 

±0.47 0.965 -7.17 
±0.30 0.988 -12.50 

±0.71 0.994 -11.22 
±1.03 0.967 

3 -14.33 
±0.58 0.990 -14.68 

±0.30 0.998 -16.40 
±1.05 0.976 -11.54 

±0.47 0.982 -10.03 
±0.35 0.990 -15.19 

±0.24 0.985 -15.15 
±1.13 0.962 

4 -14.59 
±0.52 0.990 -13.17 

±0.45 0.993 -19.18 
±1.05 0.985 -12.84 

±0.78 0.975 -12.57 
±0.14 0.999 -17.79 

±1.61 0.961 -16.56 
±0.66 0.987 

5 -14.37 
±0.16 0.999 -17.43 

±0.78 0.986 -27.25 
±1.84 0.978 -16.38 

±0.48 0.985 -14.02 
±0.53 0.990 -24.20 

±1.93 0.963 -22.78 
±0.76 0.988 

6 -14.52 
±0.33 0.996 -17.04 

±0.99 0.983 -32.19 
±1.93 0.982 -19.54 

±0.77 0.986 -18.50 
±1.37 0.968 -28.95 

±1.34 0.989 -22.46 
±0.58 0.993 

7 -21.61 
±0.74 0.991 -19.75 

±1.22 0.978   -23.00 
±0.84 0.953   -22.67 

±0.80 0.990 -21.53 
±0.68 0.989 

8 -23.68 
±0.58 0.996     -23.03 

±0.69 0.989   -27.46 
±2.06 0.973 -24.61 

±0.72 0.990 

9           -23.56 
±1.02 0.987   

10           -24.01 
±0.97 0.989   

 

Table A  
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Level 

Rovamo et al. 
(1999) Swanson et al. (1987) Von Wiegand et al. (1995) 

AR WS TU VMC TEW 
Slope R2 Slope R2 Slope R2 Slope R2 Slope R2 

1 -- -- -8.69 
±0.28 0.995 -13.34 

±2.00 0.917 -9.68 
±0.40 0.985 -9.38 

±0.88 0.942 

2 -- -- -11.04 
±0.54 0.990 -10.78 

±0.23 0.999 -12.26 
±0.52 0.986 -10.84 

±0.69 0.976 

3 -- -- -13.81 
±1.24 0.969 -10.11 

±0.80 0.981 -17.57 
±0.65 0.988 -17.88 

±0.93 0.976 

4 -8.81 
±0.56 0.995 -27.08 

±3.89 0.942 -20.02 
±0.95 0.991 -21.95 

±0.91 0.990 -21.99 
±2.14 0.930 

5 -14.97 
±1.68 0.963         

6 -16.20 
±0.95 0.993         

7 -17.74 
±1.42 0.987         

8 -27.67 
±1.56 0.994         

9           

10           

 

Table A (continued) 

Best-fitting falling high frequency slopes in units of Hz per log10 unit and R2 values for each fit. Levels are from low to high as listed in the keys of Figure 2-6.  
The high-frequency slope cannot be reliably estimated at the lowest three levels for Rovamo et al. (1999) because of limited data. For other details see text. 
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Level 
De Lange (1958) Kelly (1961) Roufs (1972) Stockman et al. (2006) 

V L DHK HJM RK ML MM 
fc log10(g) fc log10(g) fc log10(g) fc log10(g) fc log10(g) Fc log10(g) fc log10(g) 

1           5.79 
±0.62 

7.43 
±0.17 

5.65 
±0.31 

7.71 
±0.08 

2           7.97 
±0.49 

7.66 
±0.10 

8.14 
±0.39 

7.80 
±0.07 

3     11.45 
±0.36 

8.98 
±0.05   7.93 

±0.27 
7.43 

±0.06 
9.96 

±0.53 
7.68 

±0.08 
10.55 
±0.44 

7.84 
±0.06 

4 8.29 
±0.28 

8.48 
±0.06 

8.87 
±0.30 

8.68 
±0.05 

18.91 
±0.68 

9.07 
±0.05 

7.07 
±0.24 

7.76 
±0.06 

9.83 
±0.32 

7.38 
±0.05 

12.83 
±0.64 

7.75 
±0.07 

12.87 
±0.53 

7.65 
±0.05 

5 9.87 
±0.33 

8.31 
±0.05 

12.18 
±0.43 

8.49 
±0.05 

26.42 
±1.04 

8.82 
±0.06 

11.59 
±0.40 

7.97 
±0.04 

13.57 
±0.52 

7.39 
±0.06 

17.69 
±0.92 

7.66 
±0.07 

17.48 
±0.73 

7.54 
±0.05 

6 11.44 
±0.39 

8.24 
±0.05 

14.21 
±0.53 

8.33 
±0.05 

33.36 
±1.38 

8.19 
±0.06 

15.19 
±0.57 

7.82 
±0.04 

20.26 
±0.90 

6.99 
±0.06 

20.76 
±1.24 

7.44 
±0.09 

16.48 
±0.67 

6.74 
±0.05 

7 15.29 
±0.56 

7.85 
±0.04 

17.07 
±0.61 

8.25 
±0.04   22.18 

±0.97 
7.58 

±0.05   21.14 
±0.98 

6.72 
±0.06 

16.39 
±0.67 

6.07 
±0.05 

8 17.04 
±0.64 

7.02 
±0.04     17.89 

±0.61 
6.59 

±0.04   18.51 
±1.00 

5.84 
±0.08 

16.39 
±0.66 

5.44 
±0.05 

9           19.24 
±0.93 

5.34 
±0.06   

10           20.44 
±0.97 

4.94 
±0.06   

k 0.81±0.01 0.83±0.01 0.90±0.01 0.80±0.01 0.78±0.01 0.78±0.01 0.84±0.02 

 

 

Table B 
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Level 

Rovamo et al. 
(1999) Swanson et al. (1987) Von Wiegand et al. (1995) 

AR WS TU VMC TEW 
fc log10(g) fc log10(g) fc log10(g) fc log10(g) fc log10(g) 

1          
 

2   6.10 
±0.27 

7.52 
±0.09 

5.99 
±0.22 

7.65 
±0.07 

8.51 
±0.41 

7.65 
±0.07 

7.31 
±0.25 

7.42 
±0.07 

3   10.10 
±0.45 

7.59 
±0.07 

9.52 
±0.39 

7.61 
±0.07 

12.71 
±0.63 

7.39 
±0.06 

12.03 
±0.45 

7.41 
±0.05 

4 5.68 
±0.27 

7.48 
±0.09 

15.09 
0.83 

7.27 
±0.09 

14.59 
±0.64 

7.38 
±0.07 

17.36 
±1.06 

6.97 
±0.07 

17.27 
±0.76 

7.10 
±0.06 

5 8.00 
±0.32 

7.68 
0.07         

6 9.95 
±0.44 

7.68 
±0.07         

7 13.16 
±0.69 

7.67 
±0.08         

8 17.31 
±1.14 

7.63 
±0.10         

9           

10           

k 0.80±0.01 0.80±0.01 0.83±0.01 0.61±0.03 0.79±0.02 

 

Table B (continued) 

Best-fitting variable corner frequencies (fc), logarithmic gains (log10(g)) and feedforward gain (k). Two LP-stages, which were fixed across observers, had 
corner frequencies of 30.92 ±2.23 Hz. Adjusted R2 for simultaneous fit = 99.6% Levels are from low to high as listed in the keys of Figure 2-6.  For details see 
text. 

 


