

Supporting Information

Visible Light-Promoted Beckmann Rearrangements: Separating Sequential Photochemical and Thermal Phenomena in a Continuous Flow Reactor

Yuesu Chen, David Cantillo, and C. Oliver Kappe*

ejoc201900231-sup-0001-SupMat.pdf

1. Details of the Flow Set-up

A Vapoutec® E-Series system was used as the flow set-up for the visible light-promoted Beckmann rearrangement (as shown in Figure S1). The UV-150TM flow photoreactor (R_1), the heated coil reactor (R_2), pumps (P1 and P2), two-way valves (*Val 1* and *Val 2*) and the back pressure regulator (*BPR*) are parts of the Vapourtec® system. PFA tubings (i.d. 0.8 mm, o.d. 1.6 mm) were used for the construction of the injection coils (L_1 and L_2) and for the connection of all parts downstream from the pumps. PFA tubings (i.d. 1.58 mm, o.d. 3.18 mm) were used for solvent and inlet of the pumps.

Figure S1: Complete lay-out of the flow set-up.

Figure S2: Photograph of the flow set-up (Vapoutec® E-Series system).

The entire flow system was purged with degassed DMF (Ar sparging for 30 min, sealed in Ar atmosphere) before tightening the *BPR*. After using the flow system, the *BPR* was loosened before washing with isopropanol (*i*-PrOH).

2. Construction of Chip Reactor

Figure S3: Photograph of all parts for the construction of reactor A and B: (a) plastic stopper; (b) aluminum foil; (c) Syrris ®1000 µL glass chip; (d) 50 W LED with cooler; (e) iron clamp used as spacer between glass chip and LED.

3. General Analytical Methods

NMR spectra were recorded on a 300 MHz instrument (75 MHz for ¹³C). Chemical shifts (δ) are expressed in ppm downfield from TMS as internal standard. The letters s, d, t, q and m stand for singlet, doublet, triplet, quadruplet and multiplet.

HPLC analysis was carried out on a C18 reversed-phase (RP) analytical column (150 × 4.6 mm, particle size 5 μ m) at 37 °C using a mobile phase A (water/MeCN 90:10 (v/v) + 0.1% TFA) and B (MeCN + 0.1% TFA) at a flow rate of 1.5 mL/min. The following gradient was applied: linear increase from solution 30% B to 100% B within 10 min.

GC-MS spectra were recorded using a ThermoFisher Focus GC coupled with a DSQ II (EI, 70 eV). A TR-5MS column (30 m × 0.25 mm × 0.25 μ m) was used, with helium as carrier gas (1 mL•min⁻¹ constant flow). The injector temperature was set to 280 °C. After 1 min at 50 °C, the temperature was increased by 25 °C•min⁻¹ to 300 °C and kept at 300 °C for 3 min.

Emission spectra of the light sources were measured with Avantes® Startline™ AvaSpec-2048 spectrometer.

Carbon monoxide was detected using Chauvin Arnoux® C.A 895 carbon monoxide detector.

Melting points were determined on a Stuart[™] SMP3 melting point apparatus.

4. Emission Spectra of the Light Sources

Figure S4: Emission spectra of the light sources.

5. Numeric Data of Figure 2

		50 mol% CBr ₄ 2 mol% Ru(bpy) ₃ Cl ₂				
	0.20	M in DMF / 56 W blue LED 3 bar, 10 min				
	1a		2a			
Entry	T/°C	1a / %	2a / %	CBr ₄ / %		
1	0	81	0	0		
2	10	81	0	0		
3	20	49	24	0		
4	30	22	58	2		
5	40	6	79	3		
6	50	5	77	8		
7	60	5	76	7		
8	70	7	73	3		

Table S1: Optimization of reaction temperature	(numeric data of Figure	e 2)
--	-------------------------	------

6. Quenching Experiment without Substrate

Figure S5: Flow set-up for the quenching experiment.

The flow set-up shown in Figure 1 was used for this experiment (Figure S5). After the stabilization of the temperature and pressure, 500 μ L degassed solution was injected for each run. The discharge was collected with a 5 mL volumetric flask with 0.01 mmol *p*-terphenyl and 2-aminophenol (**16**), then diluted to 5.000 mL with acetonitrile for HPLC and GC-MS analysis.

Table 32. Results of the quenching experim	riment. ^[a]
--	------------------------

Entry	T/°C	Remained CBr ₄ / % ^[b]
1	0	0
2	10	1
3	20	2
4	30	5
5	40	10

[a] The solution of reactants was degassed by Ar sparging for 15 min; 0.5 mL was injected for each run. [b] Determined by HPLC at 254 nm using *p*-terphenyl as internal standard.

The results (Table S2) showed that the conversion of CBr₄ favors low temperature, which is in accordance with Figure 2. A large increase of the triplet life time of Ru(II)^{*} at low temperature (*J. Phys. Chem. A* **2004**, *108*, 9938) makes the quenching more effective. Benzoxazole (**17**) was detected from the samples of all entries; whereas no trace of benzoxazolidinone (**18**) was detected, indicating that bromophosgene (**15**) was not able to survive more than 10 min under the reaction condition.

7. Optimization of Reaction Time and Catalyst Loading

Table S3. Optimization of reaction time and catalyst loading. ^[a]						
NOH		OH 50 mc Ru(b	ol% CBr ₄ py) ₃ Cl ₂	H N		
		0.20 M in DN 40 °C	0.20 M in DMF / 56 W LED 40 °C, 3 bar			
1a 2a						
Entry	Time [min]	Catalyst [mal9/]	Molar fraction [%] ^[b]			
Entry		Catalyst [mol%]	1a	2a	CBr ₄ ^[c]	
1	5	2.0	21	58	13	
2	7.5	2.0	16	64	10	
3	10	2.0	6	79	3	
4	15	2.0	5	75	0	
5	20	2.0	5	70	0	
6	10	1.0	13	71	13	
7	20	1.0	3	77	5	

[a] The solution of reactants was degassed by Ar sparging for 15 min; 0.5 mL was injected for each run. [b] Determined by HPLC at 254 nm using p-terphenyl as internal standard. [c] Unconverted CBr₄ in the reaction mixture.

The influence of reaction time and catalyst loading was investigated at 40 °C (Table S3). The conversion of 1a stopped increasing when all CBr₄ was consumed (Table S3, entry 3-5), indicating a non-self-propagative mechanism. The reaction rate dropped when the catalyst loading was reduced to 1 mol% (Table S3, entry 6), but prolonging the reaction time to 20 min (Table S3, entry 7) is enough to compensate this conversion loss (Table S3, entry 3).

8. Attempt to Scavenge Bromophosgene

The reaction of Table 3 entry 1 was performed using 2-aminophenol (16) in place of oxime (1a) (Figure S6), in order to scavenge any trace of bromophosgene (15) in the reaction mixture.

Figure S6: Flow setup for bromophosgene scavenging.

However, benzoxazolidinone (18), the condensation product with 15 (a carbonylating reagent), was not detected; this fact ruled out the possibility of OH-activation by 15 during the Beckmann rearrangement. The formation of benzoxazole (17) confirmed the presence of V-H reagent (5A, a formylating reagent) in the reaction mixture.

Figure S7: No peak corresponding benzoxazolone (18) was given by GC-MS analysis.

Figure S8: HPLC graphics of the best results from (a) one-pot flow reaction (Table 1, entry 5) and (b) two-step flow reaction (Table 4, entry 1).

9. HPLC Examples

10. Substrate Synthesis and Characterization

General Method I (for the Synthesis of Ketoximes) (1): 3282 mg (40 mmol) anhydrous NaOAc and 2084 mg (30 mmol) HONH₃Cl were dissolved in 50 mL aqueous ethanol (EtOH/H₂O = 80:20) in a 250 mL round bottomed flask; the mixture was stirred under room temperature. When all solid was dissolved, ketone (20 mmol) was added. The flask was then fitted with a reflux condenser and heated to reflux until the complete conversion of the ketone (monitored by HPLC). The cooled reaction mixture was concentrated *in vacuo*, dissolved in 100 mL Et₂O and washed with 3 × 50 mL distillated water in a separatory funnel. The Et₂O layer was dried over anhydrous Na₂SO₄, concentrated *in vacuo* and dried *in vacuo* overnight to afford the product.

General Method II (for the Synthesis of Aldoximes) (12): 3282 mg (40 mmol) anhydrous NaOAc and 2084 mg (30 mmol) HONH₃Cl were dissolved in 50 mL aqueous ethanol (EtOH/H₂O = 80:20) in a 250 mL round bottomed flask; the mixture was stirred under room temperature. When all solid was dissolved, aldehyde (20 mmol) was added. The flask was then fitted with a reflux condenser and heated to reflux until the complete conversion of the aldehyde (monitored by HPLC). The cooled reaction mixture was concentrated *in vacuo*, dissolved in 100 mL Et₂O and washed with 3 × 50 mL distillated water in a separatory funnel. The Et₂O layer was dried over anhydrous Na₂SO₄, concentrated *in vacuo* to afford the crude product. The crude product was purified by flash chromatography on silica (40 – 63 μ m) using petroleum ether (PE, 40 – 60 °C) and a 1:1 mixture of dichloromethane and ethyl acetate (DCM/EA) as eluent (gradient: 0 – 40% DCM/EA over 15 CV) to afford the product.

Acetophenone Oxime (**1a**): the product was further purified by flash chromatography on silica ($40 - 63 \mu m$) using petroleum ether (PE, $40 - 60 \degree$ C) and ethyl acetate (EA) as eluent (gradient: 0 - 15% EA over 3 CV, then maintained at 15% EA over 10 CV), 3282 mg (92%) colorless crystals (mp 59 - 60 °C, lit.¹ 59 - 60 °C) was obtained: ¹H NMR (300 MHz, DMSO) δ 11.18 (s, 1H), 7.69 - 7.60 (m, 2H), 7.44 - 7.31 (m, 3H), 2.15 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 153.32, 137.43, 129.03, 128.79, 125.98, 11.99.

Benzophenone Oxime (**1b**): white crystals, mp 143 – 144 °C (lit.² 143 – 144 °C); ¹H NMR (300 MHz, DMSO) δ 11.33 (s, 1H), 7.58 – 7.17 (m, 10H); ¹³C NMR (75 MHz, DMSO) δ 155.61, 137.21, 133.98, 129.32, 129.27, 128.82, 128.78, 128.58, 127.41.

4-Methoxyacetophenone Oxime (**1c**): white crystals, mp 86 – 87 °C (lit.¹ 85 – 87 °C); ¹H NMR (300 MHz, DMSO) δ 10.99 (s, 1H), 7.69 – 7.48 (m, 2H), 7.03 – 6.82 (m, 2H), 3.76 (s, 3H), 2.12 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 160.07, 152.82, 129.89, 127.28, 114.15, 55.56, 11.90.

3-*Methoxyacetophenone Oxime* (1d): light yellow oily liquid; ¹H NMR (300 MHz, DMSO) δ 11.25 (s, 1H), 7.38 – 7.16 (m, 3H), 6.92 (ddd, *J* = 8.0, 2.5, 1.1 Hz, 1H), 3.75 (d, *J* = 4.4 Hz, 3H), 2.16 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 159.63, 153.21, 138.87, 129.81, 118.49, 114.65, 111.20, 55.36, 11.99.

2-Methoxyacetophenone Oxime (**1e**): white solid, mp 85 – 87 °C; major isomer: ¹H NMR (300 MHz, DMSO) δ 10.99 (s, 1H), 7.41 – 7.28 (m, 1H), 7.21 (dd, J = 7.5, 1.7 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 6.93 (td, J = 7.4, 0.9 Hz, 1H), 3.78 (s, 3H), 2.06 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 157.53, 154.59, 130.25, 129.57, 127.84, 120.65, 111.91, 55.83, 15.74. Apparent signals of the minor isomer: ¹H NMR (300 MHz, DMSO) δ 10.30 (s, 1H), 3.74 (s, 3H), 2.01 (s, 3H); ¹³C NMR (75 MHz, 120.66, 128.87, 125.64, 120.50, 111.78, 21.46; major:minor = 89:11.

4-Methylacetophenone Oxime (**1f**): white crystals, mp 85 – 86 °C (lit.¹ 84 – 86 °C); ¹H NMR (300 MHz, DMSO) δ 11.09 (s, 1H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 2.30 (s, 3H), 2.12 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 153.16, 138.44, 134.64, 129.36, 125.87, 21.23, 11.95.

¹ S. Prateeptongkum, I. Jovel, R. Jackstell, N. Vogl, C. Weckbecker, M. Beller, Chem. Commun. 2009, 0, 1990-1992.

² E. B. Ayres, C. R. Hauser, J. Org. Chem. **1948**, 13, 116-119.

3-*Methylacetophenone Oxime* (**1g**): colorless crystals, mp 60 – 61 °C (lit.³ 57 °C); ¹H NMR (300 MHz, DMSO) δ 11.14 (s, 1H), 7.44 (d, J = 9.6 Hz, 2H), 7.26 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 7.5 Hz, 1H), 2.32 (s, 3H), 2.14 (s, 3H).; ¹³C NMR (75 MHz, DMSO) δ 153.36, 137.85, 137.40, 129.66, 128.67, 126.57, 123.17, 21.52, 12.03.

2-Methylacetophenone Oxime (**1h**): light yellow oily liquid; major isomer: ¹H NMR (300 MHz, DMSO) δ 11.05 (s, 1H), 7.33 – 7.11 (m, 5H), 2.29 (s, 3H), 2.09 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 155.37, 138.53, 135.63, 130.83, 128.58, 128.37, 126.08, 20.40, 15.95. Apparent signals of the minor isomer: ¹H NMR (300 MHz, DMSO) δ 10.42 (s, 1H), 2.17 (s, 3H), 2.04 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 153.84, 137.36, 134.70, 129.89, 128.11, 126.49, 125.92, 22.01, 19.59; major:minor = 76:24.

4-Bromoacetophenone Oxime (**1**i): white crystals, mp 128 – 129 °C (lit.¹ 128 – 130 °C); ¹H NMR (300 MHz, DMSO) δ 11.33 (s, 1H), 7.67 – 7.49 (m, 4H), 2.14 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 152.54, 136.59, 131.73, 128.00, 122.38, 11.79.

4-Chloroacetophenone Oxime (**1**j): white crystals, mp 99 – 100 °C (lit.¹ 97 – 99 °C); ¹H NMR (300 MHz, DMSO) δ 11.33 (s, 1H), 7.66 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 2.14 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 152.44, 136.22, 133.71, 128.80, 127.70, 11.82.

3-Chloroacetophenone Oxime (**1k**): white crystals, mp 88 – 89 °C (lit.¹ 88 – 90 °C); ¹H NMR (300 MHz, DMSO) δ 11.40 (s, 1H), 7.73 – 7.53 (m, 2H), 7.41 (dd, *J* = 3.7, 1.6 Hz, 2H), 2.15 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 152.37, 139.53, 133.69, 130.68, 128.82, 125.62, 124.65, 11.87.

2-Chloroacetophenone Oxime (**1**): white solid powder, mp 87 – 88 °C (lit.⁴ 87 – 90 °C, lit.¹ 102 – 104 °C); major isomer: ¹H NMR (300 MHz, DMSO) δ 11.29 (s, 1H), 7.54 – 7.30 (m, 4H), 2.10 (s, 1H); ¹³C NMR (75 MHz, DMSO) δ 154.11, 137.73, 131.92, 130.85, 130.45, 130.10, 127.65, 16.01. Apparent signals of the minor isomer: ¹H NMR (300 MHz, DMSO) δ 10.59 (s, 1H), 2.06 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 151.34, 136.36, 130.00, 129.49, 129.12, 127.54, 21.18; major:minor = 81:19.

4-Methylbenzaldehyde Oxime (**12a**): colorless oil; ¹H NMR (300 MHz, DMSO) δ 10.96 (s, 1H), 8.06 (s, 1H), 7.52 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 3.78 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 160.53, 148.07, 128.27, 126.06, 114.63, 55.65.

Benzaldehyde Oxime (**12b**): white crystals, mp 68 – 69 °C (lit.⁵ 63 – 65 °C); ¹H NMR (300 MHz, DMSO) δ 11.24 (s, 1H), 8.14 (s, 1H), 7.70 – 7.54 (m, 2H), 7.49 – 7.30 (m, 3H); ¹³C NMR (75 MHz, DMSO) δ 148.54, 133.52, 129.70, 129.16, 126.84.

4-Chlorobenzaldehyde Oxime (**12c**): white crystals, mp 112 – 113 °C (lit.⁶ 109 – 112 °C); ¹H NMR (300 MHz, DMSO) δ 11.37 (s, 1H), 8.15 (s, 1H), 7.61 (d, *J* = 8.5 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (75 MHz, DMSO) δ 147.56, 134.15, 132.46, 129.24, 128.48.

11. Characterization of Isolated Products

Acetanilide (**2a**): 123.9 mg (76%); white crystals, mp 114 – 115 °C (lit.⁷ 115 – 116 °C); ¹H NMR (300 MHz, DMSO) δ 9.90 (s, 1H), 7.57 (d, *J* = 7.6 Hz, 2H), 7.28 (t, *J* = 7.9 Hz, 2H), 7.02 (t, *J* = 7.4 Hz, 1H), 2.04 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 168.69, 139.78, 129.08, 123.39, 119.42, 24.44.

Benzanilide (**2b**): 181.1 mg (77%); white crystals, mp 163 – 164 °C (lit.⁷ 162 – 164 °C); ¹H NMR (300 MHz, DMSO) δ 10.25 (s, 1H), 8.02 – 7.90 (m, 2H), 7.79 (dd, J = 8.5, 1.0 Hz, 2H), 7.65 – 7.46 (m, 3H), 7.36 (dd, J = 10.7, 5.1 Hz, 2H), 7.16 – 7.04 (m, 1H); ¹³C NMR (75 MHz, DMSO) δ 166.00, 139.62, 135.44, 131.99, 129.05, 128.83, 128.10, 124.10, 120.81.

4-Methoxyacetanilide (**2c**): 118.6 mg (65%); white crystals, mp 131 – 132 °C (lit.⁷ 128 – 130 °C); ¹H NMR (300 MHz, DMSO) δ 9.76 (s, 1H), 7.55 – 7.41 (m, 2H), 6.93 – 6.78 (m, 2H), 3.71 (s, 3H), 2.01 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 168.15, 155.46, 132.98, 120.98, 114.21, 55.56, 24.23.

³ T. Posner, G. Schreiber, Ber. Dtch. Chem. Ges. 1924, 57, 1127-1137.

⁴ T. Weil, H. Stange, Patent: ZA 6800916 (9. Jul. 1968).

⁵ J. H. P. Tyman, P. B. Payne, J. Chem. Res. 2006, 691-695.

⁶ J. Picha, R. Cibulka, F. Hampl, F. Liska, P. Parik, O. Pytela, Collect. Czech. Chem. Commun. 2004, 69, 397-413.

⁷ V. P. Srivastava, A. K. Yadav, L. D. S. Yadav, Synlett 2014, 25, 665-670.

3-Methoxyacetanilide (2d): 137.8 mg (70%); offwhite crystals, mp 102 – 103 °C (lit.⁸ 103 – 103.5 °C, lit.⁷ 87 – 89 °C); ¹H NMR (300 MHz, DMSO) δ 9.89 (s, 1H), 7.28 (t, J = 2.1 Hz, 1H), 7.13 (ddd, J = 11.5, 8.5, 4.8 Hz, 2H), 6.60 (ddd, J = 8.1, 2.5, 1.1 Hz, 1H), 3.71 (s, 3H), 2.03 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 168.75, 159.92, 140.94, 129.87, 111.73, 108.76, 105.31, 55.37, 24.51.

2-Methoxyacetanilide (2e): 123.8 mg (62%); light yellow crystals, mp 87 - 88 °C (lit.⁹ 87 - 88 °C); ¹H NMR (300 MHz, DMSO) δ 9.10 (s, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.13 – 6.97 (m, 2H), 6.95 – 6.80 (m, 1H), 3.82 (s, 3H), 2.09 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 168.86, 149.96, 127.88, 124.60, 122.43, 120.59, 111.49, 56.01, 24.29.

4-Methylacetanilide (2f): 133.7 mg (75%); white crystals, mp 152 - 153 °C (lit.⁷ 149 - 150 °C); ¹H NMR (300 MHz, DMSO) δ 9.82 (s, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.2 Hz, 2H), 2.24 (s, 3H), 2.01 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 168.43, 137.28, 132.23, 129.46, 119.42, 24.39, 20.87.

3-Methylacetanilide (2q): 136.0 mg (76%); offwhite crystals, mp 66 - 67 °C (lit.¹⁰ 65 - 66 °C); ¹H NMR (300 MHz, DMSO) δ 9.83 (s, 1H), 7.49 – 7.28 (m, 2H), 7.16 (t, J = 7.8 Hz, 1H), 6.84 (d, J = 7.5 Hz, 1H), 2.26 (s, 3H), 2.03 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 168.62, 139.71, 138.21, 128.92, 124.10, 119.94, 116.63, 24.46, 21.65.

2-Methylacetanilide (2h): 94.5 mg (54%); grey crystals, mp 107 - 109 °C (lit.¹¹ 107 - 110 °C, lit.¹⁰ 110 - 112 °C); ¹H NMR (300 MHz, DMSO) δ 9.27 (s, 1H), 7.40 (d, J = 7.7 Hz, 1H), 7.29 – 6.98 (m, 3H), 2.20 (s, 3H), 2.06 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 168.58, 136.96, 131.97, 130.66, 126.29, 125.43, 125.40, 23.73, 18.32.

4-Bromoacetanilide (2i): 146.6 mg (57%); white crystals, mp 169 – 170 °C (lit.⁷ 165 – 166 °C); ¹H NMR (300 MHz, DMSO) δ 10.07 (s, 1H), 7.64 – 7.52 (m, 2H), 7.51 – 7.39 (m, 2H), 2.04 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 168.91, 139.12, 131.91, 121.28, 114.92, 24.48.

4-Chloroacetanilide (2j): 91.4 mg (45%); white crystals, mp 177 - 178 °C (lit.¹² 177 - 178 °C); ¹H NMR (300 MHz, DMSO) δ 10.06 (s, 1H), 7.70 – 7.50 (m, 2H), 7.42 – 7.25 (m, 2H), 2.04 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 168.87, 138.71, 129.00, 126.92, 120.90, 24.44.

3-Chloroacetanilide (2k): 102.5 mg (50%); offwhite crystals, mp 74 – 75 °C (lit.¹² 72.4 – 73.6 °C, lit.¹³ 78 – 79 °C); ¹H NMR (300 MHz, DMSO) δ 10.13 (s, 1H), 7.81 (t, J = 1.9 Hz, 1H), 7.41 (ddd, J = 8.2, 1.8, 1.0 Hz, 1H), 7.31 (t, J = 8.0 Hz, 1H), 7.08 (dd, J = 7.9, 0.9 Hz, 1H), 2.05 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 169.15, 141.20, 133.47, 130.82, 123.12, 118.82, 117.71, 24.50.

2-Chloroacetanilide (2I): 47.7 mg (23%); grey crystals, mp 86 – 88 °C (lit.¹⁰ 85 – 87 °C); ¹H NMR (300 MHz, DMSO) δ 9.50 (s, 1H), 7.71 (d, J = 7.5 Hz, 1H), 7.48 (dd, J = 8.0, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.31 (td, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.19 (dd, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.19 (dd, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.19 (dd, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.19 (dd, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.19 (dd, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.19 (dd, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.19 (dd, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.8, 1H), 7.19 (dd, J = 7.8, 1.5 Hz, 1H), 7.1 1H), 2.10 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 169.05, 135.53, 129.85, 127.76, 126.85, 126.72, 126.58, 23.78.

4-Methoxybenzonitrile (13a): Prepared following the procedure for ketoximes, then isolated by flash chromatography on silica (40 - 63 µm) using petroleum ether (PE, 40 - 60 °C) and ethyl acetate (EA) (gradient: 0 - 15% EA over 20 CV) to afford 106.0 mg (66%) white crystals, mp 59 – 60 °C (lit.¹⁴ 59 – 60 °C); ¹H NMR (300 MHz, DMSO) δ 7.78 (d, J = 8.9 Hz, 2H), 7.11 (d, J = 8.9 Hz, 2H), 3.84 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 163.16, 134.63, 119.60, 115.59, 103.25, 56.15.

 ⁸ M. Heidelberger, W. A. Jacobs, *J. Am. Chem. Soc.* **1919**, *41*, 1450-1472.
⁹ K. Dooleweerdt, B. P. Fors, S. L. Buchwald, *Org. Lett.* **2010**, *12*, 2350-2353.

¹⁰ K. S. Niralwad, B. B. Shingate, M. S. Shingare, Lett. Org. Chem. 2011, 8, 274-277.

¹¹ R. A. Benkeser, P. E. Brumfield, J. Am. Chem. Soc. 1951, 73, 4770-4773.

¹² D. C. Owsley, J. J. Bloomfield, Synthsis **1977**, 118-120.

¹³ B. B. Dey, R. K. Maller, B. R. Pai, *J. Sci. Ind. Res.* **1951**, *10*, 140-144.

¹⁴ D. S. Bhalerao, U. S. Mahajan, K. H. Chaudhari, K. G. Akamanchi, J. Org. Chem. 2007, 72, 662-665.

12. Copies of ¹H- and ¹³C-NMR spectra

S12

S17

S25

S27

S29

S32

S34

