Nanoencapsulated betulinic acid analogue distinctively improves colorectal carcinoma *in vitro* and *in vivo*

Debasmita Dutta^a, Brahamacharry Paul^c, Biswajit Mukherjee^a*, Laboni Mondal^a, Suparna Sen^b, Chinmay Chowdhury^b, Mita Chatterjee Debnath ^c

^a Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.

^b Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, Kolkata 700032, India.

^c Infectious Diseases and Immunology Division, CSIR- Indian Institute of Chemical Biology, Kolkata 700032, India.

*Corresponding Author Professor (Dr.) Biswajit Mukherjee Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, India Telephone: +91-33-2457 2588 Fax: +91-33-2414 6677 Email: biswajit.mukherjee@jadavpuruniversity.in/ biswajit55@yahoo.com.

Supplementary information

Supplementary Figure S1. Betulinic acid (BA) and the scheme used for synthesis of its bioactive analogue, 2c.

Supplementary Figure S2. Representative data of (a) Average particle size distribution and (b) zeta potential of nanoformulation, **2c-NP**.

Supplementary Figure S3. Representative image of Acridine Orange/ Ethidium Bromide (AO/EB) staining on higher zooming. Confocal microscopy images of HT-29 cells after treatment with 2c-NP (11.8 μ M; 0–48 h) followed by staining with acridine orange (4 μ g/ml) and ethydium bromide (4 μ g/ml) captured under Olympus Fluoview 10i confocal microscope at 150X magnification. Scale bar represents 5 μ m for 12h, 48h and 10 μ m for 24h.

Supplementary Figure S4. Representative image of DNA degradation and apoptotic bodies formation induced by 2c-NP. Control and 2c-NP (11.8 μ M; 0–48 h) treated HT-29 cells (2.5 x 10⁴/ ml of RPMI 1640 medium/well) stained with Hoechst 33258 were observed under a Leica confocal microscope (100X). The figure is a representative profile of at least three experiments.

Supplementary Figure S5. Datasheet of cell cycle arrest in HT-29 cells after treatment with 2c-NP for different time points. The data has been analyzed using Modfit software.

Supplementary Figure S6. Enzymatic analysis of caspase -3, -9 and -8 expression in HT-29 cells after exposure to **2c-NP** for 12 h, 24 h and 48 h.

Supplementary Figure S7. Representative images of *In vivo* Gamma scintigraphy of CRC animals. (a) Gamma scintigraphic images of Sprague Dawley rats at 1h, 2h and 5h post treatment of 99m Tc – radiolabeled **2c-NP**.(b) Colons isolated from aforementioned animals. (c) Gamma scintigraphic images of Swiss albino mice at 1h, 2h and 5h post treatment of 99m Tc – radiolabeled **2c-NP**. (d) Colons isolated from aforementioned animals.

Supplementary Table T1: IC_{50} values of **2c** and **2c-NP** on different colorectal cancer cell lines and normal cell lines

Cell Line	2c (μM)	2c-NP (μM)
HT 29 (CRC)	14.9 ± 1.3	11.8 ± 1.1
HCT 116 (CRC)	23.8 ± 1.5	19.5 ± 1.1
HCT 15 (CRC)	21.6± 1.2	17.7±1.6
HEK 293 (Normal kidney cells)	>50	>50
CCD-33-C ₀ (Normal colon cells)	>50	>50

Supplementary Table T2: Regression coefficient values (R^2) and release exponents as obtained from in vitro drug release data tested on different kinetic models.

In-vitro release kinetic models	2c-NP		
	R^2 Value	Representing Equations	
Zero Order	0.739	y = 0.0505x + 28.876	
First Order	0.8659	y = -0.0005x + 1.8478	
Higuchi	0.9209	y = 2.0423x + 15.641	
Korsmeyer Peppas	0.9028 n=0.403	y = 0.4036 x + 0.808	
Hixon Crowell	0.8273	y = -0.0013x + 4.1306	

.

Supplementary Table T3: Animal groups and specifications

Animal Group	Number of animals in each group	Specification
Group I - Normal control	Ten rats and ten mice	Received normal food and water ad libitum
Group II - Carcinogen control	Forty rats and fifty mice	Received carcinogen with normal food and water <i>ad libitum</i>
Group III- Carcinogen treated	Ten rats and ten mice	Received 2c-NP after carcinogen treatment along with normal food and water <i>ad libitum</i>
Group IV – Normal treated	Ten rats and ten mice	Received 2c-NP along with normal food and water <i>ad libitum</i>