Supplementary Information

Sulfenamide-Enabled *Ortho* Thiolation of Aryl Iodides via Palladium/Norbornene Cooperative Catalysis

Li, R. et al

Supplementary Tables

Supplementary Table 1. Control experiments

Me	+ (V=SPh + (CO ₂ tBu t-Bu t-Bu + (b) t-Bu + (b) t-Bu + (c) t-Bu + (c) (c) t-Bu + (c) t-Bu + (c) t-B	Me CO ₂ /Bu SPh
1a	(±)– 3a 2a "standard condition"	4a
1.0 equiv	2.0 equiv 2.0 equiv	
Entry	Change from the "standard condition"	Yield [%] ^a
1	none	74
2	no Pd(OAc) ₂	0
3	no norbornene	0
4	no Cs ₂ CO ₃	6
5	no CuTC	54
6	5 mol% Pd(OAc) ₂	15
7	$P(tBu)_{3}$ • HBF ₄ instead of P(2-furyl) ₃	trace
8	PCy_3 instead of $P(2-furyl)_3$	0
9	XPhos instead of P(2-furyl) ₃	7
10	PPh_3 instead of P(2-furyl) ₃	3
11	$P(4-OMeC_6H_4)_3$ instead of $P(2-furyl)_3$	2
12	dioxane instead of EtOAc	66
13	toluene instead of EtOAc	32
14	85 °C	23

^aUnless otherwise noted, the reaction was run with **1** (0.15 mmol), **2** (0.30 mmol), sulfur electrophile (0.30 mmol), $Pd(OAc)_2$ (0.015 mmol), P(2-furyl)₃ (0.0375 mmol), NBE (0.075 mmol), Cs_2CO_3 (0.30 mmol) and CuTC (0.03 mmol) in ethyl acetate (3.0 mL) at 105 °C for 12 h. The yield was determined by ¹H-NMR using 1,3,5-trimethoxylbenzene as the internal standard.

Supplementary Methods

General Information

Unless noted otherwise, all solvents were dried by filtration through a Pure-Solv MD-5 Solvent Purification System (Innovative Technology). Ethyl acetate was distilled freshly over calcium hydride and carefully freeze-pump-thawed. Reaction temperatures were reported as the temperatures of the bather surrounding the flasks or vials. Sensitive reagents and solvents were transferred under nitrogen into a nitrogen-filled glovebox with standard techniques. Cesium carbonate was purchased from STREM, stored and used directly in the glovebox. Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm commercial silica gel plates (silica gel 60, F254, EMD chemical). Vials (15 x 45 mm 1 dram (4 mL) with PTFE lined cap attached) were purchased from Qorpak and flame-dried and cooled in a desiccator prior to usage. High resolution mass spectra (HR-MS) were recorded on an Agilent 6530 LC Q-TOF mass spectrometer using electrospray ionization with fragmentation voltage set at 115 V and processed with an Agilent MassHunter Operating System. Infrared spectra were recorded on a Nicolet 380 FTIR using neat thin film technique. Nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded with a Bruker DMX 400 (400 MHz, ¹H at 400 MHz, ¹³C at 101 MHz) or Bruker Model DMX 500 (500 MHz, ¹H at 500 MHz, ¹³C at 126 MHz). Chemical shifts were reported in parts per million (ppm, δ), downfield from tetramethylsilane (TMS, δ =0.00ppm) and were referenced to residual solvent (CDCl₃, δ =7.26 ppm (¹H) and 77.00 ppm (¹³C)). All the ¹⁹F chemical shifts were not referenced. Coupling constants were reported in Hertz (Hz). Data for ¹H NMR spectra were reported as follows: chemical shift (ppm, referenced to protium, s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of dodoublets, m = multiplet, coupling constant (Hz), and integration). All other materials were obtained from Sigma-Aldrich Corporation or Combi-Blocks Inc and were used as received.

Supplementary Figures

Supplementary Figure 1. Preparation of aryl iodides 1n

A solution of **12** (2.13 g, 8.6 mmol, 1.0 equiv) and Et₃N (1.8 mL, 12.9 mmol, 1.5 equiv) in DCM (100 mL) was cooled to -10 °C using NaCl/ice cooled water bath. MsCl(1.18 g, 10.3 mmol, 1.2 equiv) was added dropwise over 5 min. The reaction mixture was stirred for 25min, maintaining a temperature between 0 and -10 °C, before pouring it into ice water (100 mL). The layers were separated and the organic layer was washed subsequently with additional ice water (100 mL), NH₄Cl solution (sat., 2x100 mL), NaHCO₃ solution (sat., 2x100 mL). The resulting solution was then dried over MgSO₄, filtrated and concentrated under reduced pressure to give crude **13** (2.7 g, 96%).¹

To a 40 mL vial charged with a stirred bar was added **13** (1.17 g, 3.6 mmol, 1.2 equiv) and vitamin E (1.29 g, 3.0 mmol, 1.0 equiv). 16 mL anhydrous DMF was added to the vial and the reaction was cooled at 0 °C followed by adding K_2CO_3 (829 mg, 6.0 mmol, 2.0 equiv). The reaction was then warmed to room temperature and stirred overnight. Upon completion, as judged by TLC analysis, the mixture was filtered through Celite and poured into water. The aqueous phase was extracted with Et_2O for three times and then washed with water, brine and dried over Na_2SO_4 . The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography to afford compound **1n** (1.3 g, 66 %) as a yellow oil.

1n: Yellow oil (66%). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.1 Hz, 1H), 7.39 (d, *J* = 2.0 Hz, 1H), 7.02 (dd, *J* = 8.1, 2.1 Hz, 1H), 4.62 (s, 2H), 2.62 (s, 2H), 2.48 (s, 3H), 2.21 (s, 3H), 2.16 (s, 3H), 2.12 (s, 3H), 1.88 – 1.72 (m, 2H), 1.63 – 1.49 (m, 3H), 1.49 – 1.36 (m, 4H), 1.33 – 1.22 (m, 10H), 1.21 – 1.03 (m, 7H), 0.93 – 0.82 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 148.1, 141.6, 139.1, 138.5, 129.0, 128.0, 126.7, 126.0, 123.1, 117.8, 100.1, 75.0, 74.0, 40.2, 39.5, 37.5, 32.9, 32.8, 31.4, 28.3, 28.1, 25.0, 25.0, 24.6, 24.0, 22.9, 22.8, 21.2, 20.8, 19.9, 19.8, 19.8, 13.0, 12.2, 12.0. **IR** (KBr): υ 2925, 2866, 1725, 1512, 1460, 1415, 1377, 1257, 1166, 1088 cm⁻¹. **HRMS** (ESI): Calculated for C₃₇H₅₈IO₂ (M+H⁺):661.3476, found:661.3475.

Supplementary Figure 2. Preparation of aryl iodides 1r

14 and 15 were prepared according to the literature reported procedure.² To a solution of Ac₂O (766 mg, 7.5 mmol, 1.5 equiv)), Et₃N (759 mg, 7.5 mmol, 1.5 equiv) and DMAP (48.9 mg, 0.4 mmol, 0.08 equiv) in DCM (10 mL) was added 15 (1.2 g, 5 mmol, 1.0 equiv). The reaction mixture was then stirred at room temperature for 19 h. Upon completion, HCl (2M, 60 mL) was added into the reaction flask. The mixture was extracted with Et₂O and organic layers were washed with sat. NaHCO₃, brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography to afford compound 1r (1.39 g, 98 %) as a colorless oil.

1r: Colorless oil (98%). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.31 (d, *J* = 5.3 Hz, 1H), 7.05 (d, *J* = 5.2 Hz, 1H), 5.22 (s, 2H), 2.11 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 170.7, 136.7, 135.2, 128.2, 82.5, 62.3, 21.0. **IR** (KBr): υ 3105, 2950, 1743, 1438, 1375, 1223, 1023, 857, 776, 710 cm⁻¹.

Preparation of thiolation reagent

S3-S18 were prepared according to literature reported procedure³⁻⁸.

S4: Yellow oil (60%). ¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.75$ (d, *J*=33.0, 1H), 7.47 – 7.25 (m, 10H). ¹³**C** NMR (101 MHz, CDCl₃) $\delta = 167.4$, 163.9, 129.5, 129.1, 128.3, 127.4, 126.6, 125.6, 125.0. **IR** (KBr): v 3060, 1696, 1593, 1489, 1440, 1253, 1126, 1024, 739, 689 cm⁻¹. **HRMS** (ESI): Calculated for C₁₃H₁₂NOS (M+H⁺): 230.0634, found: 230.0632.

S6: White solid (52%). ¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.40 - 8.32$ (m, 1H), 8.12 (s, 1H), 7.73 (dtd, *J*=16.6, 7.4, 1.4, 2H), 7.64 - 7.58 (m, 1H), 7.58 - 7.48 (m, 2H), 7.29 - 7.19 (m, 3H). ¹³**C** NMR (101 MHz, CDCl₃) $\delta = 161.1$, 141.0, 135.9, 134.1, 132.3, 130.0, 129.6, 129.4, 129.1, 128.0, 127.9, 126.4. **IR** (KBr): v 3058, 1674, 1594, 1475, 1440, 1321, 1287, 1232, 1136, 1051 cm⁻¹. **HRMS** (ESI): Calculated for C₁₄H₁₀N₂OS (M⁺): 254.0508, found: 254.0517.

S5: Colorless oil (56%). ¹**H NMR** (400 MHz, CDCl₃) δ = 8.58 (s, 1H), 7.33 – 7.09 (m, 5H), 1.40 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 170.0, 164.0, 129.2, 127.0, 124.5, 61.5, 28.8. **IR** (KBr): v 2976, 1689, 1582, 1478, 1440, 1366, 1258, 1207, 1146, 740 cm⁻¹. **HRMS** (ESI): Calculated for C₁₁H₁₅NOSNa (M+Na⁺): 232.0764, found: 232.0774.

S7: Colorless oil (50%). ¹**H NMR** (400 MHz, CDCl₃) δ = 7.43 – 7.37 (m, 2H), 7.26 – 7.17 (m, 5H), 7.11 – 7.04 (m, 3H), 1.51 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 178.0, 141.0, 138.6, 129.8, 129.0, 127.8, 127.0, 126.3, 123.9, 63.4, 29.3. **IR** (KBr): v 3059, 2975, 1663, 1581, 1478, 1393, 1363, 1287, 1187, 1117 cm⁻¹. **HRMS** (ESI): Calculated for C₁₇H₁₉NOSNa (M+Na⁺): 308.1080, found: 308.1090.

S10: White solid (43%). ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.85 - 7.80$ (m, 2H), 7.46 - 7.41 (m, 2H), 7.39 - 7.33 (m, 4H), 7.30 - 7.24 (m, 1H), 3.29 (s, 3H), 2.46 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 144.2$, 136.8, 135.3, 129.8, 129.2, 127.8, 127.7, 126.4, 42.5, 21.7. **IR** (KBr): v 1580, 1437, 1350, 1302, 1164, 1088, 849, 819, 739, 707, 678 cm⁻¹. **HRMS** (ESI): Calculated for C₁₄H₁₅NO₂S₂ (M⁺): 293.0539, found: 293.0544.

S14: Yellow solid (36%). ¹**H** NMR (400 MHz, CDCl₃) $\delta = 7.37 - 7.29$ (m, 4H), 7.26 - 7.20 (m, 1H), 3.91 - 3.74 (m, 2H), 2.79 - 2.67 (m, 2H), 1.87 (m, J = 10.0, 8.8, 6.1, 2H), 1.75 (dt, J = 11.8, 6.0, 2H), 1.58 (dt, J = 12.1, 6.0, 2H), 1.49 (dt, J = 10.2, 6.1, 2H). ¹³**C** NMR (101 MHz, CDCl₃) $\delta = 177.5, 137.4, 129.1, 127.2, 126.8, 53.5, 34.5, 29.6, 29.0, 26.1, 24.2.$ **IR** $(KBr): <math>\upsilon$ 2926, 1664, 1477, 1439, 1374, 1245, 1120, 1084, 738, 690 cm⁻¹. **HRMS** (ESI): Calculated for C₁₃H₁₇NOS (M⁺): 235.1025, found: 235.1017.

S15: Yellow solid (83%). ¹**H** NMR (400 MHz, CDCl₃) $\delta = 7.36 - 7.27$ (m, 4H), 7.26 - 7.19 (m, 1H), 3.99 (s, 1H), 2.96 (dd, *J*=2.7, 1.2, 1H), 2.13 - 2.01 (m, 1H), 1.98 - 1.88 (m, 1H), 1.81 (ddd, *J*=9.9, 5.8, 1.4, 1H), 1.76 - 1.62 (m, 2H), 1.49 (d, *J*=9.7, 1H). ¹³**C** NMR (101 MHz, CDCl₃) $\delta = 180.3$, 137.9, 129.2, 127.3, 126.4, 66.4, 45.2, 40.1, 28.5, 24.3. **IR** (KBr): υ 2951, 2875, 1722, 1581, 1476, 1439, 1331, 1209, 1141, 1101 cm⁻¹. **HRMS** (ESI): Calculated for C₁₂H₁₃NOS (M⁺): 219.0712, found: 219.0720.

S17: Yellow solid (21%). ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.57$ (dd, J=8.2, 0.7, 1H), 7.24 – 7.09 (m, 7H), 6.97 (td, J=7.4, 1.0, 1H), 2.92 (dd, J=8.6, 5.6, 2H), 2.85 – 2.76 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 172.0$, 142.1, 137.1, 129.3, 127.8, 127.8, 127.4, 127.0, 124.9, 124.1, 118.5, 33.2, 25.6. **IR** (KBr): v 2759, 1701, 1603, 1582, 1485, 1457, 1438, 1347, 1292, 1251 cm⁻¹. **HRMS** (ESI): Calculated for C₁₅H₁₃NOSNa (M+Na⁺): 278.0610, found: 278.0618.

S18: Yellow solid (80%). ¹**H NMR** (400 MHz, CDCl₃) δ = 7.47 (dd, *J*=8.0, 0.9, 1H), 7.44 – 7.38 (m, 2H), 7.36 – 7.24 (m, 4H), 7.15 (dtd, *J*=9.0, 7.5, 1.4, 2H), 2.60 (t, *J*=6.9, 2H), 2.49 (t, *J*=6.9, 2H), 2.18 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 174.9, 145.2, 137.5, 134.6, 129.2, 128.9, 128.1, 128.0, 127.8, 127.0, 124.3, 33.50, 29.90, 28.4. **IR** (KBr): υ 2946, 1694, 1580, 1484, 1455, 1338, 1304, 1265, 1222, 1140 cm⁻¹. **HRMS** (ESI): Calculated for C₁₆H₁₅NOS (M⁺): 269.0874, found: 269.0872.

Supplementary Figure 3. Preparation of thiolation reagent 3a

The seven-membered lactam was prepared according to the literature reported procedure.⁹ In a 100 ml Schlenk flask, dry potassium hydride solid (0.48 g, 12 mmol, 1.2 equiv) was suspended in 15 ml dry THF solution. A 10 ml THF solution of the corresponding amide (10 mmol) was added dropwise at room temperature. The resulting solution was stirred at room temperature for two hours until no more hydrogen gas was released. The solution was cooled to -78 °C before a 10 ml THF solution of the corresponding sulfenyl chloride (freshly distilled) was added dropwise.¹⁰ The resulting solution was allowed to warm up to room temperature slowly and stirred overnight. The reaction was quenched by 10% citric acid (50 ml), and the aqueous layer was extracted three times with ethyl acetate (75 ml X 3). The combined organic phases were washed with sodium bicarbonate solution (100 ml), water (100 ml) and brine. The mixture was dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by silica gel chromatography to afford the corresponding sulfenamide compound.

S17: White solid (59%). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 5.57 (s, 1H), 3.00 (ddd, J = 9.8, 5.9, 1.0 Hz, 1H), 2.55 – 2.45 (m, 1H), 2.44 – 2.36 (m, 1H), 1.99 (dddq, J = 10.2, 4.3, 2.9, 1.5 Hz, 1H), 1.91 (ddd, J = 13.7, 4.5, 3.0 Hz, 1H), 1.87 – 1.80 (m, 1H), 1.59 – 1.40 (m, 2H), 1.19 (dddd, J = 13.8, 12.5, 9.6, 3.1 Hz, 1H), 0.93 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.5, 63.0, 36.4, 33.6, 30.4, 29.9, 26.4, 23.4. **IR** (KBr): υ 3216, 3067, 2941, 2863, 1652, 1443, 1415, 1372, 1344, 1190 cm⁻¹. HRMS (ESI): Calculated for C₁₀H₁₉NONa(M+Na⁺):192.1359, found:192.1367. Both ¹H NMR and ¹³C NMR match the literature reported data.¹¹

S19: White solid (74%). Mp = 96.1 – 96.6 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (d, *J* = 7.3 Hz, 2H), 7.29 (td, *J* = 7.3, 1.1 Hz, 2H), 7.25 – 7.19 (m, 1H), 3.57 (ddd, *J* = 10.3, 8.1, 2.7 Hz, 1H), 2.73 (dd, *J* = 13.6, 3.7 Hz, 1H), 2.63 (dd, *J* = 13.7, 6.8 Hz, 1H), 2.31 (dp, *J* = 9.2, 6.6 Hz, 1H), 2.06 – 1.93 (m, 1H), 1.91 – 1.73 (m, 2H), 1.54 (dt, *J* = 15.9, 8.5 Hz, 1H), 1.35 – 1.21 (m, 1H), 0.95 (dd, *J* = 12.4, 6.8 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 129.2, 128.9, 127.9, 72.8, 43.2, 31.5, 30.2, 28.1, 26.7, 20.8, 19.7. IR (KBr): v 3751, 3650, 2961, 2870, 1793, 1701, 1654, 1533, 1457, 1388 cm⁻¹. HRMS (ESI): Calculated for C₁₆H₂₃NOSNa(M+Na⁺): 300.1393, found: 300.1387.

S21: Orange solid (76%). Mp = 96.1 – 96.6 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (d, *J* = 1.4 Hz, 4H), 7.17 (ddt, *J* = 7.1, 5.6, 2.2 Hz, 1H), 4.24 – 4.11 (m, 1H), 2.88 (ddd, *J* = 14.5, 8.9, 3.2 Hz, 1H), 2.75 (ddd, *J* = 14.1, 8.4, 3.0 Hz, 1H), 1.86 – 1.52 (m, 6H), 1.37 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.4, 139.5, 129.1, 126.7, 125.8, 60.2, 37.3, 35.8, 26.5, 23.1, 20.7. **IR** (KBr): υ 2973, 2931, 2858, 1673, 1477, 1439, 1293, 1185, 739, 690 cm⁻¹. **HRMS** (ESI): Calculated for C₁₃H₁₇NOSNa(M+Na⁺): 258.0923, found: 258.0930.

3a: Yellow oil (82%). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.45 (m, 2H), 7.33 – 7.23 (m, 3H), 3.73 (dd, *J* = 9.8, 6.8 Hz, 1H), 2.84 – 2.70 (m, 1H), 2.63 (d, *J* = 13.7 Hz, 1H), 1.82 – 1.69 (m, 2H), 1.68 – 1.56 (m, 2H), 1.50 (dt, *J* = 23.5, 8.8 Hz, 1H), 1.27 – 1.12 (m, 1H), 1.06 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 177.8, 138.0, 130.3, 128.9, 128.3, 74.8, 37.4, 34.6, 28.0, 26.4, 22.6. **IR** (KBr): v 2950, 2868, 1670, 1478, 1439, 1401, 1275, 1164, 1080, 1024 cm⁻¹. **HRMS** (ESI): Calculated for C₁₆H₂₃NOS(M⁺): 300.1495, found: 300.1487.

3b: Orange oil (82%). ¹**H** NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 2H), 3.80 – 3.64 (m, 1H), 2.74 – 2.48 (m, 2H), 2.29 (s, 3H), 1.59 (m, 5H), 1.03 (s, 10H). ¹³**C** NMR (101 MHz, CDCl₃) δ 177.5, 138.9, 134.2, 131.6, 129.6, 74.7, 37.3, 34.3, 27.8, 26.1, 22.5, 21.3. **IR** (KBr): v 2950, 2868, 1669, 1491, 1479, 1401, 1366, 1275, 1164, 1141 cm⁻¹. **HRMS** (ESI): Calculated for C₁₇H₂₅NOS (M⁺):291.1651, found: 291.1659.

3c: Yellow solid (67%). ¹**H** NMR (400 MHz, CDCl₃) δ 7.66 – 7.58 (m, 2H), 6.88 – 6.78 (m, 2H), 3.84 – 3.78 (m, 3H), 3.75 (dd, *J* = 12.6, 6.3 Hz, 1H), 2.66 (ddd, *J* = 10.3, 9.6, 4.5 Hz, 1H), 2.52 (s, 1H), 1.84 – 1.31 (m, 6H), 1.07 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 177.4, 160.8, 135.5, 128.5, 114.4, 114.4, 74.2, 55.3, 37.2, 34.2, 27.7, 25.8, 22.5. **IR** (KBr): v 2950, 2868, 1664, 1590, 1493, 1428, 1172, 1140, 1028, 831 cm⁻¹. **HRMS** (ESI): Calculated for C₁₇H₂₅NO₂S (M⁺): 307.1601, found: 307.1603.

3d: Orange oil (30%). ¹**H** NMR (400 MHz, CDCl₃) δ 8.00 – 7.88 (m, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 3.88 (s, 3H), 3.71 (dd, *J* = 9.6, 5.9 Hz, 1H), 2.78 (dt, *J* = 12.4, 7.4 Hz, 2H), 1.90 – 1.68 (m, 4H), 1.55 (dd, *J* = 22.4, 10.6 Hz, 1H), 1.42 (m, 1H), 1.04 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 178.1, 166.7, 144.7, 130.0, 128.4, 126.3, 74.7, 52.2, 37.1, 34.8, 28.1, 27.2, 23.4, 22.7. **IR** (KBr): v 2951, 2869, 1720, 1674, 1593, 1479, 1436, 1399, 1276, 1177 cm⁻¹. **HRMS** (ESI): Calculated for C₁₈H₂₅NO₃SNa(M+Na⁺): 358.1447, found: 358.1449.

3e: Orange oil (85%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.28 – 8.06 (m, 2H), 7.37 – 7.23 (m, 2H), 3.83 – 3.67 (m, 1H), 2.85 (s, 2H), 1.75 (m, 6H), 1.08 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 177.43, 163.12 (d, *J* = 249.5 Hz), 134.22 (d, *J* = 6.5 Hz), 132.97 (d, *J* = 2.8 Hz), 74.89, 37.25, 34.22, 27.81, 26.07, 22.43. **IR** (KBr): v 2951, 2869, 1668, 1587, 1489, 1394, 1275, 1223, 1164, 1141 cm⁻¹. **HRMS** (ESI): Calculated for C₁₆H₂₂FNOSNa (M+Na⁺): 318.1298, found: 318.1295.

3f: Orange oil (74%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.5 Hz, 2H), 7.31 – 7.25 (m, 2H), 3.72 (dd, *J* = 9.8, 6.8 Hz, 1H), 2.80 – 2.55 (m, 2H), 1.85 – 1.42 (m, 5H), 1.20 (m, 1H), 1.05 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.8, 136.4, 134.4, 131.7, 129.1, 74.8, 37.2, 34.4, 27.9, 26.4, 22.5. **IR** (KBr): v 2950, 2868, 1670, 1570, 1474, 1401, 1275, 1260, 1163, 1114 cm⁻¹. **HRMS** (ESI): Calculated for C₁₆H₂₂ClNOS(M⁺): 311.1105, found: 311.1104.

3g: Orange oil (70%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.33 (d, *J* = 8.5 Hz, 2H), 3.69 (dd, *J* = 9.8, 6.7 Hz, 1H), 2.77 – 2.5zxcVds5 (m, 2H), 1.83 – 1.40 (m, 5H), 1.22 (m, 1H), 1.03 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.9, 137.2, 132.1, 131.8, 122.5, 75.0, 37.3, 34.6, 28.1, 26.6, 22.7. **IR** (KBr): υ 2950, 2868, 1670, 1472, 1401, 1275, 1260, 1230, 1163, 1008 cm⁻¹. **HRMS** (ESI): Calculated for C₁₆H₂₂BrNOSNa(M+Na⁺): 378.0498, found: 378.0506.

3h: Orange oil (87%). ¹**H NMR** (400 MHz, 126.9, 125.7 (q, *J* = 3.8 Hz), δ 124.1 (q, *J* = 272.0 Hz). 74.7, 37.1, 34.8, 28.0, 27.2, 23.6, 22.6. **IR** (KBr): υ CDCl₃) δ 7.52 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.2 Hz, 2H), 3.71 (dd, *J* = 9.6, 6.0 Hz, 1H), 2.87 – 2.66 (m, 2H), 1.90 – 1.62 (m, 4H), 1.55 gi(dd, *J* = 22.9, 10.9 Hz, 1H), 1.45 – 1.32 (m, 1H), 1.04 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 178.0, 143.3, 128.9 (q, *J* = 32.7 Hz), 2953, 2870, 1675, 1605, 1479, 1400, 1326, 1164, 1123, 1088 cm⁻¹. **HRMS** (ESI): Calculated for C₁₇H₂₂F₃NOS(M⁺): 345.1369, found: 345.1361.

3i: Yellow solid (87%). Mp = 95.5 – 96.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.03 (m, 4H), 3.72 (dd, *J* = 9.6, 6.7 Hz, 1H), 2.82 – 2.62 (m, 2H), 2.36 (s, 3H), 1.88 – 1.56 (m, 5H), 1.46 – 1.31 (m, 1H), 1.06 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 136.9, 135.1, 130.2, 128.2, 126.8, 126.4, 74.8, 37.4, 34.7, 28.2, 26.9, 19.8. IR (KBr): υ

2951, 2868, 1670, 1589, 1466, 1401, 1275, 1230, 1164, 1141 cm⁻¹. **HRMS** (ESI): Calculated for $C_{17}H_{25}NOS(M^+)$:291.1651, found:291.1645.

3j: Orange oil (81%). ¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.08 (m, 3H), 6.92 (tdd, J = 8.4, 2.5, 1.0 Hz, 1H), 3.72 (dd, J = 9.7, 6.4 Hz, 1H), 2.87 – 2.60 (m, 2H), 1.88 – 1.62 (m, 4H), 1.55 (d, J = 10.8 Hz, 1H), 1.37 – 1.19 (m, 1H), 1.05 (s, 9H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 177.9, 162.6 (d, J = 249.0 Hz), 140.4 (d, J = 7.2 Hz), 124.2, 115.7 (d, J = 23.4 Hz), 114.7 (d, J = 21.3 Hz), 74.8, 37.1, 34.6, 28.0, 26.7, 23.0, 22.6. IR (KBr): v 2952, 2869, 1671, 1598, 1579, 1472, 1402, 1367, 1262, 1215 cm⁻¹. HRMS (ESI): Calculated for C₁₆H₂₂FNOSNa(M+Na⁺): 318.1298, found: 318.1303.

3k: Orange oil (81%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.79 (ddd, *J* = 8.8, 5.7, 3.3 Hz, 3H), 7.59 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.52 – 7.43 (m, 2H), 3.77 (dd, *J* = 9.6, 7.0 Hz, 1H), 2.91 – 2.59 (m, 2H), 1.81 – 1.45 (m, 5H), 1.22 – 1.02 (m, 10H). ¹³**C NMR** (101 MHz, CDCl₃) δ 178.0, 135.4, 133.4, 133.0, 129.1, 128.7, 128.0, 127.8, 126.7, 126.6, 74.7, 37.4, 34.6, 28.0, 26.5, 22.7. **IR** (KBr): υ 2950, 2868, 1667, 1624, 1500, 1478, 1402, 1366, 1275, 1164 cm⁻¹. **HRMS** (ESI): Calculated for C₂₀H₂₅NOS(M⁺): 327.1651, found: 327.1647.

Supplementary Figure 4. Palladium/norbornene-catalyzed ortho thiolation reaction

A flame-dried 7.0 mL vial A was charged with Pd(OAc)₂ (4.6 mg, 0.02 mmol, 10 mol%), CuTC (7.6 mg, 0.04 mmol, 20 mol%), TFP (11.6 mg, 0.05 mmol, 25 mol%) and ArI (0.2 mmol, 1.0 equiv). To another 4.0 mL vial B was weighed the thiolation reagent (0.6 mmol). The two vials were directly transferred into a nitrogen-filled glovebox without caps. Then, Cs₂CO₃ (130.4 mg, 0.4 mmol, 2.0 equiv) was added to vial A. In the third empty 4.0 mL vial C, NBE (18.8 mg, 0.2 mmol) was dissolved in 1.0 mL dry ethyl acetate. Half of this NBE solution (0.5 mL, 0.1 mmol, 50 mol%) was transferred into vial A. To the 4.0 mL vial B containing thiolation reagent was added 0.75 mL dry ethyl acetate. Two thirds of this thiolation reagent solution (0.5 mL, 0.4 mmol, 2.0 equiv) was transferred into vial A, before another 3.0 mL dry ethyl acetate was added. After acrylate **2** (0.4 mmol, 2.0 equiv) was added, vial A was tightly sealed, transferred out of glovebox and stirred on a pie-block preheated to 105 °C for 12 hours. After completion of the reaction, the mixture was filtered through a thin pad of silica gel. The filter cake was washed with ethyl acetate and the combined filtrate was concentrated. The residue was loaded to a small amount of silica gel and subjected to flash column chromatography to give the desired *ortho* thiolation product.

4a: Colorless oil (75%). $R_f = 0.3$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 16.3 Hz, 1H), 7.31 – 7.22 (m, 5H), 7.11 (d, J = 1.6 Hz, 3H), 6.01 (d, J = 16.4 Hz, 1H), 2.38 (s, 3H), 1.52 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 165.9, 141.0, 137.6, 136.2, 135.9, 135.6, 131.7, 129.7, 129.3, 128.6, 127.3, 126.8, 80.6, 28.3, 21.5. **IR** (KBr): υ 3057, 2977, 2930, 1711, 1639, 1583, 1478, 1367, 1314, 1152 cm⁻¹. **HRMS** (ESI): Calculated for C₂₀H₂₃O₂S (M+H⁺): 327.1413, found: 327.1403.

4b: Colorless oil (71%). $R_f = 0.2$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 16.1 Hz, 1H), 7.32 – 7.21 (m, 5H), 7.17 (t, J = 8.1 Hz, 1H), 6.89 (dd, J = 7.9, 1.1 Hz, 1H), 6.83 (d, J = 8.3 Hz, 1H), 6.67 (d, J = 16.1 Hz, 1H), 3.89 (s, 3H), 1.51 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 167.2, 159.5, 139.0, 137.3, 135.5, 131.6,

130.0, 129.3, 127.4, 125.6, 124.8, 124.3, 110.0, 80.2, 55.8, 28.4. **IR** (KBr): υ 2976, 2935, 1704, 1624, 1462, 1433, 1312, 1266, 1150, 1041 cm⁻¹. **HRMS** (ESI): Calculated for C₂₀H₂₂O₃S Na(M+Na⁺): 365.1182, found: 365.1185.

4c: White solid (52%). $R_f = 0.2$ (hexane/ethyl acetate = 20:1). Mp = 96.4 - 97.2 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, J = 16.1 Hz, 1H), 7.34 - 7.27 (m, 4H), 7.26 - 7.22 (m, 1H), 7.14 (dd, J = 8.3, 7.7 Hz, 1H), 7.07 (ddd, J = 8.3, 1.3, 0.5 Hz, 1H), 6.92 (dd, J = 7.7, 1.3 Hz, 1H), 6.62 (d, J = 16.1 Hz, 1H), 5.25 (s, 2H), 3.49 (s, 3H), 1.51 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 157.0, 138.8, 137.3, 135.3, 131.7, 130.0, 129.4, 127.4, 125.9, 125.8, 125.0, 113.6, 94.7, 80.4, 28.3. **IR** (KBr): υ 2977, 2932, 1705, 1626, 1565, 1455, 1367, 1312, 1254, 1150 cm⁻¹. **HRMS** (ESI): Calculated for C₂₁H₂₄O₄S Na(M+Na⁺): 395.1288, found: 395.1294.

4d: White solid (57%). $R_f = 0.2$ (hexane/ethyl acetate = 20:1). Mp = 129.5 - 130.1 °C. ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.06 (d, J = 16.1 Hz, 1H), 7.54 - 7.47 (m, 2H), 7.35 - 7.26 (m, 7H), 7.12 (t, J = 8.1 Hz, 1H), 6.87 (dd, J = 7.9, 1.0 Hz, 1H), 6.80 (dt, J = 8.3, 0.8 Hz, 1H), 6.67 (d, J = 16.2 Hz, 1H), 5.12 (s, 2H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 157.9, 139.2, 136.8, 135.4, 135.0, 131.8, 131.8, 129.8, 129.3, 128.8, 127.4, 126.0, 124.9, 124.5, 122.0, 111.3, 80.2, 70.0, 28.2. **IR** (KBr): υ 2976, 1704, 1627, 1581, 1449, 1367, 1312, 1267, 1150, 1071 cm⁻¹. **HRMS** (ESI): Calculated for C₂₆H₂₅BrO₃S Na(M+Na⁺):519.0600, found:519.0595.

4e: White solid (74%). $R_f = 0.2$ (hexane/ethyl acetate = 10:1). Mp = 89.1 - 90.3 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, J = 16.2 Hz, 1H), 7.36 - 7.26 (m, 6H), 7.25 - 7.18 (m, 2H), 5.99 (d, J = 16.2 Hz, 1H), 5.12

(s, 2H), 2.11 (s, 3H), 1.52 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.73, 165.27, 139.49, 137.15, 136.37, 134.85, 134.74, 132.18, 131.38, 129.46, 128.88, 128.59, 127.82, 127.74, 80.91, 64.39, 28.29, 21.13. **IR** (KBr): υ 3059, 2978, 1743, 1710, 1640, 1367, 1316, 1233, 1151, 1025 cm⁻¹. **HRMS** (ESI): Calculated for C₂₂H₂₄O₄S (M⁺): 384.1390, found: 384.1390.

4f: Colorless oil (56%). $R_f = 0.2$ (hexane/ethyl acetate = 10:1). ¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.81 (d, J = 16.2 Hz, 1H), 7.42 (dd, J = 7.3, 1.5 Hz, 1H), 7.28 (dd, J = 4.0, 0.9 Hz, 4H), 7.24 – 7.17 (m, 3H), 6.10 (d, J = 16.2 Hz, 1H), 4.67 (s, 2H), 1.51 (s, 9H), 0.94 (s, 9H), 0.11 (s, 6H). ¹³**C** NMR (126 MHz, CDCl₃) δ 165.7, 140.4, 139.8, 136.1, 135.6, 135.4, 131.6, 131.0, 129.3, 127.4, 127.3, 127.3, 80.6, 63.5, 28.3, 26.1, 18.5, -5.1. **IR** (KBr): υ 3059, 2955, 2929, 2884, 2857, 1712, 1639, 1583, 1473, 1440, 1151 cm⁻¹. **HRMS** (ESI): Calculated for C₂₆H₃₆O₃SSiNa (M+Na⁺): 479.2047, found: 479.2044.

4g: Colorless oil (47%). $R_f = 0.2$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, J = 16.2 Hz, 1H), 7.49 – 7.44 (m, 1H), 7.34 – 7.29 (m, 4H), 7.29 – 7.26 (m, 1H), 7.25 – 7.22 (m, 2H), 7.22 – 7.18 (m, 1H), 6.75 (dd, J = 8.6, 2.8 Hz, 1H), 6.69 (d, J = 2.8 Hz, 1H), 6.02 (d, J = 16.3 Hz, 1H), 5.02 (s, 2H), 2.95 – 2.86 (m, 2H), 2.51 (dd, J = 18.7, 8.6 Hz, 1H), 2.43 – 2.36 (m, 1H), 2.27 (d, J = 10.0 Hz, 1H), 2.20 – 1.92 (m, 4H), 1.68 – 1.49 (m, 6H), 1.47 (s, 9H), 0.91 (s, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 165.4, 156.6, 139.6, 138.0, 136.7, 136.4, 135.9, 135.1, 132.8, 131.9, 131.4, 129.4, 129.0, 128.1, 127.7, 127.6, 126.5, 115.3, 112.8, 80.8, 68.3, 50.6, 48.2, 44.2, 38.5, 36.0, 31.7, 28.3, 26.7, 26.1, 21.7, 14.0. **IR** (KBr): v 2929, 1738, 1709, 1608, 1498, 1477, 1440, 1368, 1315, 1152 cm⁻¹. **HRMS** (ESI): Calculated for C₃₈H₄₂O₄S Na(M+Na⁺):617.2696, found: 617.2705.

4h: Colorless oil (59%). $R_f = 0.3$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, J = 16.3 Hz, 1H), 7.37 – 7.29 (m, 5H), 7.07 (dt, J = 1.3, 0.6 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 6.03 (d, J = 16.3 Hz, 1H), 2.37 – 2.32 (m, 3H), 1.52 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 165.5, 139.9, 139.6, 139.0, 134.0, 133.7, 133.3, 132.7, 129.5, 128.9, 128.1, 127.7, 127.2, 80.8, 28.2, 21.2. **IR** (KBr): υ 2977, 1711, 1639, 1572, 1549, 1478, 1392, 1367, 1314, 1150 cm⁻¹. **HRMS** (ESI): Calculated for C₂₀H₂₀ClOS Na[(M+Na⁺)+(-H₂O)]:365.0737, found: 365.0734.

4i: Colorless oil (55%). $R_f = 0.3$ (hexane/ethyl acetate = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, J = 16.3 Hz, 1H), 7.39 – 7.29 (m, 5H), 7.25 – 7.22 (m, 1H), 7.10 (d, J = 2.0 Hz, 1H), 6.13 (d, J = 16.4 Hz, 1H), 3.80 (s, 3H), 2.34 (d, J = 0.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 141.2, 139.3, 139.3, 133.8, 133.7, 132.7, 132.0, 130.7, 129.7, 128.3, 125.3, 122.7, 52.0, 21.1. IR (KBr): υ 3059, 2949, 2925, 2360, 1722, 1639, 1565, 1438, 1306, 1272, 1195, 1172, 748, 690 cm⁻¹. HRMS (ESI): Calculated for C₁₇H₁₆BrO₂S (M+H⁺): 363.0049, found: 363.0058.

4j: Colorless oil (57%). $R_f = 0.2$ (hexane/ethyl acetate = 2:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, J = 16.4 Hz, 1H), 7.41 (s, 1H), 7.37 – 7.26 (m, 6H), 6.15 (d, J = 16.3 Hz, 1H), 3.81 (s, 3H), 3.44 (s, 3H), 3.27 (s, 3H), 2.40 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 168.9, 166.7, 141.6, 137.5, 137.4, 136.7, 134.7, 134.4, 132.2, 129.5, 129.1, 128.5, 127.9, 125.5, 61.2, 52.0, 33.7, 21.3. **IR** (KBr): v 2950, 1722, 1644, 1439, 1309, 1274, 1197, 1172, 748, 692 cm⁻¹. **HRMS** (ESI): Calculated for C₂₀H₂₁NO₄SNa (M+Na⁺): 394.1083, found: 394.1087.

4k: White solid (64%). $R_f = 0.2$ (hexane/ethyl acetate = 10:1). Mp = 93.4 - 94.3 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, J = 16.3 Hz, 1H), 7.19 (dd, J = 4.1, 0.8 Hz, 4H), 7.16 - 7.10 (m, 1H), 6.64 (d, J = 2.6 Hz, 1H), 6.59 (d, J = 2.6 Hz, 1H), 5.93 (d, J = 16.3 Hz, 1H), 3.75 - 3.67 (m, 4H), 3.06 - 2.97 (m, 4H), 2.32 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 150.8, 140.8, 139.3, 137.5, 136.0, 131.0, 129.2, 127.0, 124.3, 117.0, 116.9, 80.3, 66.7, 48.3, 28.3, 22.5. IR (KBr): v 2974, 2855, 1704, 1627, 1588, 1538, 1478, 1449, 1367, 1310 cm⁻¹. HRMS (ESI): Calculated for C₂₃H₂₉NO₃S Na(M+Na⁺): 434.1760, found: 434.1760.

4I: Colorless oil (55%). $R_f = 0.3$ (hexane/ethyl acetate = 5:1). ¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.93 (d, J = 16.3 Hz, 1H), 7.46 (s, 1H), 7.29 (d, J = 3.9 Hz, 4H), 7.24 (td, J = 3.3, 2.1 Hz, 1H), 6.84 (d, J = 2.3 Hz, 1H), 6.37 (s, 1H), 6.11 (d, J = 16.3 Hz, 1H), 3.78 (s, 3H), 2.38 (s, 3H), 1.47 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 167.3, 152.4, 141.9, 139.2, 138.9, 137.5, 135.2, 131.8, 129.4, 127.5, 123.6, 119.6, 119.2, 81.1, 51.8, 28.4, 21.9. **IR** (KBr): υ 3332, 2978, 1703, 1577, 1516, 1272, 1228, 1158, 1069, 739, 690 cm⁻¹. **HRMS** (ESI): Calculated for C₂₂H₂₅NO₄S Na(M+Na⁺): 422.1397, found: 422.1400.

4m: Colorless oil (71%). $R_f = 0.3$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, J = 16.4 Hz, 1H), 7.28 – 7.15 (m, 7H), 6.95 (t, J = 8.9 Hz, 1H), 5.91 (d, J = 16.3 Hz, 1H), 2.28 (d, J = 2.6 Hz, 3H), 1.50 (s, 9H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 165.5, 161.2 (d, J = 245.9 Hz), 140.2 (d, J = 2.7 Hz), 139.3 (d, J = 4.8 Hz), 136.3, 132.3 (d, J = 8.8 Hz), 130.4, 130.1 (d, J = 3.5 Hz), 129.2, 127.7, 126.9, 124.8 (d, J = 17.4 Hz), 115.7

(d, J = 23.9 Hz), 80.8, 28.3, 12.8 (d, J = 5.4 Hz). **IR** (KBr): v 2978, 2932, 1712, 1641, 1582, 1479, 1456, 1392, 1367, 1152 cm⁻¹. **HRMS** (ESI): Calculated for C₂₁H₂₂FO₂S (M+H⁺): 345.1319, found: 345.1325.

4n: Colorless oil (72%). $R_f = 0.2$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, J = 16.3 Hz, 1H), 7.34 – 7.29 (m, 3H), 7.28 – 7.19 (m, 4H), 6.03 (d, J = 16.3 Hz, 1H), 4.55 (s, 2H), 2.57 (t, J = 6.9 Hz, 2H), 2.43 (s, 3H), 2.15 – 2.05 (m, 9H), 1.87 – 1.72 (m, 2H), 1.52 (s, 10H), 1.46 – 1.33 (m, 5H), 1.33 – 1.23 (m, 11H), 1.17 – 1.03 (m, 7H), 0.86 (dd, J = 9.3, 6.5 Hz, 12H). ¹³**C** NMR (101 MHz, CDCl₃) δ 165.9, 148.1, 148.0, 140.8, 138.5, 137.9, 136.6, 135.4, 135.2, 131.7, 129.3, 129.0, 128.8, 127.9, 127.4, 126.8, 126.0, 123.1, 117.7, 80.7, 75.0, 74.0, 40.2, 39.5, 37.5, 32.9, 32.8, 31.4, 28.3, 28.1, 25.0, 25.0, 24.6, 24.0, 22.9, 22.8, 21.6, 21.2, 20.8, 19.9, 19.84, 19.78, 13.0, 12.1, 12.0. **IR** (KBr): v 2927, 2867, 1712, 1638, 1553, 1460, 1366, 1313, 1256, 1150 cm⁻¹. **HRMS** (ESI): Calculated for C₅₀H₇₂O₄SNa (M+Na⁺):769.5224, found:769.52.

4o: Pale yellow oil (90%). $R_f = 0.1$ (hexane/ethyl acetate = 5:1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.80 (dd, J = 4.1, 1.5 Hz, 1H), 8.39 (ddd, J = 8.6, 1.5, 0.8 Hz, 1H), 8.04 (d, J = 16.2 Hz, 1H), 7.85 (d, J = 9.0 Hz, 1H), 7.41 – 7.21 (m, 7H), 6.11 (d, J = 16.2 Hz, 1H), 1.49 (s, 9H). ¹³**C** NMR (126 MHz, CDCl₃) δ 165.4, 150.3, 147.5, 138.7, 135.5, 134.3, 133.3, 132.8, 132.6, 131.4, 130.5, 129.6, 129.0, 128.1, 126.8, 122.0, 81.2, 28.4. **IR** (KBr): υ 2977, 1710, 1633, 1579, 1488, 1367, 1312, 1286, 1151, 1024 cm⁻¹. **HRMS** (ESI): Calculated for C₂₂H₂₁NO₂SNa (M+Na⁺): 386.1185, found: 386.1192.

4p: Yellow solid (59%). $R_f = 0.1$ (hexane/ethyl acetate = 5:1). Mp = 139.7 – 140.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.91 (dd, J = 4.2, 1.6 Hz, 1H), 8.49 (dd, J = 8.7, 1.7 Hz, 1H), 8.10 (d, J = 16.2 Hz, 1H), 7.48 (dd, J = 8.6, 4.2 Hz, 1H), 7.43 – 7.38 (m, 2H), 7.37 – 7.28 (m, 3H), 6.84 (s, 1H), 6.15 (d, J = 16.2 Hz, 1H), 3.86 (s, 3H), 1.56 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 155.3, 149.0, 138.5, 136.1, 134.4, 133.5, 132.3, 129.4, 128.0, 127.7, 127.5, 125.0, 122.5, 110.0, 80.9, 56.0, 28.2. IR (KBr): v 2976, 1707, 1572, 1497, 1456, 1366, 1290, 1246, 1148, 1124 cm⁻¹. HRMS (ESI): Calculated for C₂₃H₂₃NO₃SNa (M+Na⁺): 416.1291, found: 416.1292.

4q: Colorless oil (40%). $R_f = 0.2$ (hexane/ethyl acetate = 10:1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 16.2 Hz, 1H), 7.91 (dd, J = 8.7, 0.8 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 3.7 Hz, 1H), 7.38 (d, J = 8.7 Hz, 1H), 7.27 (d, J = 0.9 Hz, 1H), 7.25 (dd, J = 1.7, 0.9 Hz, 1H), 7.22 (dd, J = 2.3, 1.2 Hz, 1H), 7.21 (d, J = 0.9 Hz, 1H), 7.20 – 7.14 (m, 3H), 6.91 (dd, J = 3.7, 0.8 Hz, 1H), 6.27 (d, J = 16.2 Hz, 1H), 2.37 (s, 3H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 145.5, 140.2, 136.9, 135.1, 134.8, 131.0, 130.5, 130.2, 130.1, 130.0, 129.9, 129.2, 127.8, 127.0, 126.7, 125.7, 114.8, 108.2, 80.8, 28.3, 21.8. **IR** (KBr): υ 2977, 2359, 2341, 1706, 1633, 1596, 1582, 1478, 1375, 1170 cm⁻¹. **HRMS** (ESI): Calculated for C₂₈H₂₇NO₄S₂ (M⁺):505.1376, found:505.1381.

4r: Pale yellow solid (36%). $R_f = 0.2$ (hexane/ethyl acetate = 10:1). Mp = 84.5 - 85.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 16.2 Hz, 1H), 7.37 (s, 1H), 7.25 (m, 2H), 7.22 - 7.15 (m, 3H), 6.22 (d, J = 16.2 Hz, 1H), 5.29 (s, 2H), 2.13 (s, 3H), 1.48 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 165.9, 138.7, 136.3, 136.0, 134.8, 130.8,

129.7, 129.3, 129.1, 126.8, 124.6, 80.8, 59.5, 28.3, 21.0. **IR** (KBr): υ 2977, 1745, 1707, 1632, 1582, 1478, 1367, 1312, 1284, 1150 cm⁻¹. **HRMS** (ESI): Calculated for C₂₀H₂₂O₄S₂ Na(M+Na⁺): 413.0852, found: 413.0861.

4s: Colorless oil (93%). $R_f = 0.3$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.13 – 8.02 (m, 2H), 7.79 – 7.66 (m, 1H), 7.60 (d, J = 8.7 Hz, 1H), 7.43 (dddd, J = 17.5, 8.1, 6.9, 1.4 Hz, 2H), 7.27 – 7.15 (m, 6H), 6.14 (d, J = 16.3 Hz, 1H), 1.49 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 140.0, 135.6, 133.8, 133.7, 132.6, 131.8, 131.7, 129.4, 129.2, 128.7, 128.5, 128.4, 127.5, 127.3, 126.3, 125.2, 80.9, 28.4. **IR** (KBr): υ 3056, 2977, 2930, 1709, 1635, 1582, 1477, 1367, 1312, 1284 cm⁻¹. **HRMS** (ESI): Calculated for C₂₃H₂₂O₂SNa(M+Na⁺): 385.1233, found: 385.1236.

4t: White solid (45%). $R_f = 0.4$ (hexane/ethyl acetate = 20:1). Mp = 174.8 – 175.4 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.77 (d, J = 8.3 Hz, 1H), 8.73 (d, J = 8.2 Hz, 1H), 8.67 (dd, J = 8.3, 0.9 Hz, 1H), 8.29 – 8.20 (m, 2H), 7.74 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.69 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.64 (ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 7.60 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 7.12 (t, J = 7.5 Hz, 2H), 7.09 – 6.99 (m, 3H), 6.02 (d, J = 16.4 Hz, 1H), 1.55 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 141.7, 140.0, 137.7, 132.0, 131.3, 130.8, 130.1, 128.9, 127.9, 127.9, 127.8, 127.6, 127.6, 127.5, 127.2, 127.1, 127.1, 125.3, 123.0, 122.8, 80.7, 28.2. IR (KBr): υ 3854, 3712, 3629, 2360, 2343, 1735, 1712, 1654, 1560, 1154 cm⁻¹. HRMS (ESI): Calculated for C₂₇H₂₅O₂S (M+H⁺): 413.1570, found: 413.1578.

4u: Yellow solid (91%). $R_f = 0.4$ (hexane/ethyl acetate = 10:1). Mp = 116.4 – 117.9 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.43 – 8.33 (m, 2H), 8.18 (t, J = 7.3 Hz, 2H), 8.14 – 7.98 (m, 4H), 7.87 (dd, J = 8.9, 1.1 Hz, 1H), 7.39 – 7.26 (m, 5H), 6.28 (d, J = 16.2 Hz, 1H), 1.60 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 140.7, 135.9, 133.5, 131.8, 131.7, 131.5, 131.3, 130.8, 129.8, 129.5, 128.8, 128.7, 128.7, 128.2, 127.4, 126.9, 126.5, 125.9, 125.7, 124.6, 124.6, 124.2, 80.9, 28.4. **IR** (KBr): υ 3048, 2977, 2930, 1708, 1635, 1581, 1530, 1478, 1367, 1150 cm⁻¹. **HRMS** (ESI): Calculated for C₂₉H₂₄O₂SNa (M+Na⁺): 459.1389, found: 459.1387.

5a: Colorless oil (86%). $R_f = 0.3$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.30 (d, J = 16.2 Hz, 1H), 8.15 – 8.09 (m, 1H), 7.81 – 7.76 (m, 1H), 7.69 – 7.62 (m, 1H), 7.55 – 7.43 (m, 2H), 7.30 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 8.7 Hz, 1H), 7.18 – 7.13 (m, 2H), 6.36 (d, J = 16.3 Hz, 1H), 3.88 (s, 3H), 2.36 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 166.9, 141.3, 138.1, 135.2, 132.8, 132.3, 132.2, 131.6, 131.1, 129.4, 128.6, 127.6, 127.4, 126.1, 126.1, 124.9, 52.0, 21.3. **IR** (KBr): υ 2948, 1721, 1636, 1584, 1492, 1434, 1308, 1280, 1171, 1127 cm⁻¹. **HRMS** (ESI): Calculated for C₂₁H₁₉O₂S (M+H⁺): 335.1100, found: 335.1096.

5b: Yellow oil (71%). $R_f = 0.2$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.29 (d, J = 16.3 Hz, 1H), 8.10 (dd, J = 8.6, 1.2 Hz, 1H), 7.77 (dd, J = 8.0, 1.5 Hz, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.55 – 7.37 (m, 4H), 7.11 (d, J = 8.8 Hz, 1H), 6.90 (d, J = 8.8 Hz, 2H), 6.38 (d, J = 16.3 Hz, 1H), 3.88 (s, 3H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 160.1, 141.2, 136.5, 135.7, 132.0, 131.5, 130.8, 129.3, 128.6, 127.4, 126.5, 126.1, 125.9, 124.7, 124.4, 115.2, 55.5, 52.0. **IR** (KBr): υ 2948, 1721, 1636, 1584, 1492, 1434, 1308, 1280, 1171, 1127 cm⁻¹. **HRMS** (ESI): Calculated for C₂₁H₁₉O₃S (M+H⁺): 351.1049, found: 351.1039.

5c: Yellow solid (82%). R_f = 0.3 (hexane/ethyl acetate = 5:1). Mp = 94.5 – 95.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.02 (m, 2H), 7.87 – 7.67 (m, 4H), 7.49 (ddd, *J* = 5.6, 4.2, 2.1 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 1H), 7.17 – 7.07 (m, 2H), 6.20 (d, *J* = 16.3 Hz, 1H), 3.81 (s, 3H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 166.7, 143.3, 141.3, 136.3, 133.4, 131.8, 130.5, 130.4, 130.3, 129.9, 128.7, 128.5, 128.0, 127.6, 127.1, 126.5, 125.5, 52.3, 52.0. IR (KBr): v 2950, 2360, 1720, 1636, 1594, 1559, 1506, 1435, 1399, 1308 cm⁻¹. HRMS (ESI): Calculated for C₂₂H₁₉O₄S (M+H⁺): 379.0999, found: 379.1002.

5d: Colorless oil (82%). $R_f = 0.3$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.28 (d, J = 16.3 Hz, 1H), 8.15 – 8.09 (m, 1H), 7.80 (dd, J = 8.2, 1.5 Hz, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.57 – 7.45 (m, 2H), 7.36 (dd, J = 8.8, 5.2 Hz, 2H), 7.21 (d, J = 8.7 Hz, 1H), 7.03 (t, J = 8.7 Hz, 2H), 6.34 (d, J = 16.3 Hz, 1H), 3.87 (s, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 166.83, 162.63 (d, J = 248.5 Hz), 141.18, 134.52 (d, J = 8.2 Hz), 134.37, 132.70, 132.43, 131.56, 130.09 (d, J = 3.4 Hz), 129.54, 128.59, 127.72, 127.48, 126.35, 126.32, 124.94, 116.67 (d, J = 22.0 Hz), 52.01. ¹⁹**F** NMR (470 MHz, CDCl₃) δ -113.3. **IR** (KBr): v 2949, 1719, 1636, 1588, 1505, 1489, 1435, 1280, 1172, 1127 cm⁻¹. **HRMS** (ESI): Calculated for C₂₀H₁₆FO₂S (M+H⁺): 339.0850, found: 339.0856.

5e: Colorless oil (82%). R_f = 0.3 (hexane/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 16.3 Hz, 1H), 8.08 - 8.02 (m, 1H), 7.74 (dd, J = 7.1, 2.3 Hz, 1H), 7.64 (d, J = 8.7 Hz, 1H), 7.45 (dqd, J = 8.4, 6.9, 1.6 Hz, 2H), 7.25 - 7.12 (m, 5H), 6.23 (d, J = 16.3 Hz, 1H), 3.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 141.2,

134.2, 134.0, 133.6, 133.0, 132.8, 132.6, 131.6, 129.7, 129.6, 128.7, 128.6, 127.5, 126.6, 126.4, 125.1, 52.0. **IR** (KBr): v 3055, 2948, 1721, 1637, 1475, 1434, 1309, 1280, 1193, 1172 cm⁻¹. **HRMS** (ESI): Calculated for $C_{20}H_{16}ClO_2S$ (M+H⁺): 335.0554, found: 335.0552.

5f: Colorless oil (86%). $R_f = 0.3$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 16.3 Hz, 1H), 8.06 (dd, J = 8.5, 1.0 Hz, 1H), 7.76 (dd, J = 7.0, 2.4 Hz, 1H), 7.66 (d, J = 8.7 Hz, 1H), 7.51 – 7.41 (m, 2H), 7.38 – 7.31 (m, 2H), 7.25 (d, J = 8.7 Hz, 1H), 7.16 – 7.05 (m, 2H), 6.25 (d, J = 16.3 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 141.2, 135.0, 134.2, 132.8, 132.7, 132.7, 132.5, 131.6, 129.7, 128.8, 128.6, 127.5, 126.7, 126.4, 125.2, 121.4, 52.0. **IR** (KBr): v 3853, 3745, 3649, 3055, 2948, 2360, 1719, 1636, 1471, 1172 cm⁻¹. **HRMS** (ESI): Calculated for C₂₅H₁₆BrO₂S (M+H⁺): 399.0049, found: 399.0044.

5g: White solid oil (85%). $R_f = 0.2$ (hexane/ethyl acetate = 20:1). Mp = 76.0 - 77.0 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (d, J = 16.3 Hz, 1H), 8.18 - 8.11 (m, 1H), 7.90 - 7.83 (m, 1H), 7.81 - 7.77 (m, 1H), 7.60 - 7.54 (m, 2H), 7.53 - 7.42 (m, 3H), 7.28 (d, J = 0.8 Hz, 2H), 6.28 (d, J = 16.3 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.7, 141.9, 141.3, 136.2, 133.4, 131.8, 130.4, 130.3, 130.0, 129.2, 128.7, 127.6, 127.5 - 119.4 (m), 127.1, 126.6, 126.0 (q, J = 3.8 Hz), 125.5, 52.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -62.5. IR (KBr): v 3853, 3057, 2951, 1723, 1639, 1605, 1436, 1327, 1280, 1170 cm⁻¹. HRMS (ESI): Calculated for C₂₁H₁₆F₃O₂S (M+H⁺): 389.0818, found: 389.0818.

5h: Colorless oil (91%). $R_f = 0.2$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 16.3 Hz, 1H), 8.09 – 7.99 (m, 1H), 7.77 – 7.64 (m, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.40 (dddd, J = 20.5, 8.0, 6.9, 1.3 Hz, 2H), 7.23 (d, J = 7.5 Hz, 1H), 7.20 – 7.12 (m, 2H), 7.06 (ddd, J = 8.4, 5.5, 2.4 Hz, 1H), 6.98 (d, J = 8.7 Hz, 1H), 6.29 (d, J = 16.3 Hz, 1H), 3.78 (s, 3H), 2.26 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 167.0, 141.2, 140.6, 134.6, 134.0, 133.5, 132.3, 132.1, 131.6, 130.9, 129.4, 128.6, 128.5, 127.4, 127.0, 127.0, 126.1, 126.1, 124.8, 52.0, 20.9. **IR** (KBr): υ 3058, 2948, 1721, 1637, 1584, 1434, 1280, 1172, 1059, 1036 cm⁻¹. **HRMS** (ESI): Calculated for C₂₁H₁₉O₂S (M+H⁺): 335.1100, found: 335.1098.

5i: White solid (92%). $R_f = 0.2$ (hexane/ethyl acetate = 20:1). Mp = 80.4 – 81.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 16.3 Hz, 1H), 8.11 – 8.00 (m, 1H), 7.82 – 7.73 (m, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.55 – 7.41 (m, 2H), 7.32 (d, J = 8.7 Hz, 1H), 7.19 – 7.13 (m, 1H), 6.97 (ddd, J = 7.8, 1.6, 1.0 Hz, 1H), 6.91 – 6.81 (m, 2H), 6.22 (d, J =16.3 Hz, 1H), 3.78 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.75, 163.10 (d, J = 248.9 Hz), 141.32, 138.49 (d, J = 7.8 Hz), 135.10, 133.09, 131.74 (d, J = 9.5 Hz), 130.56 (d, J = 8.5 Hz), 129.71 (d, J = 14.5 Hz), 128.64, 127.52, 126.85, 126.42, 126.03 (d, J = 3.0 Hz), 125.32, 117.23 (d, J = 23.2 Hz), 114.10 (d, J = 21.2 Hz), 52.03. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -111.75 (q, J = 8.7 Hz). IR (KBr): υ 3060, 2949, 1721, 1639, 1597, 1580, 1473, 1433, 1309, 1281 cm⁻¹. HRMS (ESI): Calculated for C₂₀H₁₆FO₂S (M+H⁺): 339.0850, found: 339.0847.

5j: White solid (86%). $R_f = 0.2$ (hexane/ethyl acetate = 20:1). Mp = 122.0 – 123.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 16.3 Hz, 1H), 8.09 (d, J = 8.3 Hz, 1H), 7.82 (s, 1H), 7.77 – 7.66 (m, 4H), 7.61 (d, J = 8.7 Hz, 1H), 7.51 - 7.38 (m, 4H), 7.31 - 7.19 (m, 2H), 6.30 (d, J = 16.3 Hz, 1H), 3.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ $166.9, 141.3, 134.0, 133.9, 133.4, 132.6, 132.60, 132.5, 131.6, 130.9, 129.5, 129.2, 129.2, 128.6, 128.6, 127.9, 127.6, 127.4, 126.9, 126.6, 126.4, 126.3, 125.1, 52.0. IR (KBr): <math>\upsilon$ 3053, 2947, 1720, 1636, 1584, 1557, 1500, 1434, 1309, 1281 cm⁻¹. HRMS (ESI): Calculated for C₂₄H₁₉O₂S (M+H⁺): 371.1100, found: 371.1096.

5k: Colorless oil (40%). $R_f = 0.2$ (hexane/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 16.3 Hz, 1H), 8.07 (dd, J = 8.6, 1.1 Hz, 1H), 7.90 (dd, J = 10.6, 8.0 Hz, 1H), 7.85 – 7.77 (m, 2H), 7.54 – 7.41 (m, 3H), 6.36 (d, J = 16.3 Hz, 1H), 5.97 (d, J = 16.3 Hz, 1H), 3.87 (s, 3H), 2.56 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 141.2, 136.1, 131.6, 131.4, 130.8, 129.4, 128.6, 127.4, 126.0, 125.7, 124.5, 124.2, 52.0, 16.9. IR (KBr): υ 3685, 2947, 1720, 1633, 1583, 1504, 1434, 1281, 1191, 1172 cm⁻¹. HRMS (ESI): Calculated for C₁₅H₁₅O₂S (M+H⁺):259.0787, found:259.0793.

51: Colorless oil (84%). $R_f = 0.3$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.28 (d, J = 16.2 Hz, 1H), 8.14 (d, J = 8.2 Hz, 1H), 7.81 (dd, J = 8.1, 1.4 Hz, 1H), 7.69 (d, J = 9.1 Hz, 1H), 7.57 – 7.46 (m, 2H), 7.37 – 7.24 (m, 6H), 6.32 (d, J = 16.3 Hz, 1H), 4.27 (t, J = 6.7 Hz, 2H), 1.73 (ddt, J = 8.8, 7.9, 6.6 Hz, 2H), 1.53 – 1.39 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 166.5, 141.0, 135.4, 133.8, 133.6, 132.6, 131.7, 131.6, 129.4, 128.6, 128.6, 127.5, 127.4, 126.7, 126.4, 125.1, 64.8, 30.9, 19.4, 13.9. **IR** (KBr): υ 2958, 2872, 1714, 1639, 1582, 1477, 1306, 1280, 1257, 1174 cm⁻¹. **HRMS** (ESI): Calculated for C₂₃H₂₃O₂S (M+H⁺): 363.1413, found: 363.1418.

5m: Colorless oil (87%). $R_f = 0.3$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.28 (d, J = 16.3 Hz, 1H), 8.17 – 8.11 (m, 1H), 7.81 (dd, J = 8.1, 1.4 Hz, 1H), 7.69 (d, J = 8.9 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.40 – 7.26 (m, 6H), 6.32 (d, J = 16.2 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 166.5, 141.1, 135.4, 133.9, 133.5, 132.6, 131.8, 131.6, 129.4, 128.6, 128.6, 127.5, 127.4, 126.6, 126.4, 125.1, 60.8, 14.5. **IR** (KBr): υ 3056, 2980, 1715, 1638, 1582, 1477, 1440, 1368, 1305, 1281 cm⁻¹. **HRMS** (ESI): Calculated for C₂₁H₁₉O₂S (M+H⁺): 335.1100, found: 335.1107.

5n: Pale yellow oil (88%). $R_f = 0.2$ (hexane/ethyl acetate = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (d, J = 16.3 Hz, 1H), 8.17 – 8.10 (m, 1H), 7.84 – 7.78 (m, 1H), 7.70 (d, J = 8.9 Hz, 1H), 7.58 – 7.46 (m, 2H), 7.37 – 7.25 (m, 6H), 6.34 (d, J = 16.3 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 141.4, 135.4, 133.9, 133.4, 132.6, 131.7, 131.6, 129.5, 129.4, 128.6, 128.6, 127.6, 127.4, 126.4, 126.2, 125.1, 52.0. IR (KBr): υ 3056, 2948, 2360, 2342, 1721, 1638, 1582, 1434, 1280, 1172 cm⁻¹. HRMS (ESI): Calculated for C₂₀H₁₇O₂S (M+H⁺): 321.0944, found: 321.0950.

50: White solid (93%). $R_f = 0.2$ (hexane/ethyl acetate = 5:1). Mp = 120.7 - 121.4 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 - 8.11 (m, 2H), 7.80 (dd, J = 7.7, 1.8 Hz, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.54 - 7.45 (m, 2H), 7.35 - 7.21 (m, 6H), 6.73 (d, J = 15.8 Hz, 1H), 3.07 (d, J = 13.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 138.2, 136.0, 135.1, 132.7, 132.6, 132.0, 131.4, 129.3, 129.0, 128.9, 128.4, 127.3, 127.1, 126.6, 126.3, 125.4, 37.5,

36.0. **IR** (KBr): υ 3054, 2928, 1653, 1617, 1582, 1477, 1395, 1140, 1056, 1023 cm⁻¹. **HRMS** (ESI): Calculated for C₂₁H₂₀NOS (M+H⁺): 334.1260, found: 334.1269.

Supplementary Figure 5. Selective oxidation of the ortho thiolation product

A Schlenk tube was charged with a solution of **5n** (96.1 mg, 0.3 mmol) in DCM (5 mL). A solution of mCPBA (67.2 mg, 77%, 0.3 mmol, 1.0 equiv) in DCM (5 mL) was then added dropwise at -78 °C. The resulting mixture was allowed to warm to room temperature overnight. Subsequently, the reaction mixture was washed by saturated aq. Na₂CO₃ (10 mL) solution three time. The organic layers were washed with water and brine before they were dried over MgSO₄ and concentrated. The residual was then purified by silica gel chromatography (acetone/hexane = 1/5) to afford **6a** (82.3 mg, 82%) as a white solid.

6a: White solid (82%). R_f = 0.2 (hexane/acetone = 5:1). Mp = 151.7 – 152.1 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.26 (d, *J* = 16.3 Hz, 1H), 8.11 – 8.06 (m, 1H), 8.05 – 7.96 (m, 2H), 7.91 – 7.84 (m, 1H), 7.64 – 7.53 (m, 4H), 7.45 – 7.36 (m, 3H), 6.32 (d, *J* = 16.3 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 144.9, 141.7, 139.1, 134.6, 132.5, 131.2, 130.8, 130.7, 129.4, 128.9, 128.2, 128.2, 127.9, 125.5, 125.3, 120.1, 52.3. **IR** (KBr): υ 3745, 3057, 2950, 1844, 1718, 1675, 1670, 1570, 1419, 1280 cm⁻¹. **HRMS** (ESI): Calculated for C₂₀H₁₆O₃SNa(M+Na⁺): 359.0712, found: 359.0703. A Schlenk tube was charged with a solution of **5n** (96.1 mg, 0.3 mmol) in DCM (5 mL). A solution of mCPBA (147.9 mg, 77%, 0.66 mmol, 2.2 equiv) in DCM (5 mL) was then added dropwise at 0 °C. The resulting mixture was allowed to warm to room temperature overnight. Subsequently, the reaction mixture was washed by saturated aq. Na₂CO₃ (10 mL) solution three time. The organic layers were washed with water and brine before they were dried over MgSO₄ and concentrated. The residual was then purified by silica gel chromatography (acetone/hexane = 1/5) to afford **6b** (85.5 mg, 80%) as a white solid.

6b: White solid (80%). $R_f = 0.25$ (hexane/acetone = 5:1). Mp = 130.7 – 131.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (dd, J = 23.9, 12.6 Hz, 2H), 8.04 (dd, J = 28.6, 8.7 Hz, 2H), 7.95 – 7.82 (m, 3H), 7.71 – 7.48 (m, 3H), 7.44 (dd, J = 10.5, 4.8 Hz, 2H), 5.81 (d, J = 16.4 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 141.5, 140.0, 136.4, 135.6, 135.2, 133.4, 131.1, 129.4, 129.1, 128.9, 128.6, 128.2, 128.0, 127.7, 126.7, 123.8, 52.2. IR (KBr): υ 2950, 2360, 2341, 1722, 1582, 1446, 1309, 1280, 1170, 1151 cm⁻¹. HRMS (ESI): Calculated for C₂₀H₁₇O₄S(M+H⁺): 353.0842, found: 353.0853.

Supplementary Figure 6. Ipso functionalization with arylboronates

A flame-dried 7.0 mL vial A was charged with $Pd(OAc)_2$ (4.6 mg, 0.02 mmol, 10 mol%), CuTC (7.6 mg, 0.04 mmol, 20 mol%), TFP (11.6 mg, 0.05 mmol, 25 mol%), phenylboronate **8** (76 mg, 0.4 mmol, 2.0 equiv) and ArI (0.2 mmol, 1.0 equiv). To another 4.0 mL vial B was weighed **3a** (0.6 mmol). Two vials were directly transferred into a

nitrogen-filled glovebox without caps. Then, Cs₂CO₃ (130.4 mg, 0.4 mmol, 2.0 equiv) was added to the vial A. In the third empty 4.0 mL vial C, NBE (18.8 mg, 0.2 mmol) was dissolved in 1.0 mL dry ethyl acetate. Half of this NBE solution (0.5 mL, 0.1 mmol, 50 mol%) was transferred into the vial A. To the 4.0 mL vial B containing **3a** was added 0.75 mL dry ethyl acetate. Two thirds of this **3a** solution (0.5 ml, 0.4 mmol, 2.0 equiv) was transferred into the vial A, before another 3.0 mL dry ethyl acetate was added. Vial A was tightly sealed, transferred out of glovebox and stirred on a pie-block preheated to 105 °C for 12 hours. After completion of the reaction, the mixture was filtered through a thin pad of silica gel. The filter cake was washed with ethyl acetate and the combined filtrate was concentrated. The residue was loaded to a small amount of silica gel and then purified by flash column chromatography to give the desired *ortho* thiolation product.

9: Colorless oil (58%). R_f = 0.4 (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.78 – 7.72 (m, 1H), 7.66 (d, *J* = 8.7 Hz, 1H), 7.44 – 7.35 (m, 4H), 7.31 – 7.14 (m, 10H). ¹³**C** NMR (101 MHz, CDCl₃) δ 140.3, 138.8, 136.2, 133.3, 133.0, 132.4, 131.8, 130.4, 129.2, 128.4, 128.4, 128.2, 128.0, 127.8, 127.2, 126.7, 126.5, 125.9. **IR** (KBr): v 3054, 2953, 1581, 1560, 1505, 1491, 1476, 1439, 1379, 1070 cm⁻¹. **HRMS** (ESI): Calculated for C₂₂H₁₇S (M+H⁺): 313.1045, found: 313.1055.

A flame-dried 7.0 mL vial A was charged with $Pd(OAc)_2$ (4.6 mg, 0.02 mmol, 10 mol%), CuTC (7.6 mg, 0.04 mmol, 20 mol%), TFP (11.6 mg, 0.05 mmol, 25 mol%), **10** (64.1 mg, 0.4 mmol, 2.0 equiv) and ArI (0.2 mmol, 1.0 equiv). To another 4.0 mL vial B was weighed thiolation reagent (0.6 mmol). Two vials were directly transferred into a nitrogen-filled glovebox without caps. Then, NBE (28.2 mg, 0.3 mmol, 150 mol%) and Cs₂CO₃ (130.4 mg, 0.4

mmol, 2.0 equiv) was added to the vial A. To the 4.0 mL vial B containing thiolation reagent was added 0.75 mL dry ethyl acetate. 0.5 mL of this thiolation reagent solution (0.4 mmol, 2.0 equiv) was transferred into the vial A, before another 3.5 mL dry ethyl acetate was added. Vial A was tightly sealed, transferred out of glovebox and stirred on a pie-block preheated to 105 °C for 12 hours. After completion of the reaction, the mixture was filtered through a thin pad of silica gel. The filter cake was washed with ethyl acetate and the combined filtrate was concentrated. The residue was loaded to a small amount of silica gel and then purified by flash column chromatography on silica gel to give the desired *ortho* thiolation product.

11: Yellow oil (51%). $R_f = 0.4$ (hexane/ethyl acetate = 20:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.42 (dd, J = 8.4, 1.1 Hz, 1H), 7.80 – 7.75 (m, 1H), 7.69 – 7.63 (m, 3H), 7.60 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.55 – 7.51 (m, 2H), 7.48 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 7.43 – 7.33 (m, 6H), 7.13 (d, J = 8.7 Hz, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 139.1, 133.7, 133.3, 131.7, 131.4, 129.5, 128.7, 128.6, 128.4, 128.2, 128.1, 127.5, 126.1, 126.1, 125.9, 123.3, 119.2, 101.2, 85.5. **IR** (KBr): v 3055, 2921, 1616, 1581, 1555, 1489, 1129, 1085, 1068, 1024 cm⁻¹. **HRMS** (ESI): Calculated for C₂₄H₁₇S (M+H⁺): 337.1045, found: 337.1055.

Supplementary Figure 8. Gram-scale reaction

A flame-dried 100 mL vessel was charged with $Pd(OAc)_2$ (115 mg, 0.5 mmol, 10 mol%), CuTC (190 mg, 1.0 mmol, 20 mol%), TFP (290 mg, 1.25 mmol, 25 mol%), sulfenamide **3a** (2.77 g, 10.0 mmol, 2.0 equiv) and ArI **1s** (1.27 g, 5.0 mmol, 1.0 equiv). The vessel was directly transferred into a nitrogen-filled glovebox without caps. Then, NBE (235 mg, 2.5 mmol, 50 mol%) and Cs₂CO₃ (3.26 g, 10 mmol, 2.0 equiv) was added. 100 mL dry ethyl acetate was added before acrylate **2d** (860 mg, 10 mmol, 2.0 equiv) was added. Then the vessel was tightly sealed, transferred

out of glovebox and stirred in an oil bath preheated to 105 $^{\circ}$ C for 12 hours. After completion of the reaction, the mixture was filtered through a thin pad of silica gel. The filter cake was washed with ethyl acetate and the combined filtrate was concentrated. The residue was loaded to a small amount of silica gel and subjected to flash column chromatography to give the desired *ortho* thiolation product **5n** (1.36 g, 85%).

Supplementary Figure 9. Less successful or unsuccessful substrates

CCDC: 1906772

Identification code	RHL-key
Empirical formula	$C_{22}H_{24}O_4S$
Formula weight	384.47
Temperature/K	100(2)
Crystal system	triclinic
Space group	P-1
a/Å	5.5071(5)
b/Å	11.5833(10)
c/Å	15.6570(14)
$\alpha/^{\circ}$	97.152(2)
β/°	93.856(2)
γ/°	102.375(2)
Volume/Å ³	963.41(15)
Z	2
$\rho_{calc}g/cm^3$	1.325
μ/mm^{-1}	0.193
F(000)	408.0
Crystal size/mm ³	$0.1\times0.1\times0.03$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/	4.786 to 55.092
Index ranges	-7 \leq h \leq 7, -15 \leq k \leq 15, -20 \leq l \leq 20
Reflections collected	27080
Independent reflections	4421 [$R_{int} = 0.0392$, $R_{sigma} = 0.0311$]
Data/restraints/parameters	4421/0/248
Goodness-of-fit on F ²	1.031
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0377, wR_2 = 0.0811$
Final R indexes [all data]	$R_1 = 0.0538, wR_2 = 0.0877$
Largest diff. peak/hole / e Å ⁻³	0.38/-0.24

Supplementary Figure 10. X-ray structure and crystallographic data of 4e

CCDC: 1906766

Identification code	RHL-5ring
Empirical formula	$C_{10}H_{11}NOS$
Formula weight	193.26
Temperature/K	100(2)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	9.3377(19)
b/Å	9.727(2)
c/Å	9.976(2)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	906.1(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.417
μ/mm^{-1}	0.312
F(000)	408.0
Crystal size/mm ³	$0.07 \times 0.05 \times 0.03$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.85 to 60.79
Index ranges	$\textbf{-13} \leq h \leq 12, \textbf{-13} \leq k \leq 8, \textbf{-12} \leq l \leq 14$
Reflections collected	7220
Independent reflections	2454 [$R_{int} = 0.0249, R_{sigma} = 0.0318$]
Data/restraints/parameters	2454/0/118
Goodness-of-fit on F ²	1.100
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0318$, $wR_2 = 0.0775$
Final R indexes [all data]	$R_1 = 0.0386$, $wR_2 = 0.0831$
Largest diff. peak/hole / e Å $^{-3}$	0.41/-0.31
Flack parameter	0.01(3)

Supplementary Figure 11. X-ray structure and crystallographic data of S11

CCDC: 1906767

Identification code	RHL-6ring
Empirical formula	C ₁₁ H ₁₃ NOS
Formula weight	207.28
Temperature/K	100(2)
Crystal system	tetragonal
Space group	P4 ₂ /n
a/Å	16.5787(10)
b/Å	16.5787(10)
c/Å	7.4975(5)
$\alpha/^{\circ}$	90
β/°	90
γ/°	90
Volume/Å ³	2060.7(3)
Ζ	8
$\rho_{calc}g/cm^3$	1.336
μ/mm^{-1}	0.279
F(000)	880.0
Crystal size/mm ³	0.12 imes 0.1 imes 0.08
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.914 to 61.264
Index ranges	$\text{-}21 \leq h \leq 20, \text{-}22 \leq k \leq 19, \text{-}10 \leq l \leq 10$
Reflections collected	16147
Independent reflections	2895 [$R_{int} = 0.0293$, $R_{sigma} = 0.0291$]
Data/restraints/parameters	2895/0/127
Goodness-of-fit on F ²	1.038
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0374, wR_2 = 0.0798$
Final R indexes [all data]	$R_1 = 0.0557, wR_2 = 0.0862$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.17

Supplementary Figure 12. X-ray structure and crystallographic data of S12

Identification code	RHL-7membered
Empirical formula	C ₁₂ H ₁₅ NOS
Formula weight	221.31
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	9.1705(6)
b/Å	8.8692(6)
c/Å	14.0231(9)
$\alpha/^{\circ}$	90
β/°	92.720(2)
γ/°	90
Volume/Å ³	1139.28(13)
Z	4
$\rho_{calc}g/cm^3$	1.290
μ/mm^{-1}	0.257
F(000)	472.0
Crystal size/mm ³	$0.2\times0.15\times0.1$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.436 to 60.54
Index ranges	$\text{-}12 \leq h \leq 12, \text{-}12 \leq k \leq 11, \text{-}19 \leq l \leq 19$
Reflections collected	16162
Independent reflections	$3136 [R_{int} = 0.0263, R_{sigma} = 0.0208]$
Data/restraints/parameters	3136/27/136
Goodness-of-fit on F ²	1.049
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0331, wR_2 = 0.0780$
Final R indexes [all data]	$R_1 = 0.0418, wR_2 = 0.0823$
Largest diff. peak/hole / e Å ⁻³	0.35/-0.20

Supplementary Figure 13. X-ray structure and crystallographic data of S13

Identification code	zhe1
Empirical formula	C ₁₆ H ₂₃ NOS
Formula weight	277.41
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	9.4262(12)
b/Å	11.2142(14)
c/Å	14.1135(17)
a/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	1491.9(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.235
µ/mm ⁻¹	0.210
F(000)	600.0
Crystal size/mm ³	$? \times ? \times ?$
Radiation	MoK α ($\lambda = 0.71075$)
2Θ range for data collection/	^o 6.342 to 61.016
Index ranges	$\textbf{-13} \leq h \leq 13, \textbf{-16} \leq k \leq 15, \textbf{-19} \leq \textbf{l} \leq \textbf{19}$
Reflections collected	23427
Independent reflections	4390 [$R_{int} = 0.0213$, $R_{sigma} = 0.0156$]
Data/restraints/parameters	4390/0/176
Goodness-of-fit on F ²	1.056
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0257, wR_2 = 0.0671$
Final R indexes [all data]	$R_1 = 0.0269, wR_2 = 0.0678$
Largest diff. peak/hole / e Å ⁻³	0.30/-0.20
Flack parameter	0.01(6)

Supplementary Figure 14. X-ray structure and crystallographic data of S19

Identification code	RHL-7ring
Empirical formula	$C_{17}H_{25}NO_2S$
Formula weight	307.44
Temperature/K	100(2)
Crystal system	orthorhombic
Space group	Pbca
a/Å	10.0223(5)
b/Å	16.1566(8)
c/Å	20.2915(10)
a/°	90
β/°	90
γ/°	90
Volume/Å ³	3285.7(3)
Z	8
$\rho_{calc}g/cm^3$	1.243
μ/mm^{-1}	0.202
F(000)	1328.0
Crystal size/mm ³	0.1 imes 0.1 imes 0.1
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.042 to 61.126
Index ranges	-11 $\leq h \leq$ 14, -22 $\leq k \leq$ 22, -24 $\leq l \leq$ 28
Reflections collected	28148
Independent reflections	4691 [$R_{int} = 0.0299$, $R_{sigma} = 0.0274$]
Data/restraints/parameters	4691/0/194
Goodness-of-fit on F ²	1.032
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0405, wR_2 = 0.0968$
Final R indexes [all data]	$R_1 = 0.0591, wR_2 = 0.1059$
Largest diff. peak/hole / e Å ⁻³	0.44/-0.22

Supplementary Figure 15. X-ray structure and crystallographic data of 3c

Identification code	RHL-8membered
Empirical formula	C ₁₃ H ₁₇ NOS
Formula weight	235.33
Temperature/K	100(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.001(2)
b/Å	5.9033(12)
c/Å	18.619(4)
α/°	90
β/°	90.427(7)
γ/°	90
Volume/Å ³	1209.2(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.293
μ/mm^{-1}	0.246
F(000)	504.0
Crystal size/mm ³	$0.1\times0.1\times0.1$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.314 to 49.032
Index ranges	$\text{-}12 \leq h \leq 12, \text{-}6 \leq k \leq 6, \text{-}21 \leq l \leq 21$
Reflections collected	9404
Independent reflections	1999 [$R_{int} = 0.0658$, $R_{sigma} = 0.0577$]
Data/restraints/parameters	1999/93/172
Goodness-of-fit on F ²	1.052
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0797, wR_2 = 0.2105$
Final R indexes [all data]	$R_1 = 0.1016$, $wR_2 = 0.2246$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.45/-0.43

Supplementary Figure 16. X-ray structure and crystallographic data of S14

Supplementary Figure 19. ¹H NMR Spectrum of S6

3.9925 2.9566 2.25966 2.25966 2.25966 1.9575 1.9575 1.9575 1.9576 1.95756 1.95766 1.9576 1.9576 1.9576 1.95 7.3207 7.3184 7.3184 7.3184 7.3184 7.2524 7.2524 7.2236 7.22318 7.22318 7.2211 7.2108 7.2208 7.2028 7.2028 SPh (? - \$15 3.92 ¥ 1.02 ¥ 1.00H Hoo.1 1.034 1.034 1.034 1.034 1.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -(f1 (ppm) Supplementary Figure 29. ¹H NMR Spectrum of S15 LRH-5-S15-C13 - 180.28 $\frac{-137.88}{5}$ — 66.37 - 45.23 - 40.11 - 28.45 - 24.25 SPh (? - **S15** 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 **Supplementary Figure 30.** ¹³C NMR Spectrum of **S15**

LRH-5-S15-H

`*t*-Bu 3b

Supplementary Figure 43. ¹H NMR Spectrum of 3b

Supplementary Figure 45. ¹H NMR Spectrum of 3c

Supplementary Figure 47. ¹H NMR Spectrum of 3d

Supplementary Figure 49. ¹H NMR Spectrum of 3e

Supplementary Figure 50. ¹³C NMR Spectrum of 3e

Supplementary Figure 51. ¹H NMR Spectrum of 3f

Supplementary Figure 52. ¹³C NMR Spectrum of 3f

Supplementary Figure 53. ¹H NMR Spectrum of 3g

Supplementary Figure 54. ¹³C NMR Spectrum of 3g

Supplementary Figure 55. ¹H NMR Spectrum of 3h

Supplementary Figure 57. ¹H NMR Spectrum of 3i

Supplementary Figure 59. ¹H NMR Spectrum of 3j

Supplementary Figure 60. ¹³C NMR Spectrum of 3j

Supplementary Figure 61. ¹H NMR Spectrum of 3k

Supplementary Figure 62. ¹³C NMR Spectrum of 3k

LRH-5-9-1-H.10.fid

— 1.52

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 **Supplementary Figure 102.** ¹³C NMR Spectrum of **4r**

90

LRH-5-109-2-F.1.fid

- 3.84

LRH-5-101-3-F.1.fid

LRH-5-105-5-F-3.1.fid

-111.73 -111.74 -111.76 -111.78

Supplementary References

- Burkhardt, I. & Dickschat, J. S. Synthesis and Absolute Configuration of Natural 2-Pyrones. *Eur. J. Org. Chem.* 2018, 3144-3157 (2018).
- Duffault, J.-M. & Tellier, F. A New Route to the Synthesis of Bicyclo [3.3.2] Nonene by Radical Cyclisation. *Synth. Commun.* 28, 2467-2481 (1998).
- Bao, M., Shimizu, M., Shimada, S. & Tanaka, M. Efficient synthesis of N-acylarenesulfenamides by acylation of arenesulfenamides. *Tetrahedron* 59, 303-309 (2003).
- Biallas, P., Mensak, T. M., Kunz, K.-A. & Kirsch, S. F. The Deazidoalkoxylation: Sequential Nucleophilic Substitutions with Diazidated Diethyl Malonate. *J. Org. Chem.* 84, 1654-1663 (2019).
- Esker, J. L. & Newcomb, M. Amidyl radicals from N-(phenylthio)amides. *Tetrahedron Lett.* 34, 6877-6880 (1993).
- Gaykar, R. N., Bhattacharjee, S. & Biju, A. T. Transition-Metal-Free Thioamination of Arynes Using Sulfenamides. *Org. Lett.* 21, 737-740 (2019).
- Lee, C., Lim, Y. N. & Jang, H.-Y. Copper-Catalyzed Synthesis of N-Formyl/Acylsulfenamides and thiosulfonamides. *Eur. J. Org. Chem.* 2015, 5934-5938 (2015).
- Winter, D. K., Drouin, A., Lessard, J. & Spino, C. Photochemical Rearrangement of N-Chlorolactams: A Route to N-Heterocycles through Concerted Ring Contraction. *J. Org. Chem.* 75, 2610-2618 (2010).
- Winnacker, M., Tischner, A., Neumeier, M. & Rieger, B. New insights into synthesis and oligomerization of ε-lactams derived from the terpenoid ketone (–)-menthone. *RSC Adv.* 5, 77699-77705 (2015).
- Li, Z.-S. *et al.* Synthesis and biological evaluation of nonsymmetrical aromatic disulfides as novel inhibitors of acetohydroxyacid synthase. *Biorg. Med. Chem. Lett.* 23, 3723-3727 (2013).
- Ramalingan, C. & Park, Y.-T. Mercury-Catalyzed Rearrangement of Ketoximes into Amides and Lactams in Acetonitrile. J. Org. Chem. 72, 4536-4538 (2007).