
#### **Supplemental Items**



# Figure S1, related to Figure 1

# BA and NA placements for in vivo fibre photometry of DRN 5-HT projections

(A-B) Cre-dependent fluorescent synaptophysin injection into DRN of 5-HTT-Cre mice (A). Fluorescent synaptophysin expression in DRN 5-HT projections in NA (B). Scale bar=500 µm. (C-D) Cre-dependent GCaMP6 injection into DRN and unilateral optical fibre implantation into NA of 5-HTT-Cre mice (C). GCaMP6 expression in DRN 5-HT projections in NA (D). Dashed red lines=optical fibre tract. Scale bar=500 µm.

(E-F) Overlap of GCaMP6 expression and 5-HT immunoreactivity in axons in BA (E) and NA (F). Scale bars=10 µm.

(G-H) BA (G) and NA (H) placements of optical fibre implants in GCaMP6-injected 5-HTT-Cre mice. Dots demarcate fibre tip placement; solid are from GCaMP6 and empty from YFP animals.

(I-J) Freezing behaviour (I) and DRN→BA 5-HT projection activity (J) were higher during CS+ compared to CS- presentations in a discriminative fear conditioning task. Data are mean±SEM. AUC—area under the curve, BL—baseline, NAsh—nucleus accumbens shell.

\*\*p<0.01.



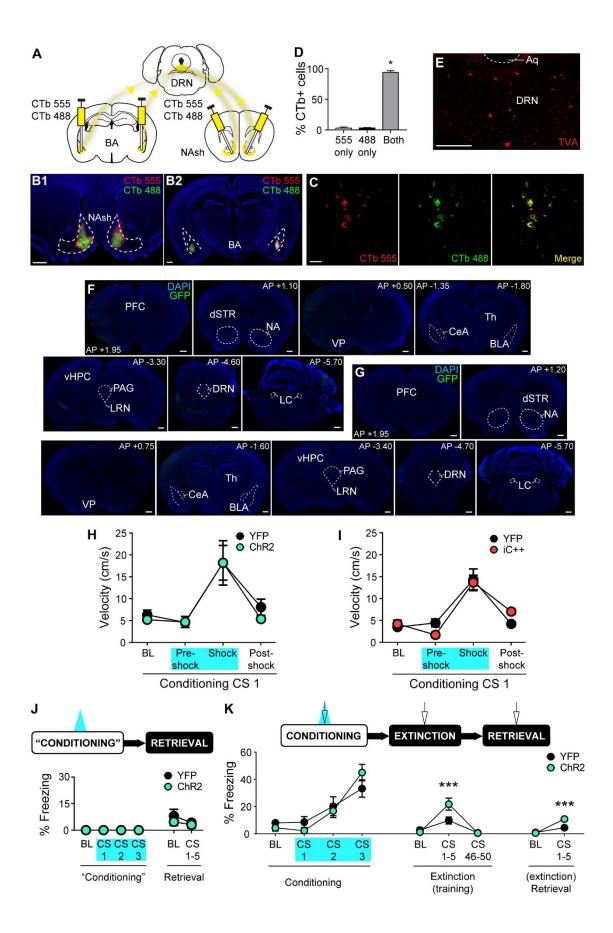
# Figure S2, related to Figure 1

## Distinct DRN 5-HT projection activity in BA and NA during fear learning

(A-B) Increasingly elevated DRN $\rightarrow$ BA 5-HT projection activity per CS (baseline-subtracted) during conditioning (n=7 mice) (A). DRN $\rightarrow$ BA 5-HT projection activity did not change significantly during retrieval (n=8 mice) (B). Traces show mean±SEM of z-scored dF/F GCaMP fluorescence. Dashed lines at ±1.96 demarcate statistically significant change from baseline (2-tailed,  $\alpha$ =0.05).

(C) Freezing of DRN GCaMP6-injected and NA optical fibre-implanted 5-HTT-Cre mice during the fear learning task (n=9 mice). Data are mean±SEM.

(D) Freezing of DRN YFP-injected and BA or NA optical fibre-implanted 5-HTT-Cre mice during the fear learning task (BA n=4 mice, NA n=4 mice). Data are mean±SEM.


(E-H) DRN $\rightarrow$ NA 5-HT projection activity did not change significantly during conditioning (n=9 mice) (E), per conditioning CS (baseline-subtracted) (n=9 mice) (F), during extinction (n=6 mice) (G), or during retrieval (n=9 mice) (H). Traces show mean±SEM of z-scored dF/F GCaMP fluorescence. Dashed lines at ±1.96 demarcate statistically significant change from baseline (2-tailed,  $\alpha$ =0.05).

(I-K) DRN $\rightarrow$ NA 5-HT projection activity during the previous conditioning session did not correlate with freezing behaviour during extinction (n=6 mice) (I). DRN $\rightarrow$ NA 5-HT projection activity during the previous extinction session did not correlate with freezing behaviour during retrieval (n=6 mice) (J). DRN $\rightarrow$ NA 5-HT projection activity did not correlate with freezing behaviour during behaviour during retrieval (n=9 mice) (K).

(L1-L3) YFP fluorescence in DRN $\rightarrow$ BA 5-HT projections did not change significantly during conditioning (L1), extinction (L2), or retrieval (L3). Traces show mean±SEM of z-scored dF/F YFP fluorescence. Dashed lines at ±1.96 demarcate statistically significant change from baseline (2-tailed,  $\alpha$ =0.05).

(M1-M3) YFP fluorescence in DRN $\rightarrow$ NA 5-HT projections did not change significantly during conditioning (M1), extinction (M2), or retrieval (M3). Traces show mean±SEM of z-scored dF/F YFP fluorescence. Dashed lines at ±1.96 demarcate statistically significant change from baseline (2-tailed,  $\alpha$ =0.05).

AUC—area under the curve, BL—baseline.



# Figure S3, related to Figures 2, 3, 4, 5, 6

# Control experiments for anatomical and functional investigation of DRN 5-HT projection pathways

(A-C) Bilateral dual CTb (555/488) injections into BA and NA (A). CTb (555/488) in NA (B1) and BA (B2). Scale bars=500  $\mu$ m. Overlay of dual CTb-labelled cells in DRN (C). Scale bar=40  $\mu$ m.

(D) CTb 555 and 488 infected the same cells (n=2 mice). Data are mean $\pm$ SEM. \*p<0.05 compared to theoretical zero.

(E) TVA expression enabling rabies tracing in DRN 5-HT neurons. Scale bar=250 µm.

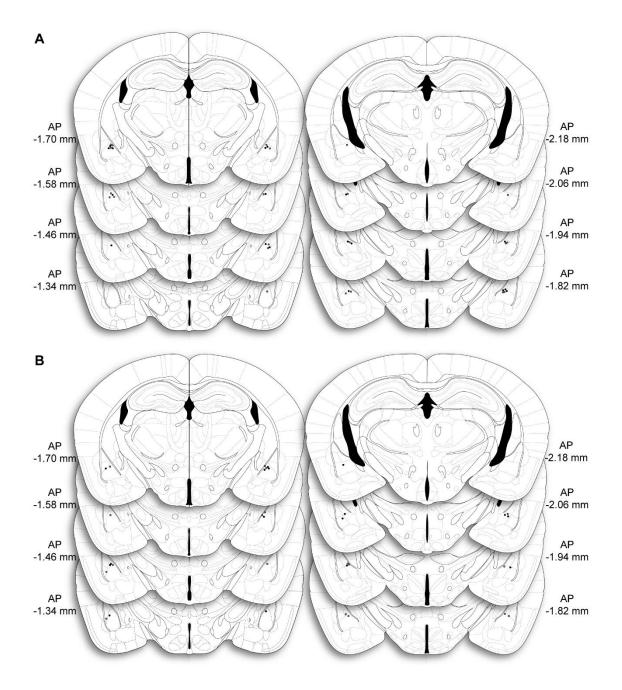
(F-G) No GFP-expressing neurons with cTRIO tracing lacking rabies starter proteins in DRN 5-HT projection pathways to BA (F) and NA (G). Scale bars=500 µm.

(H-I) Locomotor activity during conditioning CS1 was not affected by laser stimulation in ChR2-(YFP n=8 mice, ChR2 n=8 mice) (H) or iC++-expressing (YFP n=8 mice, iC++ n=7 mice) (I) mice compared to YFP controls. Data are mean±SEM.

(J) Pseudo fear conditioning with 20 Hz laser stimulation but without shocks did not elevate freezing (YFP n=9 mice, ChR2 n=9 mice). Data are mean±SEM.

(K) *Top*: 3-day fear learning task with *in vivo* electrophysiological recordings. 20 Hz laser stimulation was delivered at conditioning during CS presentations. *Bottom*: ChR2-expressing mice froze more compared to YFP controls during extinction and retrieval (YFP n=9 mice, ChR2 n=9 mice). Data are mean±SEM.

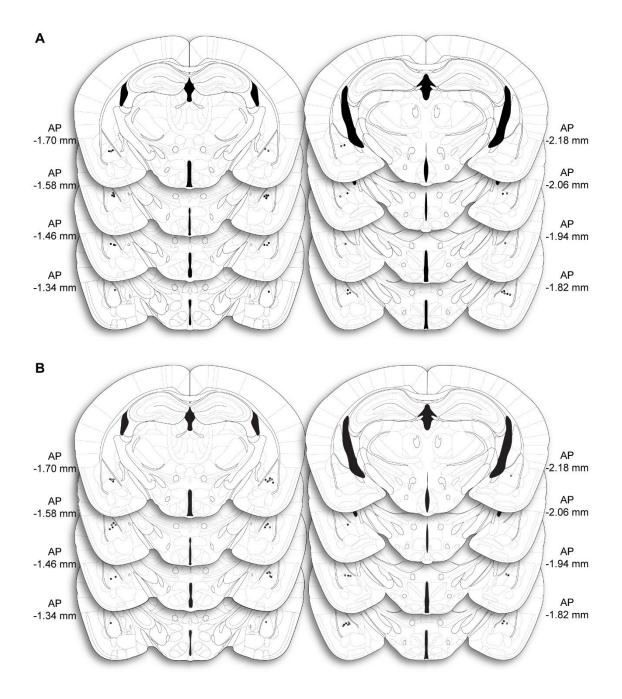
Aq—aqueduct, BL—baseline, BLA—basolateral amygdala, CeA—central amygdala, dSTR dorsal striatum, LC—locus coeruleus, LRN—linear raphe nucleus, NAsh—nucleus accumbens shell, PAG—periaqueductal grey, PFC—prefrontal cortex, Th—thalamus, vHPC—ventral hippocampus, VP—ventral pallidum.


\*p<0.05, \*\*\*p<0.001.

# Table S1, related to Figure 2Distribution of identified inputs onto DRN 5-HT pathways to BA and NA

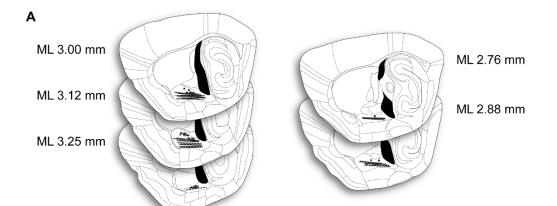
|                                     | % Labelled input cells to DRN 5-HT pathway |      |                |       |  |
|-------------------------------------|--------------------------------------------|------|----------------|-------|--|
| Brain region                        | <b>BA</b><br>n=5 mice                      |      | NA<br>n=5 mice |       |  |
|                                     | Mean                                       | SEM  | Mean           | SEM   |  |
| Anterior amygdaloid area            | 0.00                                       | 0.00 | 0.19           | 0.19  |  |
| Anterior hypothalamic area          | 0.00                                       | 0.00 | 0.58           | 0.58  |  |
| Basal amygdala                      | 0.01                                       | 0.01 | 0.00           | 0.00  |  |
| Bed nucleus of the stria terminalis | 2.61                                       | 2.61 | 0.03           | 0.03  |  |
| Caudate putamen                     | 0.00                                       | 0.00 | 0.02           | 0.02  |  |
| Central amygdala                    | 0.87                                       | 0.87 | 0.03           | 0.02  |  |
| Central grey of the pons            | 0.00                                       | 0.00 | 0.48           | 0.48  |  |
| Cerebellar peduncle                 | 0.00                                       | 0.00 | 0.29           | 0.18  |  |
| Cerebellum                          | 1.56                                       | 1.08 | 0.16           | 0.10  |  |
| Cingulate cortex                    | 0.47                                       | 0.47 | 0.00           | 0.00  |  |
| Deep mesencephalic nucleus          | 2.53                                       | 1.10 | 1.02           | 0.65  |  |
| Dorsal raphe nucleus                | 16.35                                      | 5.16 | 30.39          | 10.24 |  |
| Dorsal tenia tecta                  | 0.00                                       | 0.00 | 0.02           | 0.02  |  |
| Dorsomedial tegmental area          | 0.00                                       | 0.00 | 0.85           | 0.75  |  |
| Epimicrocellular nucleus            | 0.00                                       | 0.00 | 0.02           | 0.02  |  |
| Gigantocellular reticular nucleus   | 2.11                                       | 1.18 | 0.40           | 0.38  |  |
| Granular insular cortex             | 0.00                                       | 0.00 | 1.19           | 1.19  |  |
| Inferior colliculus                 | 0.00                                       | 0.00 | 0.02           | 0.02  |  |
| Infralimbic prefrontal cortex       | 0.00                                       | 0.00 | 0.02           | 0.02  |  |
| Intermediate reticular nucleus      | 0.00                                       | 0.00 | 0.02           | 0.02  |  |
| Interpeduncular nucleus             | 0.00                                       | 0.00 | 0.97           | 0.96  |  |
| Interstitial nucleus of Cajal       | 0.05                                       | 0.05 | 0.00           | 0.00  |  |
| Lateral habenula                    | 0.00                                       | 0.00 | 0.37           | 0.17  |  |
| Lateral hypothalamus                | 0.01                                       | 0.01 | 2.96           | 1.52  |  |
| Lateral lemniscus                   | 0.43                                       | 0.43 | 0.00           | 0.00  |  |
| Lateral parabrachial nucleus        | 0.00                                       | 0.00 | 0.24           | 0.24  |  |
| Lateral septal nucleus              | 0.43                                       | 0.43 | 0.05           | 0.04  |  |
| Linear raphe nucleus                | 11.46                                      | 4.69 | 12.38          | 4.64  |  |
| Locus coeruleus                     | 7.55                                       | 3.17 | 2.66           | 1.15  |  |
| Magnocellular preoptic nucleus      | 0.43                                       | 0.43 | 0.00           | 0.00  |  |
| Mammillary nucleus                  | 0.00                                       | 0.00 | 0.02           | 0.02  |  |
| Medial forebrain bundle             | 2.62                                       | 2.61 | 0.00           | 0.00  |  |
| Medial globus pallidus              | 0.00                                       | 0.00 | 0.01           | 0.01  |  |
| Medial lemniscus                    | 0.00                                       | 0.00 | 0.38           | 0.38  |  |
| Median raphe nucleus                | 0.00                                       | 0.00 | 1.19           | 0.69  |  |
| Mesencephalic trigeminal nucleus    | 0.42                                       | 0.42 | 0.00           | 0.00  |  |
| Motor root of the trigeminal nerve  | 0.00                                       | 0.00 | 0.02           | 0.02  |  |
| Nucleus accumbens core              | 1.30                                       | 1.30 | 0.00           | 0.00  |  |
| Nucleus accumbens shell             | 2.51                                       | 1.72 | 4.67           | 4.19  |  |

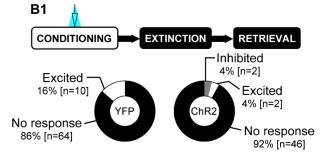
# % Labelled input cells to DRN 5-HT pathway

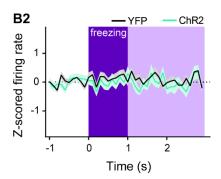

| Nucleus of origin of efferents of the vestibular nerve | 0.00  | 0.00 | 0.24  | 0.24 |
|--------------------------------------------------------|-------|------|-------|------|
| Nucleus of the horizontal<br>limb of the diagonal band | 0.00  | 0.00 | 0.48  | 0.48 |
| Nucleus of the lateral lemniscus                       | 0.00  | 0.00 | 0.19  | 0.19 |
| Oculomotor nucleus                                     | 1.11  | 1.11 | 0.00  | 0.00 |
| Orbital cortex                                         | 0.00  | 0.00 | 0.31  | 0.17 |
| Paracochlear glial substance                           | 0.00  | 0.00 | 0.38  | 0.38 |
| Paralemniscal nucleus                                  | 0.00  | 0.00 | 0.02  | 0.02 |
| Parvicellular reticular nucleus                        | 0.00  | 0.00 | 0.26  | 0.23 |
| Pedunculopontine tegmental nucleus                     | 0.87  | 0.00 | 0.47  | 0.19 |
| Periaqueductal grey                                    | 25.03 | 9.13 | 11.52 | 4.49 |
| Pontine nucleus                                        | 0.87  | 0.87 | 0.00  | 0.00 |
| Pontine reticular nucleus                              | 0.02  | 0.02 | 2.27  | 0.99 |
| Posterior hypothalamic area                            | 0.00  | 0.00 | 0.01  | 0.01 |
| Posterior thalamic nuclear group                       | 0.00  | 0.00 | 0.09  | 0.07 |
| Prelimbic cortex                                       | 0.43  | 0.43 | 0.00  | 0.00 |
| Preoptic area                                          | 0.00  | 0.00 | 0.32  | 0.17 |
| Primary motor cortex                                   | 0.43  | 0.43 | 0.24  | 0.24 |
| Primary somatosensory cortex                           | 1.21  | 1.21 | 0.00  | 0.00 |
| Principal sensory trigeminal nucleus                   | 0.00  | 0.00 | 0.03  | 0.02 |
| Raphe magnus nucleus                                   | 0.00  | 0.00 | 0.10  | 0.07 |
| Red nucleus                                            | 0.00  | 0.00 | 0.01  | 0.01 |
| Reticulotegmental nucleus of the pons                  | 0.43  | 0.43 | 0.25  | 0.19 |
| Retrosplenial agranular cortex                         | 0.00  | 0.00 | 0.01  | 0.01 |
| Secondary motor cortex                                 | 0.00  | 0.00 | 0.23  | 0.18 |
| Substantia nigra pars reticulata                       | 0.43  | 0.43 | 4.41  | 3.11 |
| Superior cerebellar peduncle                           | 2.87  | 2.10 | 0.00  | 0.00 |
| Superior colliculus                                    | 9.34  | 6.20 | 6.62  | 3.06 |
| Superior vestibular nucleus                            | 0.00  | 0.00 | 0.99  | 0.94 |
| Tuber cinereum area                                    | 0.01  | 0.01 | 0.00  | 0.00 |
| Ventral anterior thalamic nucleus                      | 0.00  | 0.00 | 0.02  | 0.02 |
| Ventral pallidum                                       | 0.02  | 0.02 | 6.93  | 2.70 |
| Ventral tegmental area                                 | 2.01  | 1.40 | 1.01  | 0.49 |
| Ventromedial hypothalamic nucleus                      | 0.00  | 0.00 | 0.24  | 0.18 |
| Ventromedial thalamic nucleus                          | 0.03  | 0.03 | 0.00  | 0.00 |
| Visual tegmental relay zone                            | 1.11  | 1.11 | 0.00  | 0.00 |
| Zona incerta                                           | 0.00  | 0.00 | 0.71  | 0.71 |

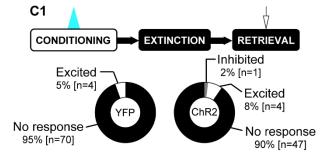


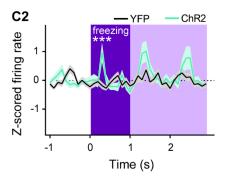
#### Figure S4, related to Figure 3


BA placements for *in vivo* optogenetics in DRN 5-HT projections during fear conditioning


(A-B) BA placements of optical fibre implants in ChR2- (A) and iC++-injected (B) 5-HTT-Cre mice. Dots demarcate fibre tip placement; solid are from opsin and empty from YFP animals.





#### Figure S5, related to Figure 3


**BA** placements for *in vivo* optogenetics in DRN 5-HT projections during fear extinction (A-B) BA placements of optical fibre implants in ChR2- (A) and iC++-injected (B) 5-HTT-Cre mice. Dots demarcate fibre tip placement; solid are from opsin and empty from YFP animals.







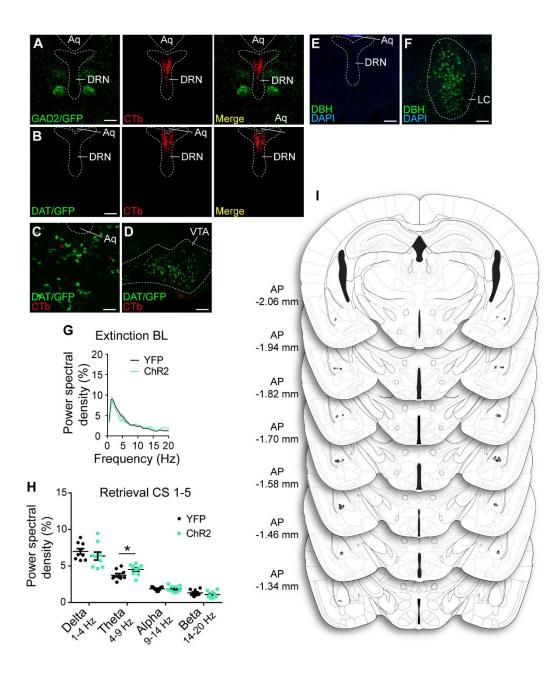




# Figure S6, related to Figures 4, 5, 6

# DRN→BA 5-HT pathway alters BA neuronal activity during fear behaviour

(A) Sagittal BA placements of optrode array implants in ChR2-injected 5-HTT-Cre mice. Dots demarcate fibre tip placement; solid are from ChR2 and empty from YFP animals. Lines depict electrode array placement; solid are from ChR2 and dashed from YFP animals.


(B1) *Top*: 3-day fear learning task. 20 Hz laser stimulation was delivered at conditioning during CS presentations. *In vivo* electrophysiology data from conditioning. *Bottom*: No difference in proportion of BA single unit firing during freezing onset (YFP n=74 units, 9 mice; ChR2 n=50 units, 8 mice).

(B2) No difference between firing rates of BA single units in ChR2 vs. YFP mice during freezing onset (YFP n=74 units, 9 mice; ChR2 n=50 units, 8 mice). Traces show mean±SEM of z-scored firing rate.  $\pm$ 1.96 represents statistically significant change from baseline (2-tailed,  $\alpha$ =0.05).

(C1) *Top*: 3-day fear learning task. 20 Hz laser stimulation was delivered at conditioning during CS presentations. *In vivo* electrophysiology data from retrieval. *Bottom*: No difference in proportion of BA single unit firing during freezing onset (YFP n=74 units, 8 mice; ChR2 n=52 units, 9 mice).

(C2) Firing rates of BA single units in ChR2-expressing mice was higher than that of YFP controls during freezing onset (YFP n=74 units, 8 mice; ChR2 n=50 units, 8 mice). Traces show mean±SEM of z-scored firing rate. ±1.96 represents statistically significant change from baseline (2-tailed,  $\alpha$ =0.05).

\*\*\*p<0.001.

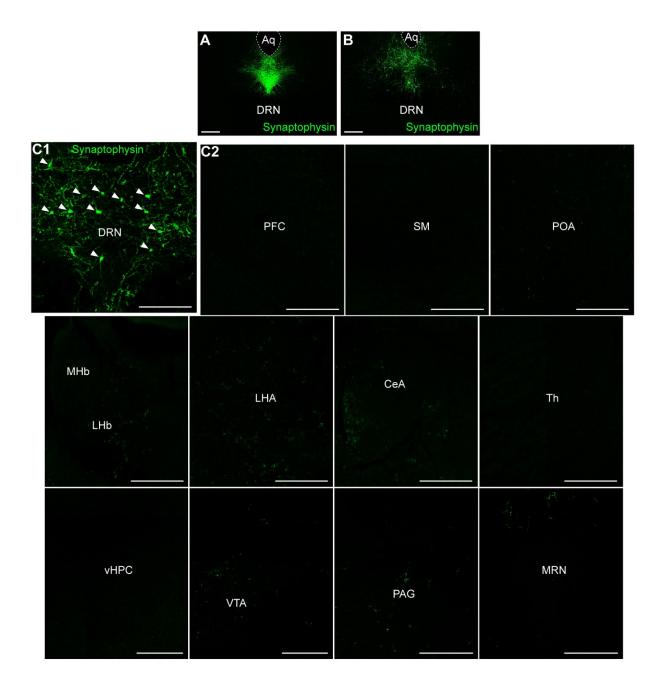


# Figure S7, related to Figures 5, 6, 7

# Anatomical and functional investigation of DRN→BA 5-HT pathway

(A-B) Overlay of CTb+ and GAD2- (A) or DAT-expressing (B) cells in middle/caudal DRN. Scale bars=150  $\mu$ m.

(C-D) CTb+ and DAT-expressing cells in rostral DRN (C) and VTA (D). Scale bars=50  $\mu$ m (C) and 150  $\mu$ m (D).


(E-F) DBH+ (noradrenergic) cells in DRN (E) and locus coeruleus (F). Scale bars=150  $\mu$ m (E) and 50  $\mu$ m (F).

(G) Power spectral densities of BA local field potentials during extinction baseline (YFP n=9 mice, ChR2 n=8 mice). Data are mean±SEM.

(H) Mean power spectral densities of BA local field potentials in delta, theta, alpha, and beta oscillation ranges during retrieval CS presentations (YFP n=9 mice, ChR2 n=9 mice). Data are mean±SEM.

(I) BA placements of opto-fluid cannula implants in ChR2-injected 5-HTT-Cre mice. Dots demarcate infusion site; solid are from ChR2 and empty from YFP animals, black are from drug-treated and grey from vehicle-treated animals.

Aq—aqueduct, LC—locus coeruleus, VTA—ventral tegmental area. \*p<0.05.



# Figure S8, related to Figure 8

#### Anatomical specificity of DRN→BA 5-HT pathway

(A-B) Cre-dependent fluorescent synaptophysin expression in DRN of 5-HTT-Cre mice (A) or wild-type mice injected with retro Cre in BA (B). Scale bars=250 µm.

(C) In wild-type mice injected with retro Cre in BA and Cre-dependent fluorescent synaptophysin in DRN, cell bodies were transfected in DRN (C1), but not in other brain regions (C2). Scale bars=250  $\mu$ m.

Aq—aqueduct, CeA—central amygdala, LC—locus coeruleus, LHA—lateral hypothalamus, LHb—lateral habenula, MHb—medial habenula, MRN—median raphe nucleus, PAG—periaqueductal grey, PFC—prefrontal cortex, POA—preoptic area, SM—sensory/motor cortices, Th—thalamus, vHPC—ventral hippocampus, VTA—ventral tegmental area.