
Derivation of Directed Migration Terms 1

The directed migration terms ∓K∇ · (wφ∇ψ) can be derived as the continuum limit of 2

an intuitive difference equation. For simplicity and accessibility we restrict the detailed 3

derivation to a single spatial dimension with periodic boundary conditions and then 4

outline extensions to higher dimensions. 5

Difference Equation 6

Let φtf be the normalized density of strategy φ at time t found at focal site f . The 7

attraction of strategy φ = u (or v) to cooperators u is determined by: 8

(i) If the cooperator density utf at the focal site f is higher than at adjacent sites 9

utf±h, a proportion of type φtf±h migrates to the focal site. This migration is 10

moderated by the reproductive opportunities at the focal site, wt
f . 11

(ii) Conversely, if densities of cooperators are higher at adjacent sites utf±h, a 12

proportion of type φtf migrates from the focal site to the adjacent site(s), again 13

subject to the respective reproductive opportunities wt
f±h. 14

(iii) The sensitivity to density differences may be different for cooperators and 15

defectors. The parameters AC and AD determine their respective migration rate. 16

The difference in cooperator densities at the focal and adjacent sites determines the 17

direction of the flux of strategy φtf at the focal site f . This conditionality is 18

conveniently captured by the indicator 1{a<b}, which evaluates to 1 if a < b and to 0 19

otherwise. Thus, the net migration for strategy φtf at the focal site between time t and 20

t+ ∆t due to attraction to cooperators is given by: 21

φt+∆t
f − φtf

φt+∆t
f − φtf

∆t
::::::::::

= A ·

 ∑
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(utf − uti) ·
(
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f<ut
i}w

t
iφ

t
f + 1{ut

f≥u
t
i}w

t
fφ

t
i

) ,
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where A refers to the strength of attraction with A = AC for φ = u and A = AD for 22

φ = v, respectively. An analogous argument yields the net migration due to the 23

repulsion from defectors: 24

φt+∆t
f − φtf

φt+∆t
f − φtf

∆t
::::::::::

= −R ·

 ∑
i∈{f+h,f−h}

(vtf − vti) ·
(
1{ut

f<ut
i}w

t
iφ

t
f + 1{ut

f≥u
t
i}w

t
fφ

t
i

) ,

(S1.2)

where R indicates the strength of repulsion with R = RC for φ = u and R = RD for 25

φ = v, respectively. 26

Continuum Limit 27

In the continuum limit we let the spatial distance between adjacent sites, h, and the 28

time increment, ∆t, approach zero.
:::::
Hence,

::
h
::::
and

:::
∆t

:::::
refer

::
to

:::::::::::::
infinitesimally

::::::
small 29

:::::::::
quantities.

:
Let us first focus on the right hand side of Eq. (S1.1). Taylor expansion 30

yields 31

uf±h ≈ uf ± h · u′f + h2/2 · u′′f ,

φf±h ≈ φf ± h · φ′f ,

wf±h ≈ wf ± h · w′f

where ′’s indicate spatial derivatives and the superscript t for the time has been omitted. 32

Using 33

uf − uf±h ≈ h ·
(
∓u′f − h/2 · u′′f

)
,

wf±hφf ≈ wfφf ± hw′fφf ,

wfφf±h ≈ wfφf ± hwfφ
′
f ,

the summation in Eq. (S1.1) runs over 34

h ·
(
∓u′f − h/2 · u′′f

)
·
(
1{uf<uf±h}(wfφf ± hw′fφf ) + 1{uf≥uf±h}(wfφf ± hwfφ

′
f )
)
.
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Note that wfφf appears in the two complementary indicators and hence simplifies to 35

∓hu′fwfφf − h2 ·
(

1

2
u′′fwfφf + 1{uf<uf±h}u

′
fw
′
fφf + 1{uf≥uf±h}u

′
fwfφ

′
f

)
.

Adding contributions from f ± h cancels terms of order h and yields 36

−h2 ·

u′′fwfφf + u′f ·
∑

i∈{f+h,f−h}

1{uf<ui}w
′
fφf + 1{uf≥ui}wfφ

′
f

 . (S1.3)

Note that the terms in parentheses in Eq. (S1.3) resemble 37

u′′fwfφf + u′f (w′fφf + wfφ
′
f ) = (wfφfu

′
f )′ when disregarding the sum and indicators. If 38

uf is on a slope, e.g. uf−h < uf < uf+h it is easy to see that equality holds. However, 39

if the cooperator density is at a local maximum or minimum at the focal site f , i.e. 40

uf−h < uf > uf+h or uf−h > uf < uf+h, then one of the terms w′fφf or wfφ
′
f cancels 41

while the other is doubled. Nevertheless the resulting error is negligible because both 42

terms are multiplied by u′f which is ≈ 0 in the vicinity of an extremum. 43

Using Taylor expansion of the left-hand-side of Eq. (S1.1), φt+∆t
f − φtf ≈ ∆t · ∂tφf 44

and an analogous calculation for Eq. (S1.2) yields
::::
The

::::::::::
continuum

:::::
limit,

:::::::::
∆t, h→ 0 45

::::
with

:::::::::::
h2/∆t→ 1,

::
of

::::
Eqs.

:
(S1.1)

:::
and

:
(S1.2)

:::::
yields

:::
the

::::::::::
dynamical

:::::::::
equations

::::
just

:::::
based 46

::
on

::::::::
directed

:::::::::
migration:

:
47

∂tφ = −A∂x(φw · ∂xu), (S1.4a)

∂tφ = +R∂x(φw · ∂xv),. (S1.4b)

in the limit h→ 0 and ∆t→ 0 with h2/∆t→ 1. 48

In higher spatial dimensions the above derivation applies to each spatial dimension 49

separately and yields 50

∂tφ = ∓K(∂x(φw∂xψ) + ∂y(φw∂yψ)) = ∓K∇ · (φw∇ψ) (S1.5)

for two dimensions. 51
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