Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Unusual [4+2] Fusion Strategy to Forge meso-N/O-Heteroarene-Fused (Quinoidal) Porphyrins with Intense Near-Infrared Q-Bands

Chengming Li, Lei Zhu, Wenbo Liang, Rongchuan Su, Jiangliang Yin, Yanmei Hu, Yu Lan, Di Wu,* and Jingsong You*

[†]Key laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China [‡]School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China

E-mail: *jsyou*@scu.edu.cn; wood@scu.edu.cn

Table of contents

I. General remarksS3
II. Optimization of the oxidative annulation of O-methyl dioximes of
5,15-dioxoporphyrins Zn1 with alkynesS3
III. General procedure for the synthesis of doubly pyridine-fused anti-quinoidal
porphyrins 3S5
IV. General procedure for the synthesis of pyridinium-fused cations 4
V. Optimization of the oxidative annulation of 5,15-dioxoporphyrins Zn2 with
alkynesS6
VI. General procedure for the preparation of Zn1 and Zn2 S7
VII. Preparation and characterization of the doubly pyridine-fused
anti-quinoidal porphyrins 3 and pyridinium-fused porphyrin cations 4S12
VIII. Preparation and characterization of the doubly pyran-fused porphyrins 5
and pyrylium-fused porphyrin dimer 6
IX. HPLC chromatograph for separation of syn-5ah and anti-5ahS30
X. The concentration-dependent ¹ H NMR spectra of the mixture of 5ah S31
XI. FI-IR spectra of syn-5ah and anti-5ahS32
XII. DFT calculation detailS32
XIII. Optical properties of the representative products
XIV. Cyclic voltammogram measurementsS42
XV. Quantification of singlet oxygen generationS43
XVI. Single crystal X-ray structures of Zn1a, 3aa, 4ah, syn-5aa, syn-5af, syn-
and <i>anti-5ah</i> S46
XVII. References
XVIII. Copies of NMR spectra

I. General remarks

NMR spectra were recorded on a Varian Inova 400, or a Bruker AV II-400 spectrometer. The ¹H NMR (400 MHz) chemical shifts were recorded relative to CDCl₃, CD₂Cl₂, TMS or DMSO-*d*₆ as the internal reference (CDCl₃: $\delta_{H} = 7.26 \text{ ppm}$; CD₂Cl₂: $\delta_{H} = 5.32 \text{ ppm}$; TMS: $\delta_{H} = 0.00 \text{ ppm}$; DMSO-*d*₆: $\delta_{H} = 2.50 \text{ ppm}$). The solubility of the product proved too low in common organic solvents to allow the ¹³C NMR spectrum to be recorded. High-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-IT-TOF (ESI). IR spectra were obtained with NEXUS670FT-IR. X-Ray single-crystal diffraction data were collected on an Oxford Xcalibur E single crystal diffractometer or an Agilent Technologies Gemini plus single crystal diffraction. UV/Vis spectra were measured on a HITACHI U-2910. Fluorescence spectra and absolute quantum yields were collected on a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer with a calibrated integrating sphere system.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. $[Cp^*RhCl_2]_2^1$ and alkynes were prepared according to the literature procedures. The solvents were purified and dried using an Innovative Technology PS-MD-5 Solvent Purification System. $RhCl_3 \cdot xH_2O$ were purchased from Shanxi Kaida Chemical Engineering (China) CO., Ltd. $AgSbF_6$ was purchased from Alfa Aesar.

II. Optimization of the oxidative annulation of *O*-methyl dioximes of 5,15-dioxoporphyrins Zn1 with alkynes

A schlenk tube with a magnetic stir bar was charged with metal complex (2.5 μ mol, 5.0 mol %), AgSbF₆ (10 μ mol, 20 mol %), oxidant, additive, *O*-methyl dioxime of 5,15-dioxoporphyrin **Zn1a** (27.8 mg, 0.05 mmol), diphenylacetylene (35.6 mg, 0.2 mmol), and solvent under N₂ atmosphere. The resulting solution was stirred at room temperature for 10 min and then at the indicated temperature for 24 h. After being cooled down, the reaction mixture was filtered through a Celite pad, and then washed with 30 mL of CH₂Cl₂. The

solvent of the filtrate was removed under reduced pressure. The purification was performed by column chromatography on neutral alumina (petroleum ether/ethyl acetate = 8:1 to 4:1) to provide **3aa** and further by silica gel (petroleum ether/ethyl acetate = 1:1 to 1:3, v/v) to provide **4aa**, respectively.

Entry	Catalyst	Oxidant	Additive	Solvent (mL)	Yield of 3aa	Yield of 4aa
		(equiv)	(equiv)		(%) ^b	(%) ^b
1	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	-	DCE (1.0)	28	12
2 ^c	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	-	DCE (1.0)	ND	ND
3	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	NaSbF ₆ (2.0)	DCE (1.0)	15	37
4	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	Zn(OTf) ₂ (2.0)	DCE (1.0)	26	trace
5	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	NaSbF ₆ (2.0)	1,4-dioxane	21	17
				(1.0)		
6	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	NaSbF ₆ (2.0)	THF (1.0)	35	trace
7	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	NaSbF ₆ (2.0)	toluene (1.0)	33	trace
8	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	NaSbF ₆ (2.0)	DMF (1.0)	18	trace
9	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	NaSbF ₆ (2.0)	DCE (0.5)	<10	55
10	[Cp*RhCl ₂] ₂	Ag ₂ O (3.0)	NaSbF ₆ (2.0)	DCE (0.5)	<10	55
11	[Cp*RhCl ₂] ₂	Ag ₂ O (1.0)	NaSbF ₆ (2.0)	DCE (0.5)	<10	41
12	[Cp*RhCl ₂] ₂	Ag ₂ CO ₃ (2.0)	NaSbF ₆ (2.0)	DCE (0.5)	13	45
13	[Cp*RhCl ₂] ₂	AgOAc (2.0)	NaSbF ₆ (2.0)	DCE (0.5)	21	trace
14	[Cp*IrCl ₂] ₂	Ag ₂ O (2.0)	NaSbF ₆ (2.0)	DCE (0.5)	ND	ND
15	[Cp*RhCl ₂] ₂	-	-	THF (1.0)	52	-
16	[Cp*RhCl ₂] ₂	-	-	THF (0.5)	52	-
17 ^d	[Cp*RhCl ₂] ₂	-	-	THF (0.5)	66	-
18 ^e	[Cp*RhCl ₂] ₂	-	-	THF (0.5)	ND	-

Table S1. Optimization for the synthesis of doubly pyridine-fused *anti*-quinoidal porphyrins **3** and pyridinium-fused cations **4**^a

^aReaction conditions: **Zn1a** (0.05 mmol), **2a** (0.2 mmol), catalyst (5 mol %), AgSbF₆ (20 mol %), oxidant, additive, and solvent at 120 °C under N₂ for 24 h. ^bIsolated yield. ^cAgSbF₆ was not added. ^dThe reaction was carried out at 100 °C. ^eThe reaction was carried out at 80 °C.

III. General procedure for the synthesis of doubly pyridine-fused *anti-*quinoidal porphyrins 3

A schlenk tube with a magnetic stir bar was charged with [Cp*RhCl₂]₂ (1.5 mg, 2.5 µmol), $AgSbF_6$ (3.4 mg, 10 µmol), O-methyl dioximes of 5,15-dioxoporphyrins **Zn1** (0.05 mmol), alkyne (0.2 mmol), and THF (0.5 mL) under N₂ atmosphere. The resulting solution was stirred at room temperature for 10 min and then at 100 °C for 24 h. After being cooled down, the reaction mixture was filtered through a Celite pad, and then washed with 30 mL of CH₂Cl₂. The solvent of the filtrate was removed under reduced pressure. The purification was performed by column chromatography on neutral alumina to provide the desired product 3.

IV. General procedure for the synthesis of pyridinium-fused cations 4

A schlenk tube with a magnetic stir bar was charged with $[Cp^*RhCl_2]_2$ (1.5 mg, 2.5 µmol), AgSbF₆ (3.4 mg, 10 µmol), O-methyl dioximes of 5,15-dioxoporphyrins **Zn1** (0.05 mmol), alkyne (0.2 mmol), Ag₂O (23.2 mg, 0.1 mmol), NaSbF₆ (25.9 mg, 0.1 mmol), and DCE (0.5 mL) under N₂ atmosphere. The resulting solution was stirred at room temperature for 10 min and then at 120 °C for 24 h. After being cooled down, the reaction mixture was filtered through a Celite pad, and then washed with 30 mL of CH₂Cl₂. The solvent of the filtrate was removed under reduced pressure. The purification was performed by column chromatography on silica gel to provide the desired product **4**.

V. Optimization of the oxidative annulation of 5,15-dioxoporphyrins Zn2 with alkynes

A schlenk tube with a magnetic stir bar was charged with metal complex (2.5 μ mol, 5.0 mol %), AgSbF₆ (10 μ mol, 20 mol %), oxidant, additive, 5,15-dioxoporphyrin **Zn2a** (27.8 mg, 0.05 mmol), diphenylacetylene (35.6 mg, 0.2 mmol), and solvent under N₂ atmosphere. The resulting solution was stirred at room temperature for 10 min and then at the indicated temperature for 24 h. After being cooled down, the reaction mixture was filtered through a Celite pad, and then washed with 30 mL of CH₂Cl₂. The solvent of the filtrate was removed under reduced pressure. The purification was performed by column chromatography on neutral alumina (petroleum ether/ethyl acetate = 10:1 to 5:1, v/v) to provide **5aa** (a mixture of *syn*- and *anti*-isomers).

Entry	Catalyst	Oxidant	Additive	Solvent	Yield ^b
		(equiv)	(equiv)	(mL)	(%)
1	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	-	DCE (1.0)	33
2 ^c	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	-	DCE (1.0)	ND
3	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	-	DCE (0.5)	46
4 ^d	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	-	DCE (0.5)	35
5	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	-	DMF (0.5)	trace
6	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	-	1,4-dioxane (0.5)	60
7	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	-	THF (0.5)	< 10
8	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	-	toluene (0.5)	22
9	[Cp*RhCl ₂] ₂	AgOAc (2.0)	-	DCE (0.5)	trace
10	[Cp*RhCl ₂] ₂	AgNO ₃ (2.0)	-	DCE (0.5)	ND
11	[Cp*RhCl ₂] ₂	Ag ₂ CO ₃ (2.0)	-	DCE (0.5)	42
12	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	PivOH (2.0)	DCE (0.5)	<10
13	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	NaOAc (2.0)	DCE (0.5)	28

Table S2. Optimization for the synthesis of doubly pyran-fused porphyrin^a

14	[Cp*RhCl ₂] ₂	Ag ₂ O (2.0)	NaSbF ₆ (2.0)	DCE (0.5)	18
15	[Cp*RhCl ₂] ₂	Ag ₂ O (3.0)	-	DCE (0.5)	46
16	[Cp*lrCl ₂] ₂	Ag ₂ O (2.0)	-	DCE (0.5)	ND

^aReaction conditions: **Zn2a** (0.05 mmol), **2a** (0.2 mmol), $[Cp^{*}RhCl_{2}]_{2}$ (5 mol %), AgSbF₆ (20 mol %), oxidant, additive, and solvent at 120 °C under N₂ for 24 h. ^bIsolated yield. ^cAgSbF₆ was not added. ^dThe reaction was carried out at 140 °C.

VI. General procedure for the preparation of Zn1 and Zn2

H₂DPP 1, 5,15-dioxoporphyrin **Zn2a**, **Zn2d**, and 5,15-dioxoporphyrin dimer **Zn2e** were prepared according to the literature procedures.²⁻⁴ 5,15-Diarylporphyrin was prepared according to the literatures.⁵ For the preparation of **H₂DPP 2**, *O*-methyl dioximes of 5,15-dioxoporphyrins **Zn1** and 5,15-dioxoporphyrin **Zn2**, the following procedure was used.

Step 1²: 5,15-Diarylporphyrin (0.24 mmol) was dissolved in a mixture of CHCl₃ (14 mL) and AcOH (2.9 mL). A solution of PbO₂ (0.57 g, 2.4 mmol) was added and the reaction mixture was stirred for 5 h open to air, whereafter the mixture was slowly poured into a saturated aqueous sodium bicarbonate solution (45 mL) to quench the AcOH. The aqueous layer was extracted twice with CH_2Cl_2 (2 × 40 mL), and the two organic fractions were also passed through the Celite. The combined organic filtrates were evaporated and the residue was purified by column chromatography on silica gel to afford the desired product **H₂DPP 1** as a black solid.

Step 26: A suspension of H2DPP 1 (0.10 mmol) above and MeONH2·HCI

(83.5 mg, 1.0 mmol) in pyridine (2.0 mL) was stirred at 110 $^{\circ}$ C for 48 h. Then pyridine was removed under reduce pressure and CH₂Cl₂ (30 mL) was added to dilute it. The mixture was washed with water and dried over anhydrous MgSO₄. The purification was performed by column chromatography on silica gel to provide the desired product **H**₂**DPP 2**.

Step 3⁵: A suspension of **H**₂**DPP 2** above and Zn(OAc)₂·2H₂O (10 equiv) in a mixture of CH₂Cl₂ (12 mL) and MeOH (6 mL) was stirred at 23 °C for 3 h. The reaction was quenched with water (30 mL), and the mixture was extracted with CH₂Cl₂ (3 × 30 mL). The combined extracts were washed with water and dried over anhydrous MgSO₄. The solvent was removed under reduce pressure to give the product *O*-methyl dioximes of 5,15-dioxoporphyrins **Zn1**. The yield of step 3 was near 100%.

Step 4⁵: A suspension of **H₂DPP 1** above and $Zn(OAc)_2 \cdot 2H_2O$ (10 equiv) in a mixture of CH₂Cl₂ (24 mL) and MeOH (12 mL) was stirred at 23 °C for 3 h. The reaction was quenched with water (30 mL), and the mixture was extracted with CH₂Cl₂ (3 × 30 mL). The combined extracts were washed with water and dried over anhydrous MgSO₄. The solvent was removed under reduce pressure to give the product 5,15-dioxoporphyrin **Zn2**.

H₂DPP 1c: Following the synthetic procedure step 1. 5-(4-methoxycarbonylphenyl)-15-(4-methylphenyl)porphyrin⁷ (128.3 mg, 0.24 mmol) was used. Purification via column chromatography on silica gel (petroleum ether/ $CH_2CI_2 = 1:1$ to 1:3, v/v) afforded **H₂DPP 1c** as a black solid (80.1 mg, 59% yield). ¹H NMR (CDCI₃, 400 MHz): δ (ppm) 13.95 (d, J = 14.0 Hz, 2H), 8.15 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.26-7.32 (m, 4H),

S8

7.15 (d, J = 4.4 Hz, 4H), 6.48 (d, J = 48.4 Hz, 4H), 3.99 (s, 3H), 2.46 (s, 3H). HRMS (ESI⁺): calcd for C₃₅H₂₅N₄O₄ [M+H]⁺ 565.1870, found 565.1872.

H₂**DPP 2a**: Following the synthetic procedure step 2. **H**₂**DPP 1a** (49.2 mg, 0.10 mmol) was used. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1, v/v) afforded **H**₂**DPP 2a** as a red solid (50.4 mg, 91% yield). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 12.41 (s, 2H), 7.42-7.46 (m, 12H), 7.15 (d, *J* = 3.6 Hz, 2H), 6.77 (d, *J* = 3.6 Hz, 2H), 6.32 (s, 2H), 4.20 (s, 6H). HRMS (ESI⁺): calcd for C₃₄H₂₇N₆O₂ [M+H]⁺ 551.2190, found 551.2187.

H₂**DPP 2b**: Following the synthetic procedure step 2. **H**₂**DPP 1b** (100.5 mg, 0.10 mmol) was used. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 40:1, v/v) afforded **H**₂**DPP 2b** as a red solid (82.9 mg, 78% yield). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 12.47 (s, 2H), 7.42 (d, J = 4.4 Hz, 2H), 7.33 (t, J = 8.4 Hz, 2H), 7.13 (d, J = 4.8 Hz, 2H), 6.75 (d, J = 4.4 Hz, 2H), 6.62 (d, J = 8.4 Hz, 4H), 6.27-6.29 (m, 2H), 4.16 (s, 6H), 3.86-3.90 (m, 8H), 1.10-1.26 (m, 48H), 0.80 (t, J = 7.2 Hz, 12H). HRMS (ESI⁺): calcd for C₆₆H₉₁N₆O₆ [M+H]⁺ 1063.6995, found 1063.6990.

H₂**DPP 2d**: Following the synthetic procedure step 2. **H**₂**DPP 1d** (52.1 mg, 0.10 mmol) was used. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1, v/v) afforded **H**₂**DPP 2d** as a red solid (50.1 mg, 87% yield). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 12.39 (s, 2H), 7.40-7.42 (m, 2H), 7.33-7.35 (m, 4H), 7.24 (s, 2H), 7.13 (d, *J* = 4.4, 2H), 6.81 (d, *J* = 4.8, 2H), 6.35 (m, 2H), 4.20 (s, 6H), 2.46 (s, 6H). HRMS (ESI⁺): calcd for C₃₆H₃₁N₆O₂ [M+H]⁺ 579.2503, found 579.2505.

Zn1a: Following the synthetic procedure step 3. *O*-methyl dioxime of 5,15-dioxoporphyrin **Zn1a** was prepared as a black solid (55.1 mg, 98%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.41-7.48 (m, 10H), 7.31-7.34 (m, 2H), 7.04 (d, *J* = 4.4 Hz, 1H), 6.95 (d, *J* = 4.0 Hz, 1H), 6.68 (t, *J* = 4.0 Hz, 2H), 6.62 (d, *J* = 4.0 Hz, 2H), 4.13 (d, *J* = 6.8 Hz, 6H). HRMS (ESI⁺): calcd for C₃₄H₂₅N₆O₂Zn [M+H]⁺ 613.1325, found 613.1323. Single crystals were grown by slow diffusion of *n*-hexane into a solution of **Zn1a** in dichloromethane.

Zn1b: Following the synthetic procedure step 3. *O*-methyl dioxime of 5,15-dioxoporphyrin **Zn1b** was prepared as a black solid (85.2 mg, 97%). The

¹H NMR was not recorded because the exist of isomers. HRMS (ESI⁺): calcd for $C_{66}H_{89}N_6O_6Zn [M+H]^+$ 1125.6130, found 1125.6124.

Zn1c: Following the synthetic procedure step 2, H_2DPP 1c (56.5 mg, 0.10 mmol) was used. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1, v/v) afforded H_2DPP 2c as a red solid (38.1 mg, 61% yield). Then following the procedure step 3, *O*-methyl dioxime of 5,15-dioxoporphyrin **Zn1c** was prepared as a black solid (40.7 mg, 97%). ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 8.11 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.30-7.35 (m, 4H), 7.24 (d, J = 8.0 Hz, 2H), 6.94-7.05 (m, 2H), 6.72 (d, J = 4.4 Hz, 1H), 6.66 (t, J = 8.4 Hz, 1H), 6.60 (t, J = 9.6 Hz, 1H), 6.53 (d, J = 4.4 Hz, 1H), 4.12-4.14 (m, 6H), 3.98 (s, 3H), 2.46 (s, 3H). HRMS (ESI⁺): calcd for $C_{37}H_{29}N_6O_4Zn$ [M+H]⁺ 685.1536, found 685.1529.

Zn1d: Following the synthetic procedure step 3. *O*-methyl dioxime of 5,15-dioxoporphyrin **Zn1d** was prepared as a black solid (85.2 mg, 97%). ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 7.26-7.33 (m, 10H), 6.98 (s, 1H), 6.87 (s, 1H), 6.57 (s, 2H), 6.49 (s, 2H), 4.07 (s, 6H), 2.43 (s, 6H). HRMS (ESI⁺): calcd for C₃₆H₂₉N₆O₂Zn [M+H]⁺ 641.1638, found 641.1635.

Zn2b: Following the synthetic procedure 1, step 5,15-Bis(2, 6-dioctoxyphenyl)porphyrin (234.1 mg, 0.24 mmol) was used. Purification via column chromatography on silica gel (petroleum ether/ $CH_2CI_2 = 3:1$ to 1:1, v/v) afforded H₂DPP 1b as a brown solid (115.0 mg, 48% yield). Then following the procedure step 4, 5,15-dioxoporphyrin Zn2b was prepared as a black solid (119.8 mg, 98%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.26-7.30 (m, 2H), 6.87-6.91 (m, 4H), 6.52-6.56 (m, 4H), 6.22-6.28 (m, 4H), 3.85-3.88 (m, 8H), 1.19-1.25 (m, 48H), 0.80-0.84 (t, J = 6.6 Hz, 12H). HRMS (ESI⁺): calcd for $C_{64}H_{83}N_4O_6Zn [M+H]^+ 1067.5599$, found 1067.5602.

VII. Preparation and characterization of the doubly pyridine-fused *anti*-quinoidal porphyrins 3 and pyridinium-fused porphyrin cations 4

3aa: Following procedure. O-methyl of the general dioxime 5,15-dioxoporphyrin Zn1a (30.7 mg, 0.05 mmol) and diphenylacetylene (35.6 mg, 0.2 mmol) were used. Purification via column chromatography on neutral alumina (petroleum ether/ethyl acetate = 8:1 to 4:1) afforded **3aa** as a dark green solid (30.1 mg, 66% yield). ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 7.61 (d, *J* = 4.8 Hz, 2H), 7.51-7.55 (m, 10H), 7.26-7.32 (m, 10H), 7.17-7.20 (m, 10H), 6.78 (d, J = 4.8 Hz, 2H), 6.16 (s, 2H). HRMS (ESI⁺): calcd for C₆₀H₃₇N₆Zn [M+H]⁺ 905.2366; found 905.2360. Single crystals were grown by slow diffusion of *n*-hexane into a solution of **3aa** (in the presence of 1% pyridine) in dichloromethane.

3ab: Following the general procedure. O-methyl dioxime of 5,15-dioxoporphyrin Zn1a (30.7 mg, 0.05 mmol) and 1,2-di-p-tolylethyne (41.3 mg, 0.2 mmol) were used. Purification via column chromatography on neutral alumina (petroleum ether/ethyl acetate = 8:1 to 4:1) afforded **3ab** as a dark green solid (24.1 mg, 50% yield). ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 7.60 (d, J = 4.8 Hz, 2H), 7.52-7.55 (m, 10H), 7.20 (d, J = 8.0 Hz, 4H), 7.07 (m, 8H),7.01 (d, J = 8.0 Hz, 4H), 6.77 (d, J = 4.4 Hz, 2H), 6.16 (s, 2H), 2.26 (d, J = 9.6Hz, 12H). HRMS (ESI⁺): calcd for $C_{64}H_{45}N_6Zn$ [M+H]⁺ 961.2992; found 961.2991.

3ac: Following the general procedure. O-methyl dioxime of 5,15-dioxoporphyrin Zn1a (30.7 mg, 0.05 mmol) and 1,2-di-*m*-tolylethyne (41.3 mg, 0.2 mmol) were used. Purification via column chromatography on neutral alumina (petroleum ether/ethyl acetate = 8:1 to 4:1) afforded **3ac** as a dark green solid (25.4 mg, 53% yield). ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 7.62 (d, J = 4.8 Hz, 2H), 7.51-7.55 (m, 10H), 7.14-7.22 (m, 4H), 6.99-7.08 (m, 10H),6.95 (d, J = 7.6 Hz, 2H), 6.80 (d, J = 4.8 Hz, 2H), 6.15 (s, 2H), 2.20 (s, 6H), 2.17 (s, 6H). HRMS (ESI⁺): calcd for $C_{64}H_{45}N_6Zn \ [M+H]^+$ 961.2992; found 961.2991.

3ad: Following the general procedure. O-methyl dioxime of (30.7 5,15-dioxoporphyrin Zn1a mg, 0.05 mmol) and 1, 2-di(naphthalene-2-yl)ethyne (55.7 mg, 0.2 mmol) were used. Purification via column chromatography on neutral alumina (petroleum ether/ethyl acetate = 8:1 to 4:1) afforded **3ad** as a dark green solid (30.0 mg, 54% yield). ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 7.97 (s, 2H), 7.85 (d, *J* = 8.8 Hz, 4H), 7.75-7.78 (m, 6H), 7.69-7.71 (m, 4H), 7.65 (s, 1H), 7.63 (s, 1H), 7.55-7.57 (m, 4H), 7.46-7.51 (m, 10H), 7.38-7.42 (m, 6H), 7.30 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 4.8 Hz, 2H), 6.25 (s, 2H). HRMS (ESI⁺): calcd for C₇₆H₄₅N₆Zn [M+H]⁺ 1105.2992; found 1105.2992.

O-methyl 3ae: Following the general procedure. dioxime of 5,15-dioxoporphyrin Zn1a (30.7 0.05 mmol) and mg, 1,2-bis(4-tert-butylphenyl)ethyne (58.1 mg, 0.2 mmol) were used. Purification via column chromatography on neutral alumina (petroleum ether/ethyl acetate = 8:1 to 4:1) afforded **3ae** as a dark green solid (33.9 mg, 60% yield). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.70 (d, J = 4.8 Hz, 2H), 7.37-7.47 (m, 10H), 7.24 (d, J = 8.4 Hz, 4H), 7.19 (d, J = 8.4 Hz, 4H), 7.06-7.13 (m, 8H), 6.74 (d, J = 4.4 Hz, 2H), 6.40 (s, 2H), 1.29 (s, 18H), 1.24 (s, 18H). HRMS (ESI⁺): calcd for C₇₆H₆₉N₆Zn [M+H]⁺ 1129.4870; found 1129.4872.

3af: Following the general procedure. O-methyl dioxime of 5,15-dioxoporphyrin Zn1a (30.7 0.05 mmol) 1. mg, and 2-bis(4-chlorophenyl)ethyne (49.4 mg, 0.2 mmol) were used. Purification via column chromatography on neutral alumina (petroleum ether/ethyl acetate = 8:1 to 4:1) afforded **3af** as a dark green solid (26.5 mg, 51% yield). ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 7.65 (d, J = 4.8 Hz, 2H), 7.42-7.46 (m, 10H), 7.27 (d, J = 7.2 Hz, 4H), 7.12-7.21 (m, 16H), 6.78 (d, J = 4.8 Hz, 2H), 6.28 (s, 2H). HRMS (ESI⁺): calcd for $C_{60}H_{33}Cl_4N_6Zn$ [M+H]⁺ 1041.0807 (³⁵Cl), 1043.0777 (³⁷Cl); found 1041.0811, 1043.0771.

3ag: Following the general procedure. **Zn1a** (30.7mg, 0.05mmol) and 1,1'-(4,4'-(ethyne-1,2-diyl)bis(4,1-phenylene))diethanone (52.5 mg, 0.2 mmol) were used. Purification via column chromatography on neutral alumina (petroleum ether/ethyl acetate = 1:1 to 1:3) afforded **3ag** as a dark green solid (33.3 mg, 62% yield). The solubility of the product proved too low in common organic solvents to allow the ¹H NMR spectrum to be recorded. HRMS (ESI⁺): calcd for C₆₈H₄₅O₄N₆Zn [M+H]⁺ 1073.2788; found 1073.2800.

3ah: Following the general procedure. O-methyl dioxime of 0.05 5,15-dioxoporphyrin Zn1a (30.7 mg, mmol) and 1. 2-bis(4-fluorophenyl)ethyne (42.8 mg, 0.2 mmol) were used. Purification via column chromatography on neutral alumina (petroleum ether/ethyl acetate = 8:1 to 4:1) afforded **3ah** as a dark green solid (19.5 mg, 40% yield). ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 7.59 (d, J = 4.8 Hz, 2H), 7.51-7.54 (m, 10H), 7.30-7.34 (m, 4H), 7.20-7.23 (m, 4H), 7.12-7.17 (m, 4H), 7.04-7.08 (m, 4H), 6.77 (d, J = 4.8 Hz, 2H), 6.13 (s, 2H). HRMS (ESI⁺): calcd for C₆₀H₃₃F₄N₆Zn [M+H]⁺ 977.1989; found 977.1993.

3ai: Following the general procedure. *O*-methyl dioxime of 5,15-dioxoporphyrin **Zn1a** (30.7 mg, 0.05 mmol) and 1, 2-bis(3-fluorophenyl)ethyne (42.8 mg, 0.2 mmol) were used. Purification via column chromatography on neutral alumina (petroleum ether/ethyl acetate = 8:1 to 4:1) afforded **3ai** as a dark green solid (26.9 mg, 55% yield). ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 7.52-7.60 (m, 12H), 7.32-7.38 (m, 2H), 7.22-7.28 (m, 2H), 7.10-7.16 (m, 6H), 7.01-7.07 (m, 6H), 6.75-6.78 (m, 2H), 6.13 (s, 2H). HRMS (ESI⁺): calcd for C₆₀H₃₃F₄N₆Zn [M+H]⁺ 977.1989; found 977.1994.

3aj: Following the general procedure. *O*-methyl dioxime of 5,15-dioxoporphyrin **Zn1a** (30.7 mg, 0.05 mmol) and 1, 2-bis(3-(methoxycarbonyl)phenyl)ethyne (58.9 mg, 0.2 mmol) were used. Purification via column chromatography on

neutral alumina (petroleum ether/ethyl acetate = 3:1 to 1:1) afforded **3aj** as a dark green solid (29.1 mg, 51% yield). ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 7.97 (t, *J* = 3.6 Hz, 2H), 7.84-7.87 (m, 2H), 7.78-7.80 (m, 4H), 7.60 (d, *J* = 4.4 Hz, 2H), 7.50-7.54 (m, 12H), 7.43-7.45 (m, 4H), 7.33 (t, *J* = 7.8 Hz, 2H), 6.81 (d, *J* = 4.8 Hz, 2H), 6.13 (s, 2H), 3.80 (s, 6H), 3.78 (s, 6H). HRMS (ESI⁺): calcd for C₆₈H₄₅O₈N₆Zn [M+H]⁺ 1137.2585; found 1137.2578.

3ak: Following the general procedure. *O*-methyl dioxime of 5,15-dioxoporphyrin **Zn1a** (30.7 mg, 0.05 mmol) and 4-octyne (22.1 mg, 0.2 mmol) were used. Purification via column chromatography on neutral alumina (petroleum ether/ethyl acetate = 8:1 to 4:1) afforded **3ak** as a dark green solid (16.2 mg, 42% yield). ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 7.55-7.59 (m, 12H), 6.74 (d, *J* = 4.8 Hz, 2H), 6.30 (s, 2H), 2.66-2.74 (m, 8H), 1.72-1.77 (m, 4H), 1.50-1.55 (m, 4H), 0.96 (t, *J* = 7.4 Hz, 6H), 0.87 (t, *J* = 7.4 Hz, 6H). HRMS (ESI⁺): calcd for C₄₈H₄₅N₆Zn [M+H]⁺ 769.2992; found 769.2994.

3ba: Following the general procedure. *O*-methyl dioxime of 5,15-dioxoporphyrin **Zn1b** (56.3 mg, 0.05 mmol) and diphenylacetylene (35.6 mg, 0.2 mmol) were used. Purification via column chromatography on neutral alumina (petroleum ether/ethyl acetate = 20:1 to 10:1) afforded **3ba** as a dark green solid (28.3 mg, 40% yield). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.70 (d, J = 4.8 Hz, 2H), 7.37-7.39 (m, 4H), 7.30 (t, J = 8.2 Hz, 2H), 7.20-7.22 (m, 10H), 7.16-7.19 (m, 6H), 6.82 (d, J = 4.8 Hz, 2H), 6.61 (d, J = 8.4 Hz, 4H), 6.41 (s,

2H), 3.86-3.96 (m, 8H), 1.25-1.26 (m, 8H), 1.08-1.12 (m, 40H), 0.72 (t, J = 6.8 Hz, 12H). HRMS (ESI⁺): calcd for $C_{92}H_{101}O_4N_6Zn$ [M+H]⁺ 1439.6990; found 1439.6998.

Following 3ca: the procedure. O-methyl dioxime of general 5,15-dioxoporphyrin Zn1c (34.3 mg, 0.05 mmol) and diphenylacetylene (35.6 mg, 0.2 mmol) were used. Purification via column chromatography on neutral alumina (petroleum ether/ethyl acetate = 8:1 to 4:1) afforded 3ca as a dark green solid (14.7 mg, 30% yield). ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 8.08 (d, *J* = 8.4 Hz, 2H), 7.77 (t, *J* = 4.6 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 2H), 7.34-7.38 (m, 6H), 7.17-7.24 (m, 18H), 6.87 (d, J = 4.8 Hz, 1H), 6.73 (d, J = 4.8 Hz, 1H), 6.48 (s, 1H), 6.32 (s, 1H), 3.99 (s, 3H), 2.46 (s, 3H). HRMS (ESI⁺): calcd for C₆₃H₄₁O₂N₆Zn [M+H]⁺ 977.2577; found 977.2586.

4aa: Following the general procedure. *O*-methyl dioxime of 5,15-dioxoporphyrin **Zn1a** (30.7 mg, 0.05 mmol) and diphenylacetylene (35.6 mg, 0.2 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1 to 1:3) afforded **4aa** as a black solid (32.2 mg, 55% yield). ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 7.82 (s, 2H), 7.59-7.66 (m, 10H), 7.10-7.18 (m, 8H), 6.99 (s, 4H), 6.86-6.89 (m, 2H), 6.75-6.79 (m, 4H), 6.39-6.48 (m, 6H), 4.45 (s, 3H). HRMS (ESI⁺): calcd for C₆₁H₃₉ON₆Zn [M]⁺ 935.2471; found 935.2473.

4ac: Following the general procedure. *O*-methyl dioxime of 5,15-dioxoporphyrin **Zn1a** (30.7 mg, 0.05 mmol) and 1,2-di-*m*-tolylethyne (41.3 mg, 0.2 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1 to 1:3) afforded **4ac** as a black solid (24.5 mg, 40% yield). ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 7.81 (d, *J* = 4.8 Hz, 1H), 7.65 (d, *J* = 4.8 Hz, 1H), 7.58-7.61 (m, 10H), 6.40-7.19 (m, 20H), 4.44 (s, 3H), 1.72-2.19 (m, 12H). HRMS (ESI⁺): calcd for C₆₅H₄₇ON₆Zn [M]⁺ 991.3097; found 991.3098.

4af: Following O-methyl dioxime of the general procedure. 5,15-dioxoporphyrin Zn1a (30.7)mg, 0.05 mmol) and 1, 2-bis(4-chlorophenyl)ethyne (49.4 mg, 0.2 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1 to 1:3) afforded **4af** as a black solid (32.8 mg, 50% yield). ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 7.81 (d, J = 4.8 Hz, 1H), 7.66 (d, J = 5.2 Hz, 1H), 7.58-7.63 (m, 10H), 7.30 (d, J = 0.8 Hz, 2H), 7.28 (d, J = 1.2 Hz, 2H), 7.12 (d, J = 4.8 Hz, 1H), 7.09 (d, J = 5.2 Hz, 1H), 7.03-7.06 (m, 4H), 6.91-6.94 (m, 4H), 6.54-6.59 (t, J = 8.4 Hz, 4H), 6.46 (s, 1H), 6.38 (s, 1H), 4.45 (s, 3H). HRMS (ESI⁺): calcd for C₆₁H₃₅Cl₄ON₆Zn [M]⁺ 1071.0912 (³⁵Cl), 1073.0883 (³⁷Cl); found 1071.0912, 1073.0877.

4ah: Following the general procedure. O-methyl dioxime of 5,15-dioxoporphyrin Zn1a 0.05 (30.7 mg, mmol) and 1. 2-bis(4-fluorophenyl)ethyne (42.8 mg, 0.2 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1 to 1:3) afforded **4ah** as a black solid (18.6 mg, 30% yield). ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 7.87 (d, J = 4.8 Hz, 1H), 7.70 (d, J = 4.8 Hz, 1H), 7.56-7.64 (m, 10H), 7.16 (d, J = 4.8 Hz, 1H), 7.13 (d, J = 4.8 Hz, 1H), 7.03-7.07 (m, 8H), 6.70-6.75 (m, 4H), 6.55-6.60 (m, 4H), 6.50 (s, 1H), 6.42 (s, 1H), 6.47 (s, 3H). HRMS (ESI⁺): calcd for C₆₁H₃₅F₄ON₆Zn [M]⁺ 1007.2094; found 1007.2099. Single crystals were grown by slow diffusion of *n*-hexane into a solution of **4ah** (in the presence of 1% tetrahydrofuran) in dichloromethane.

4ai: Following the general procedure. *O*-methyl dioxime of 5,15-dioxoporphyrin **Zn1a** (30.7 mg, 0.05 mmol) and 1, 2-bis(4-fluorophenyl)ethyne (42.8 mg, 0.2 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1 to 1:3) afforded **4ai** as a black solid (31.1 mg, 50% yield). ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 7.85 (d, *J* = 4.8 Hz, 1H), 7.69 (d, *J* = 4.8 Hz, 1H), 7.59-7.64 (m, 10H), 6.66-7.35 (m, 18H), 6.50 (s, 1H), 6.42 (s, 1H), 4.46 (s, 3H). HRMS (ESI⁺): calcd for C₆₁H₃₅F₄ON₆Zn [M]⁺ 1007.2094; found 1007.2088.

4al: Following the general procedure. *O*-methyl dioxime of 5,15-dioxoporphyrin **Zn1a** (30.7 mg, 0.05 mmol) and 1, 2-bis(4-methoxyphenyl)ethyne (47.7 mg, 0.2 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1 to 1:3) afforded **4al** as a black solid (39.1 mg, 60% yield). ¹H NMR (DMSO-*d*₆, 400 MHz): δ (ppm) 7.85 (d, *J* = 4.4 Hz, 1H), 7.68 (d, *J* = 4.8 Hz, 1H), 7.57-7.62 (m, 10H), 7.13 (d, *J* = 4.8 Hz, 1H), 7.10 (d, *J* = 4.4 Hz, 1H), 6.88-6.91 (m, 4H), 6.76 (d, *J* = 8.0 Hz, 4H), 6.52 (s, 1H), 6.44 (s, 1H), 6.35-6.41 (m, 8H), 4.45 (s, 3H), 3.67 (s, 6H), 3.61 (d, *J* = 2.8 Hz, 6H). HRMS (ESI⁺): calcd for C₆₅H₄₇O₅N₆Zn [M]⁺ 1055.2894; found 1055.2899.

4am: Following the general procedure. O-methyl dioxime of 5,15-dioxoporphyrin Zn1a (30.7 0.05 mg, mmol) and 1, 2-bis(4-bromophenyl)ethyne (67.2 mg, 0.2 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1 to 1:3) afforded **4am** as a black solid (48.4 mg, 65% yield). ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 7.82 (d, J = 4.8 Hz, 1H), 7.66 (d, J = 4.8 Hz, 1H), 7.58-7.63 (m, 10H), 7.43 (d, J = 7.6 Hz, 4H), 7.12 (d, J = 4.8 Hz, 1H), 7.10 (d, J = 4.4 Hz, 1H), 7.04-7.07 (m, 4H), 6.97-7.00 (m, 4H), 6.49 (t, J = 8.4 Hz, 4H), 6.46 (s, 1H), 6.38 (s, 1H), 4.45 (s, 3H). HRMS (ESI⁺): calcd for C₆₁H₃₅Br₄ON₆Zn [M]⁺ 1246.8892 (⁷⁹Br), 1248.8871 (⁸¹Br); found 1246.8886, 1248.8863.

4an: Following the procedure. O-methyl dioxime of general 5,15-dioxoporphyrin Zn1a (30.7 0.05 mmol) mg, and 1,2-di(thiophen-2-yl)ethyne (38.1 mg, 0.2 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1 to 1:2) afforded **4an** as a black solid (20.9 mg, 35% yield). ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 7.83 (d, J = 4.8 Hz, 1H), 7.68 (d, J = 4.8 Hz, 1H), 7.61-7.64 (m, 10H), 7.54-7.57 (m, 2H), 7.45-7.49 (m, 2H), 7.16 (d, J = 4.8 Hz, 1H), 7.13 (d, J = 5.2 Hz, 1H), 6.99-7.04 (m, 4H), 6.65-6.69 (m, 3H), 6.60 (s, 1H),6.34-6.37 (m, 2H), 4.46 (s, 3H). HRMS (ESI⁺): calcd for $C_{53}H_{31}S_4ON_6Zn$ [M]⁺ 959.0728; found 959.0729.

4da: Following procedure. O-methyl the general dioxime of 5,15-dioxoporphyrin Zn1d (30.7 mg, 0.05 mmol) and diphenylacetylene (35.6 mg, 0.2 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1 to 1:3) afforded 4da as a black solid (18.0 mg, 30% yield). ¹H NMR (DMSO- d_6 , 400 MHz): δ (ppm) 7.81 (d, J = 4.8 Hz, 1H), 7.65 (d, J = 5.2 Hz, 1H), 7.48 (d, J = 7.6 Hz, 4H), 7.38 (d, J = 8.0 Hz, 4H), 7.11-7.19 (m, 10H), 6.97-7.00 (m, 4H), 6.85-6.88 (m, 2H), 6.74-6.79 (m, 4H), 6.52 (s, 1H), 6.43-6.47 (m, 3H), 4.45 (s, 3H), 2.44 (d, J = 2.4 Hz, 6H). HRMS (ESI^{+}) : calcd for C₆₃H₄₃ON₆Zn [M]⁺ 963.2784; found 963.2781.

VIII. Preparation and characterization of the doubly pyran-fused porphyrins 5 and pyrylium-fused porphyrin dimer 6

5aa: A schlenk tube with a magnetic stir bar was charged with [Cp*RhCl₂]₂ (1.5 mg, 2.5 µmol), AgSbF₆ (3.4 mg, 10 µmol), Ag₂O (23.2 mg, 0.1 mmol), 5,15-dioxoporphyrin **Zn2a** (27.8 mg, 0.05 mmol), diphenylacetylene (35.6 mg, 0.2 mmol), and dioxane (0.5 mL) under N₂ atmosphere. The resulting solution was stirred at room temperature for 10 min and then at 120 °C for 24 h. After being cooled down, the reaction mixture was filtered through a Celite pad, and then washed with 30 mL of CH₂Cl₂. The solvent of the filtrate was removed under reduced pressure and the residue was absorbed to small amounts of silica gel. Purification via column chromatography on neutral Al₂O₃ (petroleum ether/ethyl acetate = 6:1, v/v) afforded **5aa** as a dark green solid of a mixture of *syn*- and *anti*-configurations in a ratio of ca. 2:1 (27.2 mg, 60% yield). HRMS (ESI⁺): calcd for C₆₀H₃₇N₄O₂Zn [M+H]⁺ 909.2202; found 909.2198. Slow diffusion of *n*-hexane into a solution of **5aa** in dichloromethane (in the presence of 1% tetrahydrofuran) gave the single crystals of *syn*-configuration.

5ab: A schlenk tube with a magnetic stir bar was charged with $[Cp*RhCl_2]_2$ (1.5 mg, 2.5 µmol), AgSbF₆ (3.4 mg, 10 µmol), Ag₂O (23.2 mg, 0.1 mmol), 5,15-dioxoporphyrin **Zn2a** (27.8 mg, 0.05 mmol), 1,2-di-*p*-tolylethyne (41.3 mg, 0.2 mmol), and DCE (0.5 mL) under N₂ atmosphere. The resulting solution was stirred at room temperature for 10 min and then at 120 °C for 24 h. After being

cooled down, the reaction mixture was filtered through a Celite pad, and then washed with 30 mL of CH₂Cl₂. The solvent of the filtrate was removed under reduced pressure and the residue was absorbed to small amounts of silica gel. Purification via column chromatography on neutral Al_2O_3 (petroleum ether/ethyl acetate = 6:1, v/v) afforded **5ab** as a dark green solid of a mixture of *syn-* and *anti*-configurations in a ratio of 3.8:1 (21.7 mg, 45% yield). HRMS (ESI⁺): calcd for C₆₄H₄₅N₄O₂Zn [M+H]⁺ 965.2828; found 965.2831.

5ao: A schlenk tube with a magnetic stir bar was charged with [Cp*RhCl2]2 (1.5 mg, 2.5 μmol), AgSbF₆ (3.4 mg, 10 μmol), Ag₂O (23.2 mg, 0.1 mmol), 5,15-dioxoporphyrin Zn2a (27.8)0.05 mg, mmol), 4,4'-(Ethyne-1,2-diyl)dibenzonitrile (45.7 mg, 0.2 mmol), and DCE (0.5 mL) under N₂ atmosphere. The resulting solution was stirred at room temperature for 10 min and then at 120 °C for 24 h. After being cooled down, the reaction mixture was filtered through a Celite pad, and then washed with 30 mL of CH₂Cl₂. The solvent of the filtrate was removed under reduced pressure and the residue was absorbed to small amounts of silica gel. Purification via column chromatography on neutral Al_2O_3 (petroleum ether/ethyl acetate = 6:1 to 1:1 v/v) afforded 5ao as a dark green solid of a mixture of syn- and anti-configurations in a ratio of 4:1 (29.8 mg, 59% yield). HRMS (ESI⁺): calcd for C₆₄H₃₃N₈O₂Zn [M+H]⁺ 1009.2012; found 1009.2021.

5ah: A schlenk tube with a magnetic stir bar was charged with [Cp*RhCl₂]₂ (1.5

mg, 2.5 μ mol), AgSbF₆ (3.4 mg, 10 μ mol), Ag₂O (23.2 mg, 0.1 mmol), 5,15-dioxoporphyrin Zn2b (53.4 0.05 mg, mmol), 1. 2-bis(4-fluorophenyl)ethyne (42.8 mg, 0.2 mmol), and DCE (0.5 mL) under N₂ atmosphere. The resulting solution was stirred at room temperature for 10 min and then at 120 °C for 24 h. After being cooled down, the reaction mixture was filtered through a Celite pad, and then washed with 30 mL of CH₂Cl₂. The solvent of the filtrate was removed under reduced pressure and the residue was absorbed to small amounts of silica gel. Purification via column chromatography on neutral AI_2O_3 (petroleum ether/ethyl acetate = 4:1, v/v) afforded **5ah** as a dark green solid of a mixture of syn- and anti-configurations in a ratio of ca. 1:1 (30.1 mg, 58% yield). HRMS (ESI⁺): calcd for $C_{60}H_{33}F_4N_4O_2Zn [M+H]^+$ 981.1826; found 981.1819.

*syn-***5ah**: HPLC chromatograph was performed with the mixture of **5ah** to afford single *syn* isomer using CH₂Cl₂ (0.1% DEA)/*n*-Hexane as eluent. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 9.56 (d, *J* = 4.4 Hz, 2H), 8.91 (d, *J* = 4.4 Hz, 2H), 8.38 (s, 2H), 8.25 (d, *J* = 7.2 Hz, 2H), 8.15 (d, *J* = 6.8 Hz, 2H), 7.87-7.91 (m, 4H), 7.80 (d, *J* = 6.4 Hz, 2H), 7.70-7.76 (m, 6H), 7.18-7.24 (m, 10H). HRMS (ESI⁺): calcd for C₆₀H₃₃F₄N₄O₂Zn [M+H]⁺ 981.1826; found 981.1821. Slow diffusion of *n*-hexane into a solution of *syn-***5ah** in dichloromethane (in the presence of 1% tetrahydrofuran) gave the single crystals for X-ray diffraction analysis.

anti-**5ah**: HPLC chromatograph was performed with the mixture of **5ah** to afford single *anti* isomer using CH₂Cl₂ (0.1% DEA)/*n*-Hexane as eluent. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 9.68 (d, J = 4.4 Hz, 2H), 8.93 (d, J = 4.4 Hz, 2H), 8.53 (s, 2H), 8.22-8.24 (m, 4H), 7.91-7.95 (m, 4H), 7.76-7.81 (m, 10H), 7.19-7.28 (m, 8H). HRMS (ESI⁺): calcd for C₆₀H₃₃F₄N₄O₂Zn [M+H]⁺ 981.1826; found 981.1823. Slow diffusion of *n*-hexane into a solution of *anti*-**5ah** in dichloromethane (in the presence of 1% tetrahydrofuran) gave the single crystals for X-ray diffraction analysis.

syn-5af: A schlenk tube with a magnetic stir bar was charged with [Cp*RhCl₂]₂ (1.5 mg, 2.5 µmol), AgSbF₆ (3.4 mg, 10 µmol), Ag₂O (23.2 mg, 0.1 mmol), 5,15-dioxoporphyrin Zn2a (27.8)0.05 mg, mmol), 1,2-bis(4-chlorophenyl)ethyne (49.4 mg, 0.2 mmol), and DCE (0.5 mL) under N₂ atmosphere. The resulting solution was stirred at room temperature for 10 min and then at 120 °C for 24 h. After being cooled down, the reaction mixture was filtered through a Celite pad, and then washed with 30 mL of CH₂Cl₂. The solvent of the filtrate was removed under reduced pressure and the residue was absorbed to small amounts of silica gel. Purification via column chromatography on neutral Al_2O_3 (petroleum ether/ethyl acetate = 6:1 to 2:1, v/v) afforded crude product of a mixture of syn- and anti-configurations in a ratio of above 10:1, which was further purified by re-crystallization from petroleum ether/ ethyl acetate to give pure *syn-***5af** (25.1 mg, 48% yield) as a dark green solid . ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 9.58 (d, *J* = 4.4 Hz, 2H), 8.94 (d, *J* = 4.4 Hz, 2H), 8.41 (s, 2H), 8.27 (d, *J* = 5.2 Hz, 2H), 8.14 (d, *J* = 6.8 Hz, 2H), 7.80-7.85 (m, 6H), 7.71-7.74 (m, 6H), 7.48-7.54 (m, 10H). HRMS (ESI⁺): calcd for C₆₀H₃₂Cl₄N₄NaO₂Zn [M+Na]⁺ 1067.0463 (³⁵Cl), 1069.0434 (³⁷Cl); found 1067.0462, 1069.0425. Slow diffusion of *n*-hexane into a solution of *syn-***5af** in dichloromethane (in the presence of 1% pyridine) gave the single crystals for X-ray diffraction analysis.

syn-5al: A schlenk tube with a magnetic stir bar was charged with [Cp*RhCl₂]₂ (1.5 mg, 2.5 μ mol), AgSbF₆ (3.4 mg, 10 μ mol), Ag₂O (23.2 mg, 0.1 mmol), 0.05 5,15-dioxoporphyrin Zn2a (27.8 mmol), mg, 1,2-bis(4-methoxyphenyl)ethyne (47.7 mg, 0.2 mmol), and DCE (0.5 mL) under N₂ atmosphere. The resulting solution was stirred at room temperature for 10 min and then at 120 °C for 24 h. After being cooled down, the reaction mixture was filtered through a Celite pad, and then washed with 30 mL of CH₂Cl₂. The solvent of the filtrate was removed under reduced pressure and the residue was absorbed to small amounts of silica gel. Purification via column chromatography on neutral Al_2O_3 (petroleum ether/ethyl acetate = 1:1 to 1:3, v/v) afforded crude product of a mixture of syn- and anti-configurations in a ratio of ca. 9:1, which was further purified by re-crystallization from petroleum ether/CH₂Cl₂ to give pure syn-5al (18.3 mg, 35% yield) as a dark green solid . ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 9.58 (d, J = 4.0 Hz, 2H), 8.89 (d, J = 4.4 Hz, 2H), 8.39 (s, 2H), 8.27 (d, J = 6.8 Hz, 2H), 8.16 (d, J = 6.4 Hz, 2H), 7.86 (d, J = 8.0 Hz, 4H), 7.80 (d, J = 5.2 Hz, 4H), 7.70-7.72 (m, 6H), 7.07 (d, J = 4.0 Hz, 4H), 7.01 (d, J = 8.8 Hz, 4H), 3.94 (s, 6H), 3.91 (s, 6H). HRMS

(ESI⁺): calcd for C₆₄H₄₅N₄O₆Zn [M+H]⁺ 1029.2625; found 1029.2624.

5ea: A schlenk tube with a magnetic stir bar was charged with [Cp*RhCl₂]₂ (1.5 mg, 2.5 μmol), AgSbF₆ (3.4 mg, 10 μmol), Ag₂O (23.2 mg, 0.1 mmol), 5,15-dioxoporphyrin dimer Zn2e (62.4 mg, 0.05 mmol), diphenylacetylene (35.6 mg, 0.2 mmol), and DCE (0.5 mL) under $N_{\rm 2}$ atmosphere. The resulting solution was stirred at room temperature for 10 min and then at 120 °C for 24 h. After being cooled down, the reaction mixture was filtered through a Celite pad, and then washed with 30 mL of CH₂Cl₂. The solvent of the filtrate was removed under reduced pressure and the residue was absorbed to small amounts of silica gel. Purification via column chromatography on neutral Al₂O₃ (petroleum ether/ethyl acetate = 6:1, v/v) afforded 5ea as a dark green solid (40.1 mg, 50% yield). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 9.70 (d, J = 4.4 Hz, 2H), 8.75 (d, J =4.4 Hz, 2H), 8.39 (s, 2H), 8.38 (d, J = 4.4 Hz, 2H), 8.30 (d, J = 4.8 Hz, 2H), 8.03 (d, J = 4.8 Hz, 2H), 7.99 (d, J = 4.8 Hz, 2H), 7.95-7.97 (m, 4H), 7.85-7.87 (m, 4H), 7.48-7.59 (m, 12H), 7.20 (s, 4H), 7.15 (s, 4H), 2.54 (s, 6H), 2.49 (s, 6H), 1.89-1.94 (m, 24H). HRMS (ESI⁺): calcd for C₁₀₄H₇₈N₈O₂Zn₂ [M]⁺ 1598.4831; found 1598.4846.

5eh: A schlenk tube with a magnetic stir bar was charged with $[Cp^*RhCl_2]_2$ (1.5 mg, 2.5 µmol), AgSbF₆ (3.4 mg, 10 µmol), Ag₂O (23.2 mg, 0.1 mmol), 5,15-dioxoporphyrin dimer **Zn2e** (62.4 mg, 0.05 mmol), diphenylacetylene (42.8 mg, 0.2 mmol), and DCE (0.5 mL) under N₂ atmosphere. The resulting solution was stirred at room temperature for 10 min and then at 120 °C for 24 h.

After being cooled down, the reaction mixture was filtered through a Celite pad, and then washed with 30 mL of CH₂Cl₂. The solvent of the filtrate was removed under reduced pressure and the residue was absorbed to small amounts of silica gel. Purification via column chromatography on neutral Al₂O₃ (petroleum ether/ethyl acetate = 6:1, v/v) afforded **5eh** as a dark green solid (36.8 mg, 44% yield). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 9.67 (d, *J* = 4.4 Hz, 2H), 8.76 (d, *J* = 4.4 Hz, 2H), 8.39 (d, *J* = 4.8 Hz, 2H), 8.32 (s, 2H), 8.31 (d, *J* = 4.8 Hz, 2H), 8.03 (d, *J* = 4.8 Hz, 2H), 7.99 (d, *J* = 4.8 Hz, 2H), 7.91-7.95 (m, 4H), 7.79-7.82 (m, 4H), 7.22-7.30 (m, 8H), 7.21 (s, 4H), 7.17 (s, 4H), 2.54 (s, 6H), 2.50 (s, 6H), 1.88-1.93 (m, 24H). HRMS (ESI⁺): calcd for C₁₀₄H₇₄F₄N₈O₂Zn₂ [M+H]⁺ 1671.4527; found 1671.4532.

6: A flask containing **5ea** (10.0 mg, 6 µmol) was purged with argon, and then charged with dry CH₂Cl₂ (0.6 mL). A solution of FeCl₃ (9.5 mg, 60 µmol) and DDQ (14 mg, 60 µmol) in MeNO₂ (0.2 mL) was added slowly to the mixture. The mixture was stirred at room temperature for 2 h. The reaction was quenched by addition of saturated aqueous NaHCO₃ solution. The organic phase was separated and washed with brine, and dried over anhydrous Na₂SO₄. After removal of the solvent in vacuo, the residue was separated by silica gel chromatography eluting with petroleum ether/ethyl acetate = 1:2 (v/v) to give **6** as a dark solid (4.1 mg, 41% yield). ¹H NMR (CD₂Cl₂, 400 MHz): δ (ppm) 7.26-7.31 (m, 16H), 7.19-7.20 (m, 4H), 7.10-7.14 (m, 3H), 7.05-7.07 (m, 2H), 6.91-6.97 (m, 9H), 6.45 (s, 2H), 6.30 (s, 2H), 5.95 (s, 2H), 5.80 (s, 2H), 2.08-2.34 (m, 36H). HRMS (ESI⁺): calcd for C₁₀₄H₇₈N₈O₂Zn₂ [M]²⁺ 799.2410; found 799.2404.

IX. HPLC chromatograph for separation of syn-5ah and anti-5ah

Normal phase HPLC was performed firstly using different eluents such as CH_2Cl_2/CH_3OH , ethyl ester/ CH_3OH and CH_2Cl_2/n -hexane, and only one peak was observed in all the condition above. When CH_2Cl_2/n -hexane/DEA (60/40/0.1, *v*: *v*: *v*) were chosen as eluent, the mixture of **5ah** showed two peaks with peak area in a ratio of 42.3%:57.7%. The two isomers were further isolated at preparative column by using CH_2Cl_2 (0.1% DEA)/*n*-hexane as eluent.

Figure S2. HPLC analysis of isolated syn-5ah (CH₂Cl₂ (0.1% DEA)/n-hexane gradient).

Figure S3. HPLC analysis of isolated anti-5ah (CH₂Cl₂ (0.1% DEA)/n-hexane gradient).

Figure S4. The concentration-dependent ¹H NMR spectra of **5ah** in $CDCI_3$ solution. * represent the peak of $CDCI_3$.

XI. FI-IR spectra of syn-5ah and anti-5ah

Figure S5. Normalized FI-IR spectrum of syn-5ah.

Figure S6. Normalized FI-IR spectrum of anti-5ah.

XII. DFT calculation detail

All the DFT calculations were carried out with the GAUSSIAN 09⁸ series of programs. DFT method B3-LYP⁹ with a standard 6–31G(d) basis set (lanl2dz¹⁰ basis set for Zn atoms) was used for geometry optimizations. Harmonic vibrational frequency calculations were performed for all of the stationary points to confirm them as a local minima. The NICS(1) values and isosurface plots of ACID were carried out using the optimized structures.

Geometries for all the optimized compounds:

				C	2.33089800	1.76741200	0.19420500
M3				С	1.16296700	2.59590500	0.39246100
С	0.45038100	0.51658200	0.12756400	Ν	0.02691800	1.77714900	0.34014500
С	1.89429500	0.48355100	0.03456500	Н	2.50725900	-0.38899200	-0.14285300

Н	3.35238000	2.12015100	0.16619800	н	-8.41254200	-1.85483800	2.16449800
С	-0.43569300	-0.62896500	-0.00284300	н	-9.20504800	-0.04145700	-1.66039100
С	-1.85589400	-0.54671500	0.03747100	н	-9.92560400	-1.51314800	0.21594400
С	-2.65712400	-1.72929500	-0.14079300	С	-3.26688400	7.98448800	1.37576200
С	-3.99643900	-1.29901600	-0.02345100	С	-1.86377000	7.91498300	1.29502800
Н	-4.88419100	-1.90848400	-0.09712200	С	-0.97271200	9.09193200	1.49688100
С	-5.11095100	0.93010500	0.37573600	С	-1.02072000	9.84125200	2.68510500
С	-5.10403200	2.30842600	0.57042800	С	-0.04076800	9.46134500	0.51111800
С	-6.27065900	3.13436400	0.78646800	С	-0.16472100	10.92648600	2.88094700
С	-4.39057600	4.38615100	0.84702700	н	-1.73087600	9.56633700	3.45981200
Н	-7.29181700	2.78116500	0.81867200	С	0.80928200	10.55351800	0.70207300
С	-3.50435600	5.53140700	0.97955000	н	0.00496200	8.89604000	-0.41617100
С	-2.08601500	5.45666000	0.88863500	С	0.75177400	11.28971500	1.88907900
С	-1.28485300	6.64187000	1.04914100	н	-0.21536800	11.49001600	3.80935600
С	0.01919200	4.81923000	0.72583100	Н	1.51593100	10.82858000	-0.07726900
С	1.16929700	3.97563400	0.57543600	н	1.41467800	12.13790700	2.04024000
Ν	-2.64442300	0.54190800	0.24253400	С	-4.01177300	9.26186400	1.59111000
Ν	-3.96814700	3.12770500	0.62004100	С	-4.96823300	9.36039600	2.61706500
Ν	-1.29761600	4.36726200	0.68722500	С	-3.81806700	10.37588500	0.75584300
С	-5.83356200	4.41710600	0.95339600	С	-5.70152200	10.53468200	2.80854400
С	0.05514200	6.20766500	0.95573900	н	-5.12508000	8.51341300	3.28119500
С	-3.96095600	0.08908400	0.20850200	С	-4.55044800	11.54949200	0.94440400
н	-6.44606400	5.28833700	1.13864500	н	-3.09269000	10.31810600	-0.05059500
н	0.94351400	6.81215900	1.05959800	С	-5.49482400	11.63540700	1.97243500
Zn	-1.97081500	2.45376400	0.47100000	н	-6.42977500	10.58966600	3.61420600
С	2.50544500	4.65462400	0.62530800	н	-4.38592200	12.39708500	0.28350100
С	3.35015800	4.48767400	1.73379600	н	-6.06379800	12.55001700	2.11910500
С	2.93384300	5.46823700	-0.43584200	С	-2.07627000	-3.00887600	-0.34677300
С	4.59512900	5.12130400	1.78165400	С	-0.67157600	-3.08593400	-0.37393200
н	3.02334000	3.86628300	2.56348300	С	0.07442400	-4.35729200	-0.61948500
С	4.18279800	6.09300500	-0.39269900	С	1.08364400	-4.77040900	0.26797200
н	2.28804400	5.60149500	-1.29979000	С	-0.16940100	-5.14319100	-1.75922500
С	5.01620300	5.92366000	0.71734400	С	1.82051600	-5.93402400	0.02985300
н	5.23402200	4.98714200	2.65088700	н	1.28045000	-4.18132500	1.16092300
н	4.50363700	6.71247600	-1.22649500	С	0.56663600	-6.30484700	-2.00002200
н	5.98557800	6.41414200	0.75265700	н	-0.93644600	-4.83652200	-2.46455500
С	-6.44671200	0.25017900	0.33139400	С	1.56411700	-6.70703400	-1.10596600
С	-6.85813700	-0.58804300	1.38022000	н	2.59088600	-6.23748200	0.73478900
С	-7.30803500	0.43981600	-0.76080400	н	0.36325000	-6.89456000	-2.89061500
С	-8.10630600	-1.21460000	1.34107100	н	2.13591800	-7.61235600	-1.29358300
н	-6.19920800	-0.74118300	2.23072500	С	-2.96399600	-4.19784100	-0.48012400
С	-8.55269500	-0.19471200	-0.80434400	С	-2.84670700	-5.29139000	0.39535100
н	-6.99481500	1.08076700	-1.58085400	С	-3.96106400	-4.23883600	-1.47068900
С	-8.95653200	-1.02178700	0.24777300	С	-3.69871200	-6.39154500	0.28335400

Н	-2.08533000	-5.27445300	1.16998400
С	-4.80762600	-5.34389200	-1.58979900
Н	-4.06071500	-3.40474900	-2.16050500
С	-4.68086200	-6.42427800	-0.71174000
Н	-3.59387100	-7.22492400	0.97371300
Н	-5.56563900	-5.35962200	-2.36920900
Н	-5.34116700	-7.28319700	-0.80133000
С	0.09703400	-1.91026000	-0.20271600
С	-4.03526400	6.80639000	1.22084700
Н	1.17390500	-2.02211500	-0.26227300
Н	-5.11243800	6.92036000	1.26888400

3aa

С	0.39315100	0.49327900 ·	0.02610800
С	1.82993000	0.40388300	-0.15267100
С	2.31043100	1.67095500	0.00775900
С	1.17157100	2.54139000	0.24306800
Ν	0.00743100	1.75745900	0.20667100
Н	2.37276400	-0.50857600	-0.35211300
Н	3.34100700	1.99349700	-0.04320000
С	-0.52760200	-0.63005500	-0.14410100
С	-1.93720300	-0.50465800	-0.10042200
С	-2.74362800	-1.68497500	-0.19632000
С	-4.08138400	-1.23864800	-0.06284800
Н	-4.97557800	-1.84372600	-0.05765100
С	-5.16182000	1.03000100	0.26599500
С	-5.11594700	2.39961000	0.48335800
С	-6.26005900	3.28163700	0.63337500
С	-4.33781100	4.44272100	0.78449400
Н	-7.29498100	2.97179800	0.58789200
С	-3.41577900	5.56027600	0.93960000
С	-2.00884900	5.44633200	0.82622600
С	-1.19858700	6.60819700	1.04029300
С	0.07972300	4.78418800	0.63268000
С	1.21791500	3.91456700	0.44690300
Ν	-2.70847600	0.60249100	0.06283500
Ν	-3.94928900	3.17468300	0.58296400
Ν	-1.23972600	4.35403900	0.57429300
С	-5.77957500	4.54470200	0.82206300
С	0.14018100	6.15988200	0.92589100
С	-4.02475000	0.15998300	0.08579700
Н	-6.32626100	5.46564600	0.96371600
Н	1.03776300	6.74539400	1.05600800
Zr	-1.97226900	2.47301600	0.35116400

С	2.56612500	4.56477700 0.49029200
С	3.44980500	4.30796000 1.55083100
С	2.96877600	5.44292100 -0.52958300
С	4.70713800	4.91673900 1.59194900
н	3.14315500	3.63782400 2.34950900
С	4.23074000	6.04058600 -0.49460700
н	2.29389400	5.64520300 -1.35698700
С	5.10253200	5.78185900 0.56783500
н	5.37612400	4.71354300 2.42426100
н	4.53213200	6.70839700 -1.29765500
Н	6.08216300	6.25178400 0.59733500
С	-6.51207800	0.37872700 0.22020900
С	-7.22782500	0.13702200 1.40286600
С	-7.07923300	-0.00098500 -1.00655300
С	-8.48548600	-0.47140400 1.35988500
Н	-6.79245600	0.41990700 2.35771900
С	-8.34036900	-0.60105500 -1.04958900
н	-6.53353800	0.18492500 -1.92797600
С	-9.04625500	-0.83952500 0.13365100
н	-9.02545800	-0.65598200 2.28506400
Н	-8.77035600	-0.88126000 -2.00787100
Н	-10.02591100	-1.30914000 0.09995400
С	-3.22083000	7.86304900 1.38534600
С	-1.80613900	7.85024000 1.34173000
С	-0.95215000	9.03034900 1.64671400
С	-1.06504100	9.70562000 2.87447900
С	0.01718900	9.46867800 0.72746000
С	-0.23595400	10.78811100 3.17216400
Н	-1.80587200	9.37611900 3.59743100
С	0.84017400	10.55885600 1.02098200
Н	0.11207700	8.96152000 -0.22936000
С	0.71777100	11.22189100 2.24551500
Н	-0.33662700	11.29480300 4.12873400
н	1.57621300	10.88950300 0.29214700
Н	1.35951900	12.06839700 2.47618800
С	-4.02181500	9.10361300 1.62259300
С	-5.10827700	9.06722300 2.51313200
С	-3.75778600	10.30138500 0.93852300
С	-5.89275900	10.20099900 2.73243900
Н	-5.33211000	8.13862900 3.03012100
С	-4.54847700	11.43360100 1.14901600
Н	-2.93671000	10.34728600 0.22938500
С	-5.61536100	11.39074800 2.05116100
н	-6.72329000	10,15445800 3,43287100

Н	-4.33159600	12.34879900	0.60346400
Н	-6.22780300	12.27347700	2.21760700
С	-2.13013500	-2.95167100	-0.34466600
С	-0.71682700	-2.95992400	-0.42103900
Ν	-3.96893900	6.75154200	1.20681900
Ν	0.02933700	-1.83828800	-0.30635600
С	0.08428200	-4.20249300	-0.64726700
С	1.24704100	-4.42525600	0.10993600
С	-0.25750900	-5.13739400	-1.63810100
С	2.03173100	-5.56068300	-0.09996300
Н	1.52986000	-3.69616800	0.86357100
С	0.53233400	-6.26868400	-1.85606600
Н	-1.13924900	-4.97560200	-2.25071900
С	1.67669500	-6.48909900	-1.08411400
Н	2.92234400	-5.71923500	0.50355900
Н	0.25383800	-6.97624700	-2.63326800
Н	2.28850100	-7.37217100	-1.25108800
С	-2.97414900	-4.17745700	-0.35297700
С	-2.77925700	-5.19544700	0.59663400
С	-4.01667100	-4.32134300	-1.28536900
С	-3.60010900	-6.32414400	0.61105300
Н	-1.98145200	-5.09701400	1.32741500
С	-4.83177500	-5.45602600	-1.27775500
Н	-4.17627200	-3.54600400	-2.03044800
С	-4.62754700	-6.46127100	-0.32808100
Н	-3.43553100	-7.09857200	1.35610300
Н	-5.62592500	-5.55352100	-2.01401900
н	-5.26318000	-7.34304700	-0.31899900

4aa

С	0.48262600	0.39330600	0.05960800
С	1.89939600	0.28258000	-0.00920700
С	2.39464100	1.54174000	0.34925400
С	1.26183700	2.35333700	0.62829300
Ν	0.09240600	1.63670400	0.42954800
Н	3.42763100	1.85458000	0.37595000
С	-0.35056600	-0.71202500	-0.21344900
С	-1.75517900	-0.65886100	-0.21998600
С	-2.53635900	-1.83685900	-0.38787700
С	-3.87296100	-1.41470200	-0.33465900
Н	-4.75615900	-2.03310600	-0.38911100
С	-4.99003500	0.85192500	-0.03952700
С	-4.95988400	2.21973200	0.21565000
С	-6.10621700	3.10115400	0.20834600

С	-4.22208300	4.26380800	0.60738900
н	-7.12620300	2.79717100	0.02196300
С	-3.34235300	5.42026600	0.87188200
С	-1.89707900	5.34404000	1.13394300
С	-1.07826900	6.37433900	1.71382900
С	0.16831300	4.55659600	1.19632600
С	1.28693200	3.72185800	1.04838400
Ν	-2.53442400	0.44247700	-0.07019400
Ν	-3.81351300	2.99589300	0.47166100
Ν	-1.15182800	4.25211700	0.84555500
С	-5.65333600	4.36580100	0.44673900
С	0.19904600	5.88208000	1.75443100
С	-3.84065600	-0.01012300	-0.15051400
н	-6.22495000	5.27921900	0.50285600
н	1.07301200	6.37738800	2.15182900
Zn	-1.85142900	2.33915500	0.40637400
С	2.62703000	4.30487300	1.34928900
С	3.42749100	3.76833100	2.37386500
С	3.11132100	5.39851500	0.60945200
С	4.67568200	4.32374900	2.66050800
н	3.05843300	2.93143600	2.96021300
С	4.36992200	5.93728200	0.88390900
н	2.50768900	5.81101400	-0.19423900
С	5.15242200	5.40552900	1.91318500
Н	5.27528900	3.91168900	3.46759600
Н	4.73752300	6.77259500	0.29424900
Н	6.12782000	5.83125700	2.13190400
С	-6.32759900	0.20791600	-0.21495800
С	-7.23644500	0.15392900	0.85536000
С	-6.69515200	-0.35420100	-1.44965900
С	-8.48457100	-0.45259700	0.69469600
Н	-6.95654500	0.57397600	1.81776700
С	-7.95024300	-0.94409300	-1.61243700
Н	-6.00368000	-0.31040700	-2.28687300
С	-8.84641000	-0.99852500	-0.54011000
Н	-9.17290700	-0.49680200	1.53430700
Н	-8.22796800	-1.35991700	-2.57722400
Н	-9.82031400	-1.46330500	-0.66657800
С	-1.88218000	-3.10524300	-0.38304000
С	-0.49846500	-3.14377900	-0.37269500
Ν	-4.04674800	6.52682700	0.83264500
Ν	0.26009200	-1.93821600	-0.47070100
С	0.23517000	-4.39451000	-0.02378600
С	0.97471000	-4.42452800	1.17190500

С	0.11716200	-5.56925500	-0.77983400
С	1.58859000	-5.60362600	1.59672200
Н	1.05905300	-3.52527800	1.77784900
С	0.73582600	-6.74589600	-0.35676300
Н	-0.44935800	-5.55890300	-1.70514800
С	1.47242600	-6.76821700	0.83150600
Н	2.14975500	-5.61415800	2.52745300
Н	0.64146100	-7.64680900	-0.95675100
Н	1.94948400	-7.68732000	1.16076200
С	-2.73235400	-4.33087800	-0.26910200
С	-2.82474000	-5.04608200	0.93441200
С	-3.50944400	-4.73696600	-1.36515000
С	-3.66906500	-6.15391100	1.03464300
Н	-2.23212000	-4.73740100	1.79109300
С	-4.34868200	-5.85024000	-1.26576700
Н	-3.44911200	-4.18599200	-2.30093500
С	-4.43031200	-6.56121800	-0.06523800
Н	-3.73044500	-6.69976000	1.97233200
Н	-4.93717100	-6.15988500	-2.12542600
Н	-5.08337400	-7.42609200	0.01354400
0	-3.36848600	7.68054300	1.01938700
С	-4.26593700	8.80575500	0.91598200
Н	-5.03688600	8.74022500	1.68838200
Н	-3.63604700	9.68241300	1.07293400
Н	-4.71827200	8.82976800	-0.07903500
С	2.47330800	-0.90846700	-0.55700100
С	1.64689100	-1.97883700	-0.83476800
С	2.09030100	-3.09107800	-1.72427400
С	3.19218600	-3.90290200	-1.41981400
С	1.44985600	-3.24920900	-2.96625400
С	3.63798000	-4.85905200	-2.33272700
Н	3.69429600	-3.79345300	-0.46425200
С	1.89916900	-4.20363200	-3.87994100
Н	0.60507800	-2.61408200	-3.22310700
С	2.99470200	-5.01331700	-3.56439000
Н	4.48927400	-5.48524600	-2.08024000
Н	1.39943000	-4.30868200	-4.83936600
Н	3.34645600	-5.75662700	-4.27469100
С	3.92465200	-0.88149500	-0.91906900
С	4.89158900	-0.90206500	0.09807500
С	4.34163800	-0.76590500	-2.25363700
С	6.25191100	-0.82929800	-0.21499400
Н	4.57860900	-0.98613000	1.13634100
С	5.70083700	-0.68774600	-2.56482900

Н	3.60174600	-0.74266900	-3.04891400
С	6.65961100	-0.72272700	-1.54762800
н	6.99040000	-0.85662900	0.58195300
н	6.01022600	-0.60135200	-3.60299500
н	7.71682900	-0.66582400	-1.79204100
Н	-1.41628800	7.33634300	2.05895200

syn-M4

С	0.45366100	0.41667400 (0.18434700
С	1.89517500	0.38426000	0.14545500
С	2.33344500	1.66539300	0.34744300
С	1.16253600	2.49392400	0.51909600
Ν	0.03669800	1.70533800	0.41107900
Н	2.50912800	-0.49066000	-0.02307400
Н	3.35721400	2.01223600	0.36758600
С	-0.40477700	-0.69954000	0.00721600
С	-1.79843200	-0.64999900	0.01823700
С	-2.61574600	-1.83509300	-0.18399800
С	-3.92306300	-1.41906300	-0.09884700
Н	-4.81207300	-2.02436300	-0.19787300
С	-5.04853500	0.82788700	0.27955800
С	-5.02366900	2.22582800	0.48902000
С	-6.18649300	3.06785200	0.66225800
С	-4.28509100	4.28615200	0.80180800
Н	-7.21120500	2.72619800	0.65822200
С	-3.48407700	5.41106500	0.99708800
С	-2.06489500	5.41376000	0.99674400
С	-1.22547700	6.56578100	1.21805900
С	0.04089700	4.71998900	0.87709500
С	1.17586400	3.88903100	0.74274600
Ν	-2.60054000	0.44151500	0.21259800
Ν	-3.88511100	2.99628000	0.58089100
Ν	-1.27297700	4.31037800	0.79302000
С	-5.73653500	4.35352800	0.84674100
С	0.07329600	6.13854200	1.14810200
С	-3.90591500	0.00598600	0.14611100
Н	0.96690800	6.73303900	1.27756000
Zr	-1.92125400	2.36833500	0.49827000
С	2.51965500	4.54915500	0.84970100
С	3.32326800	4.35953400	1.98563300
С	3.00016000	5.37067500	-0.18298200
С	4.57339000	4.97646000	2.08835100
Н	2.96006300	3.73018300	2.79416300
С	4.25200200	5.98473200	-0.08398400
Н	2.38952900	5.52129100	-1.06963100
---	-------------	-------------	-------------
С	5.04240000	5.79056400	1.05288100
Н	5.17882100	4.82176600	2.97812300
Н	4.60906400	6.61332700	-0.89611000
Н	6.01513400	6.26953200	1.13115000
С	-6.39117900	0.16492300	0.18815500
С	-6.86682200	-0.64550900	1.23197600
С	-7.20036700	0.33699500	-0.94691300
С	-8.11641400	-1.26565900	1.14463500
Н	-6.25245500	-0.78471600	2.11802400
С	-8.44963200	-0.28342700	-1.03740400
Н	-6.84141900	0.95683900	-1.76495800
С	-8.91205600	-1.08706700	0.00904200
Н	-8.46755600	-1.88736800	1.96459600
Н	-9.05934700	-0.14054800	-1.92638400
Н	-9.88360900	-1.56993200	-0.05973200
С	-2.03187400	-3.15049200	-0.40314100
С	-0.67439500	-3.25988000	-0.41963600
С	0.04874500	-4.53709300	-0.68314300
С	1.03629000	-5.00528100	0.20325500
С	-0.19881300	-5.28213600	-1.85041500
С	1.73755000	-6.18510100	-0.05728000
Н	1.24346700	-4.45644100	1.11889000
С	0.50649000	-6.45726200	-2.11601700
Н	-0.94744100	-4.93242100	-2.55501300
С	1.47644500	-6.91607600	-1.21965800
Н	2.48636500	-6.53303600	0.65015700
Н	0.29867100	-7.01374000	-3.02664000
Н	2.02416500	-7.83213200	-1.42561000
С	-2.96207700	-4.31144600	-0.55222600
С	-2.95786300	-5.36240900	0.37851800
С	-3.88569800	-4.35676900	-1.61013300
С	-3.84406300	-6.43468600	0.25059500
Н	-2.25475800	-5.33577200	1.20652300
С	-4.76858200	-5.43133000	-1.74315100
Н	-3.90517800	-3.54862500	-2.33726100
С	-4.75134400	-6.47454200	-0.81218300
Н	-3.82495300	-7.23886400	0.98210000
Н	-5.47052200	-5.45211700	-2.57329000
Н	-5.44037500	-7.30933000	-0.91290700
Н	-1.56491300	7.57554600	1.40784400
С	-6.44710500	5.60151500	1.08489100
С	-5.71603000	6.73582400	1.26989700
С	-7.93993500	5.55405700	1.15410400

С	-8.61775000	5.89982700	2.33383800
С	-8.69488700	5.13000400	0.04752900
С	-10.01142300	5.83496400	2.40349300
н	-8.04622200	6.22024500	3.20058900
С	-10.08920000	5.07098000	0.11310300
н	-8.18537100	4.85353300	-0.87234000
С	-10.75296700	5.42342000	1.29227000
н	-10.51729000	6.10626200	3.32686600
н	-10.65627100	4.74828000	-0.75675700
н	-11.83766000	5.37449700	1.34526700
С	-6.31979000	8.08484500	1.46783200
С	-5.95411600	8.88720700	2.56454900
С	-7.23306500	8.61333500	0.53757600
С	-6.49683500	10.16291200	2.73660000
н	-5.25753200	8.50331300	3.30619400
С	-7.77022700	9.89114000	0.70380200
н	-7.51915700	8.01627200	-0.32318100
С	-7.40684000	10.67150600	1.80558000
н	-6.20891400	10.75781600	3.59999300
н	-8.47260200	10.27763400	-0.03063400
н	-7.82677600	11.66555900	1.93622100
С	0.23083700	-2.05885600	-0.22124300
н	0.89322600	-2.00741400	-1.09916900
н	0.91125800	-2.28069900	0.61449800
С	-4.19929700	6.72798000	1.23897300
Н	-3.83933300	7.16144800	2.18380700
н	-3.88846000	7.45675300	0.47429000

syn**-5aa**

С	0.26290500	0.32954100	0.16709700
С	1.69514000	0.27732800	0.13252700
С	2.13580200	1.55976300	0.34761900
С	0.97166900	2.39546900	0.51953700
Ν	-0.15984500	1.61138100	0.39950000
Н	2.28884800	-0.60874200	-0.04618100
Н	3.16149300	1.90055400	0.37344800
С	-0.63351500	-0.75247100	-0.01906600
С	-2.02375900	-0.71196600	-0.03395400
С	-2.79884300	-1.90864200	-0.25347200
С	-4.12334400	-1.51448500	-0.19432800
Н	-4.99876700	-2.13581400	-0.31290800
С	-5.27969400	0.72977400	0.17106700
С	-5.25101800	2.12869400	0.39054200
С	-6.39466000	2.98934900	0.56642500

С	-4.47576800	4.16027700	0.72735700	С	0.87692300	-6.28047600	-1.81471300
Н	-7.42664500	2.67050200	0.55536100	Н	-0.91870100	-5.17847300	-2.24752300
С	-3.66662700	5.27062400	0.94578500	С	2.03123400	-6.36293500	-1.02999200
С	-2.25029500	5.31937700	0.97075300	Н	3.17030500	-5.44229200	0.55720000
С	-1.43190000	6.47211300	1.20905000	Н	0.68542300	-7.02470100	-2.58345800
С	-0.15137000	4.62582300	0.87598100	Н	2.73742400	-7.17556200	-1.17977300
С	0.98356900	3.79079500	0.75114600	С	-2.90617600	-4.41868900	-0.56948900
Ν	-2.82841500	0.36421800	0.14852600	С	-2.77637200	-5.45666600	0.36771300
Ν	-4.09073700	2.88053000	0.49650000	С	-3.84265500	-4.56276900	-1.60719800
Ν	-1.46630400	4.21413000	0.77103300	С	-3.54883000	-6.61514600	0.26068700
С	-5.91352700	4.26992200	0.77029400	Н	-2.06639100	-5.35173200	1.18369600
С	-0.12922000	6.04175100	1.15453600	С	-4.61426300	-5.72252000	-1.71606700
С	-4.13358600	-0.09389100	0.05361800	Н	-3.95908200	-3.76457700	-2.33601500
Н	0.76086600	6.63807400	1.29916500	С	-4.46908700	-6.75366300	-0.78286000
Zn	-2.11979900	2.27606200	0.45352200	Н	-3.43406900	-7.40800400	0.99568100
С	2.32679600	4.44681300	0.87758600	Н	-5.32911900	-5.81889200	-2.52955400
С	3.12846500	4.22609700	2.00950100	Н	-5.07131400	-7.65486000	-0.86537900
С	2.80987700	5.29505800	-0.13224700	0	-0.03672200	-1.97299400	-0.22601900
С	4.37865700	4.83924200	2.13069600	Н	-1.79362400	7.47460800	1.39255400
Н	2.76331900	3.57599200	2.80046000	С	-6.50986500	5.55487400	1.03720200
С	4.06219800	5.90466200	-0.01494700	С	-5.65828400	6.61820000	1.20791500
Н	2.20123000	5.46923600	-1.01584600	0	-4.29374800	6.47303100	1.16996100
С	4.85028200	5.67987900	1.11786800	С	-7.99117800	5.66168700	1.17046800
Н	4.98224700	4.66084100	3.01727800	С	-8.58334400	6.07533800	2.37471800
Н	4.42148700	6.55366800	-0.80983400	С	-8.82614700	5.29836400	0.10027700
Н	5.82335100	6.15560000	1.21047300	С	-9.97276400	6.14061300	2.50067700
С	-6.62128900	0.07261000	0.05606300	Н	-7.94921600	6.34484000	3.21508400
С	-7.09635100	-0.78090000	1.06601200	С	-10.21604300	5.36675100	0.22441900
С	-7.43509400	0.29328400	-1.06797800	Н	-8.38145500	4.96945900	-0.83564400
С	-8.34715300	-1.39498100	0.95666200	С	-10.79441500	5.78953700	1.42526900
Н	-6.48022200	-0.95720700	1.94414800	Н	-10.41296500	6.46270700	3.44112000
С	-8.68572200	-0.32058600	-1.18049900	Н	-10.84622100	5.08818400	-0.61666000
Н	-7.07762100	0.94607800	-1.86057400	Н	-11.87581300	5.83967800	1.52369900
С	-9.14643800	-1.16728500	-0.16765000	С	-6.01055100	8.03627700	1.44866900
Н	-8.69710700	-2.04943400	1.75136600	С	-5.26402200	8.79526500	2.36885700
Н	-9.29782100	-0.13965400	-2.06095200	С	-7.05494000	8.66254300	0.74667600
Н	-10.11917300	-1.64510400	-0.25356300	С	-5.56887700	10.13789700	2.59580400
С	-2.11263100	-3.16275500	-0.44116100	Н	-4.44885400	8.32533100	2.91071800
С	-0.73973700	-3.13321800	-0.43571200	С	-7.35397700	10.00693900	0.97222000
С	0.19724800	-4.26146700	-0.64116100	Н	-7.62695700	8.09946800	0.01680200
С	1.36936100	-4.34428100	0.13323000	С	-6.61622200	10.74915200	1.89951200
С	-0.03254500	-5.23911100	-1.62473900	н	-4.98754700	10.70654300	3.31719800
С	2.27445500	-5.38922400	-0.05627600	н	-8.16131400	10.47637300	0.41601200
Н	1.56351200	-3.58941500	0.88907100	Н	-6.85205100	11.79575700	2.07413600

				С	-6.52758000	0.41472100	0.30115800
ant	i-5aa			С	-6.97590800	-0.40573700	1.34975300
С	0.34972400	0.43935100	0.04588100	С	-7.38737800	0.63996900	-0.78681700
С	1.77831200	0.34161200	-0.06330900	С	-8.24839300	-0.98264600	1.31350900
С	2.26744900	1.61199800	0.09399400	н	-6.32281400	-0.58469600	2.20012400
С	1.13748100	2.49217200	0.30547800	С	-8.65937100	0.06184200	-0.82619600
Ν	-0.02095200	1.74338800	0.26659800	н	-7.05064300	1.26818000	-1.60768100
Н	2.33449600	-0.56694500	-0.25035100	С	-9.09453200	-0.75134700	0.22464900
Н	3.30259100	1.92175000	0.05608400	н	-8.57829400	-1.61114600	2.13714800
С	-0.58295400	-0.61250100	-0.06427500	н	-9.30851500	0.24595800	-1.67886900
С	-1.97639200	-0.52754100	-0.00597100	н	-10.08413400	-1.20042300	0.19556400
С	-2.79715500	-1.70060000	-0.15669100	С	-3.14534800	7.91342900	1.31811800
С	-4.10580500	-1.26254200	-0.03907100	С	-1.77439900	7.89126300	1.28038400
Н	-5.00461800	-1.85822200	-0.09957500	С	-0.92606300	9.08465800	1.56163900
С	-5.16135800	1.03096100	0.33923500	С	-0.99421200	9.74766400	2.79779200
С	-5.08001800	2.43103400	0.53143600	С	-0.00072500	9.53771000	0.60596400
С	-6.20992700	3.31128000	0.74335200	С	-0.17230500	10.84457300	3.06531000
С	-4.29165400	4.48270900	0.79953600	н	-1.69497300	9.39836400	3.55126900
Н	-7.24565200	3.00276500	0.77413800	С	0.81999600	10.63658800	0.87192900
С	-3.35882700	5.53375600	0.91589200	н	0.06769400	9.03028500	-0.35305400
С	-1.96647100	5.45370000	0.82812000	С	0.73614800	11.29507100	2.10261200
С	-1.14414600	6.62153700	1.00938300	н	-0.23992400	11.34509800	4.02805000
С	0.11473900	4.76411800	0.65885100	н	1.52516800	10.97702400	0.11761600
С	1.21870300	3.89185900	0.50000400	н	1.37624300	12.14852700	2.31115400
Ν	-2.73545600	0.57619300	0.19347900	С	-4.03182300	9.07950800	1.53568200
Ν	-3.92142200	3.17953000	0.57310000	С	-5.17572300	8.94583200	2.34424300
Ν	-1.20805600	4.35169400	0.61627400	С	-3.78121200	10.31801800	0.92008200
С	-5.72048600	4.58093000	0.90513600	С	-6.03164000	10.02853500	2.54983000
С	0.16483200	6.17987400	0.91066100	Н	-5.38563000	7.99115800	2.81696700
С	-4.05735600	0.15909700	0.17774400	С	-4.64176700	11.39764500	1.12390900
Н	-6.27771500	5.49146900	1.07891000	Н	-2.91745900	10.43322200	0.27378700
Н	1.06502500	6.76735100	1.01636600	С	-5.76745800	11.25971500	1.94168500
Zr	-1.97144000	2.46315600	0.41009400	Н	-6.90544600	9.90980800	3.18550800
С	2.58498900	4.50678200	0.54908600	Н	-4.43480600	12.34671600	0.63609800
С	3.43798900	4.27876800	1.64170200	Н	-6.43553400	12.10251300	2.09936000
С	3.04065300	5.32823800	-0.49558100	С	-2.16406000	-2.98320900	-0.34828400
С	4.71008700	4.85592900	1.68991000	С	-0.79394600	-3.00107900	-0.41446300
Н	3.09527200	3.65048700	2.45996100	С	0.09372000	-4.16538200	-0.63611900
С	4.31385600	5.90295800	-0.45128400	С	1.30492700	-4.26411300	0.07375000
Н	2.39316800	5.50744100	-1.35026800	С	-0.22230100	-5.16454300	-1.57315500
С	5.15284400	5.66954200	0.64266100	С	2.16394200	-5.34432300	-0.13181800
Н	5.35332000	4.67109700	2.54684500	Н	1.56572500	-3.49323800	0.79240300
Н	4.65061600	6.53047600	-1.27297900	С	0.64093300	-6.24155600	-1.77919700
Н	6.14271000	6.11750100	0.67854800	Н	-1.13911900	-5.09301500	-2.14849100

С	1.83477200	-6.33901700	-1.05788700
Н	3.09101000	-5.40853000	0.43222800
Н	0.38237400	-7.00200900	-2.51157900
Н	2.50493100	-7.17926500	-1.22022900
С	-3.00652100	-4.21236700	-0.40168300
С	-2.87182200	-5.22507400	0.56204200
С	-3.99302500	-4.35363900	-1.39236400
С	-3.68862800	-6.35726400	0.52595100
Н	-2.12256100	-5.12147500	1.34232800
С	-4.80911200	-5.48716000	-1.43029500
Н	-4.11327400	-3.57449300	-2.14097600
С	-4.65873000	-6.49397300	-0.47168800
Н	-3.56889600	-7.13118300	1.28009700
Н	-5.56232400	-5.58228100	-2.20857100
Н	-5.29496100	-7.37493200	-0.49928700
0	-3.89932900	6.77702300	1.14747100
0	-0.04176100	-1.85947000	-0.27222000

Scheme S1. The aromaticity of 3aa, 4aa, simulated M3 and *syn*-M4, and the resonance structures of *syn*-5aa and *anti*-5aa.

XIII. Optical properties of the representative products

Draduct	,	$\lambda_{\rm abs}/\rm nm~(\epsilon/10^3~M^{-1}~cm)$	n⁻¹)
Product	В		Q
3aa	448 (51.6)		631 (28.4)
3ad	454 (50.2)	-	642 (32.0)
3aj	444 (54.0)	-	624 (30.9)
3ak	441 (52.2)	-	616 (24.9)
3ba	448 (71.6)	-	632 (39.0)
4aa	461 (55.0)	596 (8.4)	730 (5.7)
4al	467 (13.4)	629 (3.0)	751 (1.8)
4ah	466 (28.3)	625 (5.7)	749 (3.3)
4an	460 (11.4)	600 (1.6)	738 (1.0)

Table S3. UV-vis-NIR absor	ption spectra measured in CH ₂ Cl ₂ solution	(4.0 × 10 ⁻⁵ M).
		(

Product	$\lambda_{\rm abs}/\rm nm~(\epsilon/10^4~M^{-1}~cm^{-1})$
syn- 5ah	456 (7.98), 582 (0.89), 631, (1.93), 741 (0.57)
anti- 5ah	448 (15.19), 548 (0.99), 587 (1.16), 612 (0.93), 670, (3.70), 881(0.40)
5ea	467 (20.26), 593 (2.37), 624 (2.69)
5eh	466 (21.40), 592 (2.47), 622 (2.77)
6	548 (8.44), 622 (9.02), 799 (2.48), 1005 (2.82), 1113 (5.0)

Table S4. Photophysical data of *syn-***5ah**, *anti-***5ah**, **5ea**, **5eh** and **6** measured in CH_2CI_2 solution (1.0 × 10⁻⁵ M).

XIV. Cyclic voltammogram measurements

General procedure: Cyclic voltammogram measurements were conducted on LK2005A using a platinum plate working electrode, an Ag/Ag⁺ (0.01 M of AgNO₃ in CH₃CN) reference electrode, and a platinum wire counter electrode. Electrochemical experiments were carried out in dry HPLC grade CH₃CN or CH₂Cl₂ using ferrocene/ferrocenium as reference. Unless otherwise stated, the cyclic voltammogram measurements were performed at a scan rate of 50 mV/s and the supporting electrolyte was tetrabutylammonium hexafluorophosphate (TBAPF₆, 0.1 M) in all cases.

Compound	E _{ox, 1}	E _{ox, 2}	E _{ox, 3}	E _{red, 1}	E _{red, 2}	E _{red, 3}	$E_{\rm ox, 1} - E_{\rm red, 1}$
3aa	0.30	0.55					
4aa	0.34	0.63	0.97	-0.76	-1.06	-1.45	1.10
syn- 5ah	0.15	0.77	1.18	-1.58	-1.98		1.73
anti- 5ah	0.07	0.49		-1.50	-1.89		1.57

Table S5. Electrochemical properties of 3aa, 4aa, syn-5ah and anti-5ah.

 $E_{\text{ox, 1}}$ and $E_{\text{red, 1}}$ are the first oxidation and reduction potentials, respectively. $E_{\text{ox, 2}}$ and $E_{\text{red, 2}}$ are the potentials of the second oxidative and reductive redox wave, respectively, with potentials *versus* Fc/Fc⁺ couple. $E_{\text{ox, 3}}$ are the third oxidation potential, respectively.

XV. Quantification of singlet oxygen generation

Singlet oxygen generation studies of *syn-***5al** and methylene blue (**MB**) were detected through monitoring the oxidation of 1,3-diphenylisobenzofuran (DPBF).¹¹ Specifically, an oxygen-saturated *N*,*N*-Dimethylformamide (DMF) solution of photosensitizer containing DPBF was prepared in the dark and irradiated with a 680 nm laser at a power of 150 mW cm⁻² in an interval of 30 s. DPBF oxidation was monitored by UV-Vis-NIR spectrophotometer. *Syn-***5al** exhibited good ability to sensitize the singlet oxygen (¹O₂), leading to obvious decrease in the absorbance of DPBF at 416 nm. The singlet oxygen quantum yields (Φ_{Δ}) were obtained by the relative method using methylene blue (**MB**) in DMF ($\Phi_{\Delta} = 0.52$) as the standard and calculated with eq. 1,¹¹

$$\boldsymbol{\Phi}_{\Delta} \left({}^{1}\mathrm{O}_{2}\right)^{\mathrm{bod}} = \boldsymbol{\Phi}_{\Delta} \left({}^{1}\mathrm{O}_{2}\right)^{\mathrm{MB}} \frac{\mathrm{m}^{\mathrm{bod}_{F}\mathrm{MB}}}{\mathrm{m}^{\mathrm{MB}_{F}\mathrm{bod}}} \qquad (\mathrm{eq.}\ 1)$$

where superscripts 'bod' and 'MB' represent sample and methylene blue (**MB**), respectively. Φ_{Δ} [¹O₂] is the quantum yield of singlet oxygen, 'm' is the slope of a plot of difference in change in absorbance of DPBF (at 416 nm) with the irradiation time and 'F' is the absorption correction factor, which is given by F = $1 - 10^{-\text{OD}}$ (OD represents the optical density of sample and **MB** at or 680 nm).

Figure S7. (a) Changes in the absorption spectrum of DPBF at 416 nm upon irradiation in the presence of **MB**. a) 0 and g) 180 s (recorded at every 30 s intervals). (b) Plot of change in absorbance of DPBF at 416 nm vs irradiation time (λ_{irr} = 635 nm) in the presence of **MB**.

Figure S8. (a) Changes in the absorption spectrum of DPBF at 416 nm upon irradiation in the presence of *syn-5af*. a) 0 and g) 180 s (recorded at every 30 s intervals). (b) Plot of change in absorbance of DPBF at 416 nm vs irradiation time (λ_{irr} = 635 nm) in the presence of *syn-5af*.

Figure S9. (a) Changes in the absorption spectrum of DPBF at 416 nm upon irradiation in the presence of *syn*-**5al**. a) 0 and g) 180 s (recorded at every 30 s intervals). (b) Plot of change in absorbance of DPBF at 416 nm vs irradiation time (λ_{irr} = 635 nm) in the presence of *syn*-**5al**.

Figure S10. (a) Changes in the absorption spectrum of DPBF at 416 nm upon irradiation $(\lambda_{irr} = 680 \text{ nm})$ in the presence of *syn-5al*. a) 0 and g) 150 s (recorded at every 30 s intervals). (b) Plot of change in absorbance of DPBF at 416 nm vs irradiation time ($\lambda_{irr} = 680 \text{ nm}$) in the presence of *syn-5al*.

Figure S11. (a) Changes in the absorption spectrum of DPBF at 416 nm upon irradiation ($\lambda_{irr} = 680$ nm) in the presence of **MB**. a) 0 and g) 180 s (recorded at every 30 s intervals). (b) Plot of change in absorbance of DPBF at 416 nm vs irradiation time ($\lambda_{irr} = 680$ nm) in the presence of **MB**.

XVI. Single crystal X-ray structures of Zn1a, 3aa, 4ah, syn-5aa, syn-5af,

syn- and *anti-*5ah

Identification code	Zn1a
Empirical formula	$C_{34}H_{24}N_6O_2Zn$
Formula weight	613.96
Temperature/K	296.4(5)
Crystal system	monoclinic
Space group	C2/c
a/Å	11.1672(4)
b/Å	27.7657(7)
c/Å	9.6241(3)
α/°	90
β/°	114.758(4)
γ/°	90
Volume/Å ³	2709.82(17)
Z	4
ρ _{calc} g/cm ³	1.505
µ/mm ⁻¹	1.625
F(000)	1264.0
Crystal size/mm ³	$0.45 \times 0.2 \times 0.1$
Radiation	CuKα (λ = 1.54184)
2O range for data collection/	9.284 to 145.704
Index ranges	$-13 \le h \le 13, -32 \le k \le 34, -7 \le l \le 11$
Reflections collected	7639
Independent reflections	2670 [$R_{int} = 0.0263$, $R_{sigma} = 0.0250$]
Data/restraints/parameters	2670/7/199
Goodness-of-fit on F ²	1.040
Final R indexes [I>=2σ (I)]	$R_1 = 0.0623$, $wR_2 = 0.1746$
Final R indexes [all data]	R ₁ = 0.0706, wR ₂ = 0.1856
Largest diff. peak/hole / e Å ⁻³	0.96/-0.61

Table S6. Crystal Data and Structure Refinement for Zn1a

Table S7. Crystal Data and Structure Refinement for 3aa

Identification code	3aa
Empirical formula	$C_{70}H_{46}N_8Zn$
Formula weight	1064.57
Temperature/K	150
Crystal system	triclinic
Space group	P-1
a/Å	10.1189(3)
b/Å	16.2647(5)
c/Å	19.3022(6)
α/°	67.268(3)
β/°	82.291(3)
γ/°	82.584(3)
Volume/Å ³	2893.15(16)
Z	1
$\rho_{calc}g/cm^3$	1.359
µ/mm ⁻¹	2.268
F(000)	1220.0
Crystal size/mm ³	$0.6 \times 0.3 \times 0.3$
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	8.85 to 127.382
Index ranges	-11 ≤ h ≤ 11, -18 ≤ k ≤ 18, -22 ≤ l ≤ 18
Reflections collected	28348
Independent reflections	9511 [$R_{int} = 0.0469, R_{sigma} = 0.0379$]
Data/restraints/parameters	9511/0/751
Goodness-of-fit on F ²	1.352
Final R indexes [I>=2σ (I)]	$R_1 = 0.0980, wR_2 = 0.2969$
Final R indexes [all data]	$R_1 = 0.1104, wR_2 = 0.3133$
Largest diff. peak/hole / e Å-3	1.90/-1.16

Identification code	4ah
Empirical formula	$C_{65}H_{39}F_{10}N_6O_2SbZn$
Formula weight	1313.19
Temperature/K	150
Crystal system	monoclinic
Space group	P21/c
a/Å	20.2843(2)
b/Å	17.94042(16)
c/Å	17.71991(20)
α/°	90
β/°	104.6455(12)
γ/°	90
Volume/Å ³	6238.92(12)
Z	4
ρ _{calc} g/cm ³	1.569
µ/mm⁻¹	5.419
F(000)	2976.0
Crystal size/mm ³	0.3 × 0.2 × 0.1
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	9.012 to 145.488
Index ranges	-24 ≤ h ≤ 23, -18 ≤ k ≤ 21, -15 ≤ l ≤ 21
Reflections collected	32809
Independent reflections	11878 [$R_{int} = 0.0386$, $R_{sigma} = 0.0430$]
Data/restraints/parameters	11878/2/860
Goodness-of-fit on F ²	1.026
Final R indexes [I>=2σ (I)]	$R_1 = 0.0570$, $wR_2 = 0.1520$
Final R indexes [all data]	$R_1 = 0.0694$, $wR_2 = 0.1619$
Largest diff. peak/hole / e Å-3	1.63/-1.47
0	

 Table S8. Crystal Data and Structure Refinement for 4ah

Table S9. Crystal Data and Structure Refinement for syn-5aa		
Identification code	syn- 5aa	
Empirical formula	$C_{64}H_{44}N_4O_3Zn$	
Formula weight	982.40	
Temperature/K	293.75(10)	
Crystal system	triclinic	
Space group	P-1	
a/Å	13.4002(4)	
b/Å	13.4625(4)	
c/Å	17.1704(5)	
α/°	103.438(2)	
β/°	101.949(2)	
γ/°	98.725(2)	
Volume/Å3	2881.73(15)	
Z	2	
ρcalcg/cm3	1.132	
μ/mm-1	0.949	
F(000)	1020.0	
Crystal size/mm3	$0.6 \times 0.4 \times 0.2$	
Radiation	CuKα (λ = 1.54184)	
2Θ range for data collection/°	8.676 to 145.97	
Index ranges	-16 ≤ h ≤ 16, -10 ≤ k ≤ 16, -21 ≤ l ≤ 21	
Reflections collected	31404	
Independent reflections	11234 [Rint = 0.0613, Rsigma = 0.0615]	
Data/restraints/parameters	11234/237/711	
Goodness-of-fit on F2	1.016	
Final R indexes [I>=2σ (I)]	R1 = 0.0824, wR2 = 0.2351	
Final R indexes [all data]	R1 = 0.1050, wR2 = 0.2705	
Largest diff. peak/hole / e Å-30.86/-0.40		

Table S10. Crystal Data and Structure Refinement for syn-5af		
Identification code	syn- 5af	
Empirical formula	$C_{65}H_{37}CI_4N_5O_2Zn$	
Formula weight	1127.16	
Temperature/K	293.15	
Crystal system	monoclinic	
Space group	P2 ₁ /c	
a/Å	13.4669(11)	
b/Å	28.4544(20)	
c/Å	17.1786(14)	
α/°	90	
β/°	109.813(9)	
γ/°	90	
Volume/Å ³	6193.0(9)	
Z	4	
ρ _{calc} g/cm ³	1.209	
µ/mm⁻¹	0.614	
F(000)	2304.0	
Crystal size/mm ³	$0.4 \times 0.35 \times 0.3$	
Radiation	ΜοΚα (λ = 0.71073)	
2O range for data collection/°	5.798 to 52.744	
Index ranges	$-16 \le h \le 16, -35 \le k \le 20, -21 \le l \le 20$	
Reflections collected	29117	
Independent reflections	12644 [$R_{int} = 0.0356$, $R_{sigma} = 0.0484$]	
Data/restraints/parameters	12644/0/694	
Goodness-of-fit on F ²	1.052	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0487, wR_2 = 0.1224$	
Final R indexes [all data]	$R_1 = 0.0712$, $wR_2 = 0.1345$	
Largest diff. peak/hole / e $Å^{-3}$	0.52/-0.37	

Table S11. Crystal Data and Structure Refinement for syn-5ah		
Identification code	syn- 5ah	
Empirical formula	$C_{64}H_{40}F_4N_4O_3Zn$	
Formula weight	1054.37	
Temperature/K	293.15	
Crystal system	triclinic	
Space group	P-1	
a/Å	13.4252(11)	
b/Å	14.2425(13)	
c/Å	14.4941(9)	
α/°	102.982(7)	
β/°	94.647(6)	
γ/°	95.015(7)	
Volume/Å ³	2675.7(4)	
Z	2	
ρ _{calc} g/cm ³	1.309	
µ/mm⁻¹	0.523	
F(000)	1084.0	
Crystal size/mm ³	0.35 × 0.03 × 0.03	
Radiation	ΜοΚα (λ = 0.71073)	
2O range for data collection/°	5.8 to 52.74	
Index ranges	-16 ≤ h ≤ 15, -16 ≤ k ≤ 17, -17 ≤ l ≤ 18	
Reflections collected	22340	
Independent reflections	10919 [$R_{int} = 0.1005$, $R_{sigma} = 0.2786$]	
Data/restraints/parameters	10919/0/685	
Goodness-of-fit on F ²	0.862	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0874$, $wR_2 = 0.1567$	
Final R indexes [all data]	$R_1 = 0.2308$, $wR_2 = 0.2051$	
Largest diff. peak/hole / e $Å^{-3}$	0.62/-0.47	

Table S12. Crystal Data and Structure Refinement for anti-5ah		
Identification code	anti- 5ah	
Empirical formula	$C_{68}H_{48}F_4N_4O_4Zn$	
Formula weight	1126.47	
Temperature/K	293.15	
Crystal system	triclinic	
Space group	P-1	
a/Å	9.8040(6)	
b/Å	10.8952(7)	
c/Å	13.1775(9)	
α/°	73.385(6)	
β/°	77.153(5)	
γ/°	81.794(5)	
Volume/Å ³	1310.32(15)	
Z	1	
ρ _{calc} g/cm ³	1.428	
µ/mm⁻¹	0.541	
F(000)	582.0	
Crystal size/mm ³	0.35 × 0.08 × 0.03	
Radiation	ΜοΚα (λ = 0.71073)	
2O range for data collection/°	5.872 to 52.744	
Index ranges	-12 ≤ h ≤ 11, -13 ≤ k ≤ 13, -16 ≤ l ≤ 14	
Reflections collected	10060	
Independent reflections	5358 [$R_{int} = 0.0424$, $R_{sigma} = 0.1166$]	
Data/restraints/parameters	5358/0/361	
Goodness-of-fit on F ²	1.035	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0806, wR_2 = 0.1882$	
Final R indexes [all data]	$R_1 = 0.1428$, $wR_2 = 0.2328$	
Largest diff. peak/hole / e $Å^{-3}$	1.09/-1.02	

XVII. References

1. J. W. Kang, K. Moseley and P. M. Maitlis, *J. Am. Chem. Soc.* 1969, **91**, 5970.

N. L. Bill, M. Ishida, S. Bähring, J. M. Lim, S. Lee, C. M. Davis, V. M. Lynch,
 K. A. Nielsen, J. O. Jeppesen, K. Ohkubo, S. Fukuzumi, D. Kim and J. L.
 Sessler, *J. Am. Chem. Soc.* 2013, **135**, 10852.

3. D.-M. Shen, C. Liu, X.-G. Chen and Q.-Y. Chen, Synlett. 2009, 6, 945.

4. Y. Jun-i, N. Fukui, K. Furukawa and A. Osuka, *Chem. Eur. J.* 2018, **24**, 1528.

5. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin,

E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Grätzel, *Science* 2011, **334**, 629.

6. C.-H. Yeh, W.-C. Chen, P. Gandeepan, Y.-C. Hong, C.-H. Shih and C.-H. Cheng, *Org. Biomol. Chem.* 2014, **12**, 9105.

7. M. O. Senge, Y. M. Shaker, M. Pintea, C. Ryppa, S. S. Hatscher, A. Ryan and Y. Sergeeva, *Eur. J. Org. Chem.* 2010, 237.

 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09*, Revision

S53

D.01, Gaussian, Inc., Wallingford CT, 2009.

9. (a) A. D. Becke, *J. Chem. Phys.* 1993, **98**, 5648; (b) C. Lee, W. Yang and R.
G. Parr, *Phys. Rev. B.* 1988, **37**, 785.

10. (a) P. J. Hay and W. R. Wadt, *J. Chem. Phys.* 1985, **82**, 270; (b) W. R.
Wadt and P. J. Hay, *J. Chem. Phys.* 1985, **82**, 284; (c) P. J. Hay and W. R.
Wadt, *J. Chem. Phys.* 1985, **82**, 299.

11. J. Tian, L. Ding, H.-J. Xu, Z. Shen, H. Ju, L. Jia, L. Bao and J.-S. Yu, *J. Am. Chem. Soc.* 2013, **135**, 18850.

XVIII. Copies of NMR spectra

¹H NMR spectra of H₂DPP 1c (CDCl₃)

¹H NMR spectra of H₂DPP 2b (CDCl₃)

¹H NMR spectra of H₂DPP 2d (CDCl₃)

¹H NMR spectra of **Zn1a** (CDCl₃), * represent solvent peak.

¹H NMR spectra of **Zn1b** (DMSO-*d*₆)

¹H NMR spectra of **Zn1c** (CDCl₃)

¹H NMR spectra of **Zn1d** (DMSO-*d*₆)

¹H NMR spectra of **Zn2b** (CDCl₃)

¹H NMR spectra of **3aa** (DMSO- d_6), * represent solvent peak.

¹H NMR spectra of **3ab** (DMSO-*d*₆)

¹H NMR spectra of **3ac** (DMSO-*d*₆)

¹H NMR spectra of **3ad** (DMSO- d_6), * represent solvent peak.

¹H NMR spectra of **3ae** (CDCl₃)

¹H NMR spectra of **3af** (CDCl₃)

¹H NMR spectra of **3ah** (DMSO-*d*₆)

¹H NMR spectra of **3ai** (DMSO-*d*₆)

¹H NMR spectra of **3aj** (DMSO-*d*₆)

¹H NMR spectra of **3ak** (DMSO-*d*₆)

¹H NMR spectra of **3ba** (CDCl₃), * represent solvent peak.

¹H NMR spectra of **3ca** (CDCl₃)

¹H NMR spectra of **4aa** (DMSO-*d*₆)

¹H NMR spectra of **4ac** (DMSO- d_6), * represent solvent peak.

¹H NMR spectra of **4af** (DMSO-*d*₆)

¹H NMR spectra of **4ah** (DMSO-*d*₆)

¹H NMR spectra of **4ai** (DMSO-*d*₆)

¹H NMR spectra of **4al** (DMSO-*d*₆)

¹H NMR spectra of **4am** (DMSO-*d*₆)

¹H NMR spectra of **4an** (DMSO-*d*₆)

¹H NMR spectra of **4da** (DMSO- d_6), * represent solvent peak.

¹H NMR spectra of the mixture of **5aa** (CDCl₃)

¹H NMR spectra of **5ab** (CDCl₃)

¹H NMR spectra of **5ao** (CDCl₃)

¹H NMR spectra of the mixture of **5ah** (CDCl₃)

¹H NMR spectra of *syn-***5ah** (CDCl₃)

¹H NMR spectra of anti-5ah (CDCl₃)

¹H NMR spectra of *syn-***5af** (CDCl₃), * represent solvent peak.

¹H NMR spectra of *syn-5al* (CDCl₃)

¹H NMR spectra of **5ea** (CDCl₃), * represent solvent peak.

¹H NMR spectra of **5eh** (CDCl₃)

¹H NMR spectra of **6** (CD₂Cl₂)

