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S1.	Analysis	of	CSD	impact	

To	assess	whether	CSDs	had	a	measurable	 impact	on	 indicator	 levels,	only	 samples	 from	

monitoring/CSD	 stations	were	 utilized.	 For	 this	 assessment,	 follow	up	 samples	were	 not	

used	 because	 they	 were	 collected	 on	 a	 conditional	 basis	 (conditional	 on	 cENT	 ≥104	

MPN/100	 mL),	 which	 could	 introduce	 bias;	 CSD	 only	 stations	 were	 not	 used	 because	

background	 samples	 (when	 CSDs	were	 not	 occurring)	 did	 not	 exist	 for	 comparison;	 and	

monitoring	only	stations	were	not	used	because,	by	definition,	it	was	not	possible	for	a	CSD	

to	 occur	 at	 these	 stations.	 The	 effect	 of	 precipitation	was	 accounted	 for	 by	 including	 the	

precipitation	variable	as	a	covariate	in	each	generalized	linear	mixed	model	(GLMM).		

The	 statistically	 significant	 coefficients	 (one	 coefficient	 in	 each	 of	 three	 indicator	

models)	 for	 CSD	occurrence	 estimated	by	 the	GLMMs	 indicate	 the	 log	 odds	 ratio	 of	 high	

indicator	 concentrations	 (defined	 in	 the	 main	 text)	 accompanying	 CSD	 occurrence	 (as	

compared	 to	 non-occurrence).	 A	 GLMM	with	 a	 time-changing	 predictor,	 in	 this	 case	 the	
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“CSD	occurrence”	predictor	(sometimes	CSD=1	and	sometimes	CSD=0),	 incorporates	both	

“within-station	 effects”	 (the	 longitudinal	 effect	 of	 a	 CSD	 on	 indicator	 levels	 at	 a	 given	

station)	and	“between	station	effects”	(the	cross-sectional	effect	of	a	CSD	occurring	at	one	

station	but	not	another	on	the	same	date)	 into	its	estimation	of	the	regression	coefficient	

for	CSD	occurrence.	Thus,	the	significant	coefficients	for	CSD	in	each	of	these	GLMMs	(one	

for	each	indicator)	represent	some	combination	of	longitudinal	and	cross-sectional	effects.		

	

S2.	Censored	data	analysis	

In	datasets	with	multiple	reporting	limits	for	a	variable	and	many	values	below	reporting	

limits,	substituting	arbitrary	values,	such	as	½	LDC	for	measurements	below	an	LDC,	can	

produce	 spurious	 statistical	 results.	 Thus,	 substitution	 was	 avoided	 for	 hypothesis	 tests	

and	correlation.	 Instead,	data	were	recorded	 in	 interval-censored	 format,	such	that	every	

value	was	represented	by	an	 interval	(1).	Measurements	below	an	LDC	were	assigned	an	

interval	 [0,	 LDC).	 Measurements	 ≥	 LDC	 at	 a	 value	m	 were	 assigned	 an	 interval	 [m,	 m].	

Duplicate	qPCR	measurements	were	averaged	 to	yield	a	 single	 interval	estimate	 for	each	

sample	 by	 square-root	 transforming	 the	 interval	 bounds,	 averaging	 them	 (left	 with	 left	

bound,	 right	 with	 right	 bound),	 and	 then	 squaring	 the	 averaged	 bounds,	 yielding	 an	

interval	estimate	for	each	sample	in	original	units.	To	test	rank-order	correlation	between	

indicators,	 intervals	 were	 treated	 as	 left-censored,	 and	 Kendall’s	 tau-a	 correlation	

coefficient	 for	 left-censored	 data	 (hereafter,	 KTC)	 was	 used.	 This	 measure	 correctly	

identifies	ties	for	data	with	multiple	reporting	limits	and	accurately	estimates	p-values	for	

data	with	a	 large	number	of	 ties	(1).	KTC	is	expected	to	be	about	0.15	units	smaller	 than	

Spearman’s	coefficient	(which	is	also	rank-order)	for	the	same	degree	of	correlation	(2).		
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However,	it	was	not	possible	to	use	interval-censored	format	for	binary	regression	models	

because	 data	 needed	 to	 be	 dichotomized	 at	 a	 single	 number	 (i.e.,	 the	median).	 Thus,	 to	

calculate	medians	and	dichotomize	indicator	concentrations	for	binary	logistic	regression,	

intervals	 of	 each	 sample	 were	 collapsed	 by	 square-root	 transforming	 interval	 bounds,	

averaging	them,	and	then	squaring	this	single	value.	

	

S3.	Multivariate	regression	models	

Multivariate	 binary	 logistic	 regression	 models	 incorporated	 environmental	 variables	

expected	to	be	important	 in	controlling	indicator	concentrations.	Each	monitoring	station	

was	modeled	separately.	Models	were	fit	to	data	from	weekly	monitoring	samples	of	cENT,	

qENT,	 and	 HF183,	 respectively,	 from	 all	 14	 monitoring	 stations,	 yielding	 a	 total	 of	 42	

models.	LASSO	regularization	was	used	for	variable	selection	and	coefficient	estimation	(3),	

implemented	in	the	R	package	 ‘glmnet’	(4).	The	LASSO	selects	models	by	penalizing	large	

coefficient	estimates,	avoiding	model	variance	inflation	which	can	be	a	problem	for	models	

with	a	 relatively	 large	number	of	predictors	or	 co-linear	predictors,	 such	as	 the	seasonal	

variables	in	this	study	(3).		

Binary	 logistic	models	were	selected	 to	model	 these	data	because	of	 the	relatively	

high	proportion	of	indicator	concentrations	below	a	limit	of	detection,	especially	for	cENT.	

While	other	regression	methods	have	been	shown	to	perform	as	well	or	better	than	binary	

logistic	 regression	 for	 predicting	 environmental	 FIB	 levels	 (5,6),	 the	 high	 proportion	 of	

data	<LDC	and	the	presence	of	multiple	LDCs	in	this	dataset	make	dichotomizing	outcome	

variables	 appropriate.	 Indicator	 concentrations	 were	 dichotomized	 at	 their	 respective	

median	values	 (Table	2)	 to	 facilitate	 comparison	between	models	of	 the	 three	 indicators	
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and	 maximize	 the	 number	 of	 binary	 events	 in	 each	 model	 (models	 suffered	 from	 non-

convergence	when	dichotomized	at	presence-absence).	Binary	logistic	models	assume	that	

the	 logit-transformed	 outcome	 variable	 is	 linearly	 related	 to	 predictor	 variables.	 This	

assumption	was	checked	visually	with	data	aggregated	across	all	stations,	and	resulted	in	

modeling	 CSD	 occurrence	 instead	 of	 CSD	 volume	 and	 square-root	 transforming	 the	

precipitation	variable.	
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Table	S1.	Summary	of	42	regression	models	–	excluding	precipitation	as	a	predictor	
variable.	Excluding	precipitation	and	using	CSD	volume	instead	of	CSD	occurrence	yields	an	
identical	summary	table	to	the	one	below.	
		 Outcome	variable	 		
Predictor	 cENT	 qENT	 HF183	 Sum	
Solar	insolation,	mean	daily	 4	 2	 2	 8	
Water	temperature,	mean	daily	 0	 3	 5	 8	
Tidal	range,	daily	 0	 0	 3	 3	
Tide	level	 0	 0	 1	 1	
Tidal	gradient	 0	 0	 1	 1	
Significant	wave	height	 0	 1	 0	 1	
CSD	occurrence	 0	 0	 0	 0	
Time	since	solar	noon	 0	 0	 0	 0	
Wind	speed,	mean	daily	 0	 0	 0	 0	
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Table	S2.	Regression	coefficients	for	42	models	including	precipitation	and	CSD	
occurrence	(same	models	as	in	the	summary	table	presented	in	the	main	text).	Descriptions	
of	variables,	including	units,	are	given	in	Table	3.	Models	are	binary	logistic.	Therefore,	a	
coefficient	value	of	0.23	signifies	that	for	every	unit	increase	in	the	predictor	variable,	the	
log	odds	of	the	indicator	being	elevated	(>median)	increase	by	0.23.	Exponentiating	these	
coefficients	yields	odds	ratios.	
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cENT	

O1	 -1.08	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
O2	 -1.08	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
O3	 -1.20	 0	 0.23	 0	 -0.31	 0	 0	 0	 0	 0	 0	
O4	 -1.56	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
O5	 -1.15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
O6	 -0.30	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
O7	 -0.63	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
B1	 -0.70	 0	 0.12	 0	 0	 0	 0	 0	 0	 0	 0	
B2	 -0.58	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
B3	 -0.03	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
B4	 -0.94	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
B5	 -0.47	 0	 0	 0	 -0.23	 0	 0	 0	 0	 0	 0	
B6	 -0.46	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
B7	 -0.03	 0	 0	 0	 -0.25	 0	 0	 0	 0	 0	 0	

qENT	

O1	 -0.03	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
O2	 0.00	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
O3	 -0.03	 0	 0	 0.02	 -0.31	 0	 0	 0	 0	 -0.04	 0	
O4	 0.01	 0	 0.13	 0	 -0.16	 -0.06	 0	 0	 0.08	 -0.46	 0	
O5	 -0.03	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
O6	 -0.03	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
O7	 0.00	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
B1	 -0.03	 0	 0	 0	 0	 0	 0	 0	 0	 -0.17	 0	
B2	 -0.03	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
B3	 -0.03	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
B4	 -0.03	 0	 0.10	 0	 0	 0	 0	 0	 0	 0	 0	
B5	 0.00	 0	 0.11	 0	 0	 0	 0	 0	 0	 0	 0	
B6	 -0.03	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
B7	 -0.03	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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HF183	

O1	 -0.03	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
O2	 -0.03	 0	 0.11	 0	 0	 0	 0	 0	 0	 0	 0	
O3	 -0.03	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
O4	 -0.08	 0	 0.11	 0	 0	 0	 0	 0	 0	 -0.22	 0	
O5	 -0.03	 0	 0.17	 0	 0	 0	 0.29	 0	 0	 -0.41	 0	
O6	 -0.08	 0	 0.24	 0	 0	 0	 0	 0	 0	 -0.03	 0	
O7	 -0.02	 0	 0.18	 0	 0	 0	 0	 0	 0	 -0.43	 0	
B1	 -0.03	 0	 0.05	 0	 0	 0	 0	 0	 0	 0	 0	
B2	 -0.03	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
B3	 -0.02	 0	 0.26	 0	 0	 0	 0.17	 0.07	 0.02	 -0.13	 0	
B4	 -0.03	 0	 0.17	 0	 0	 0	 0	 0	 0	 0	 0	
B5	 -0.03	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
B6	 -0.03	 0	 0.10	 0	 0	 0	 0	 0	 0	 0	 0	
B7	 -0.36	 0	 0	 0	 -0.31	 0	 0	 0	 0	 0	 0	
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