

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Association of genetic polymorphisms of CYP2E1, NAT2, GST, and SLCO1B1 with the risk of anti-tuberculosis druginduced liver injury: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027940
Article Type:	Research
Date Submitted by the Author:	19-Nov-2018
Complete List of Authors:	Yang , Seungwon Hwang, Se Jung Park, Jung Yun Lee , Jangik I. Chung, Eun Kyoung; Kyung Hee University, College of Pharmacy, Department of Pharmacy; Kyung Hee University Hospital at Gangdong, Pharmacy
Keywords:	Anti-tuberculosis drug-induced liver injury, genetic polymorphisms, meta-analysis, drug-metabolizing enzyme, drug transporter

Association of genetic polymorphisms of *CYP2E1*, *NAT2*, *GST*, and *SLCO1B1* with the risk of anti-tuberculosis drug-induced liver injury: a systematic review and meta-analysis

Seungwon Yang¹, Se Jung Hwang², Jung Yun Park³, Jangik Ike Lee^{3,4*}, Eun Kyoung Chung^{2*}

¹ Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea

² Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea

³ College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea

⁴College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National

University, Seoul 08826, Republic of Korea

Word counts: 4362 words

*Corresponding authors

Prof. Jangik I. Lee, PharmD, Ph.D.

Department of Pharmacy, College of Pharmacy, Seoul National University

103 Daehak-Ro, Jongno-Gu, Seoul 03080

South Korea

Tel: +82-2-3668-7474

Fax: +82-2-3668-7475

E-mail: jangik.lee@snu.ac.kr

Prof., Eun Kyoung Chung, PharmD, Ph.D.

Department of Pharmacy, College of Pharmacy, Kyung Hee University

26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447

South Korea

Tel: +82-2-962-2122

Fax: +82-2-961-9580

E-mail: cekchung@khu.ac.kr

*Jangik I. Lee and Eun Kyung Chung have equally contributed to this study.

Running head

Genetics of anti-tuberculosis liver injury

ABSTRACT

Objectives The objective of this study is to investigate the association between genetic polymorphisms of *NAT2*, *CYP2E1*, *GST*, and *SLCO1B1* and the risk of anti-tuberculosis drug-induced liver injury (ATDILI).

Design Systematic review and meta-analysis

Methods PubMed, Embase, Web of Science, and Cochrane Reviews databases were systematically searched for case-control or cohort studies evaluating the association between *NAT2, CYP2E1, GST*, or *SLCO1B1* polymorphisms and ATDILI risk. The strength of association was assessed for each gene using the pooled odds ratio (OR) with a 95 % confidence interval (CI) based on the fixed- or random-effects model. Heterogeneity test and subgroup analyses were performed to confirm the reliability and robustness of the results.

Results Fifty-three studies were included in this analysis (n = 26 for *CYP2E1*, n = 34 for *NAT2*, n = 19 for *GST*, n = 4 for *SLCO1B1*). The risk of ATDILI was significantly increased with the following genotypes: *CYP2E1 Rsal/PstI* c1/c1 (OR = 1.39; 95% CI 1.06-1.83), *NAT2* slow acetylator (OR = 3.11, 95% CI 2.53-3.82), and *GSTM1* null (OR = 1.33, 95% CI 1.09-1.62). No significant association with ATDILI was found for the genetic polymorphisms of *CYP2E1 Dra*I, *GSTT1*, *SLCO1B1 338A*>*C*, and *SLCO1B1 521T*>*C* (P > 0.05).

Conclusions

ATDILI is more likely to occur in tuberculosis patients with *NAT2* slow acetylator genotype, *CYP2E1 RsaI/Pst*I c1/c1 genotype, and *GSTM1* null genotype. Close monitoring may be warranted for patients with these genotypes.

Strengths and limitations of this study

- This is the first meta-analysis to evaluate the association between the risk of ATDILI • and SLCO1B1 in TB patients.
- We included most updated studies with the large sample sizes to better clarify the association of genetic polymorphisms with the risk of ATDILI.
- The effect of anti-tuberculosis drug dosages on the risk of ATDILI could not be accounted for in our study because this information was not available in the majority of udies

included studies

Introduction

Tuberculosis (TB) is a rampant infectious disease caused by *Mycobacterium tuberculosis*. It poses a major public health threat globally with approximately 1.5 million deaths and 9 million new cases in 2013¹. The mainstay of first-line TB treatment is a 4-drug combination regimen of isoniazid (INH), rifampicin (RIF), pyrazinamide (PZA), and ethambutol (EMB) during the first 2 months, followed by INH and RIF for additional 4 months ^{2 3}. The currently recommended therapy for TB is highly effective, resulting in high cure rates if patients are adherent to therapy ⁴. However, treatment adherence is often suboptimal in patients receiving the combination anti-TB therapy due to many adverse drug reactions, some of which are considered serious ⁵. One of the common adverse drug reactions associated with anti-TB medications is anti-TB drug-induced liver injury (ATDILI) affecting 2-28% of TB patients ⁶. ATDILI is primarily mild to moderate in severity; however, it is potentially serious and fatal, resulting in the treatment interruption and ultimately, treatment failure ⁷⁸. According to previous studies, common risk factors for the development of ATDILI include age, race, nutritional status, alcohol intake, cigarette smoking, and coinfection with HIV or hepatitis B or C virus ⁷⁹.

Recently, increasing evidence suggests an association between the risk of ATDILI and genetic polymorphisms of drug-metabolizing enzymes (DMEs) and drug transporters ^{10 11}. Reduced enzyme activity due to polymorphic genotypes of various DMEs including cytochrome P450 2E1 (CYP2E1), N-acetyltransferase 2 (NAT2), and glutathione S-transferase (GST) can result in the increased production and accumulation of toxic chemicals in the liver, leading to the development of ATDILI ¹². Previous meta-analyses indicated the association between the risk of ATDILI and the *NAT2* slow acetylator, *CYP2E1*1A*, and *GSTM1 null* genotypes ^{10 13}. Since their

BMJ Open

publication, several case-control pharmacogenetic studies in TB patients were newly published with conflicting results regarding the association between the risk of ATDILI and genetic polymorphisms of various DMEs. Therefore, an updated meta-analysis has been warranted to confirm the association between the ATDILI risk and genetic polymorphisms of DMEs. In addition to DMEs, drug transporters have been emerging as a key determinant of the pharmacokinetics and pharmacodynamics of a drug ¹⁴. Among various drug transporters, organic anion transporting polypeptide 1B1 (OATP1B1), encoded by *SLCO1B1*, is the major influx transporter responsible for hepatic uptake of RIF ¹⁵. Although several studies have previously examined the association between *SLCO1B1* polymorphisms and the risk of ATDILI, conflicting results have been reported regarding the effect of *SLCO1B1* polymorphisms on ATDILI risk.

In our preliminary literature search, several polymorphic genes, including many DMEs, transporters, and other genes such as those involved in the immune system, were identified to have an association with the risk of ATDILI. Among these, sufficient, published information was available to conduct meta-analyses for *CYP2E1*, *NAT2*, *GST*, and *SLCO1B1* genetic polymorphisms.

Objectives

This meta-analysis was to evaluate the association between the risk of ATDILI and genetic polymorphisms of *CYP2E1*, *NAT2*, *GST*, and *SLCO1B1* in TB patients.

Methods

This study was in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist for reporting the study design, search strategy, methods,

BMJ Open

results, and conclusions. Three authors (SY, JP, and SH) independently conducted a literature search, study selection, quality assessment, and data extraction by reviewing the titles, abstracts, and full texts based on the pre-specified study selection criteria. Any discrepancies were adjudicated by corresponding authors (JIL and EKC).

Search strategy

Electronic databases of PubMed, EMBASE, Web of Science, and Cochrane Reviews were systematically searched from their inception to February 2018 to identify relevant studies evaluating the association of *NAT2*, *CYP2E1*, *GST*, and *SLCO1B1* polymorphisms with ATDILI risk. A comprehensive literature search was conducted using a combination of the following keywords and Medical Subject Heading (MeSH) terms: ("genetic polymorphism" or "*NAT2*" or "*CYP2E1*" or "*GST*" or "*SLCO1B1*" or "drug-metabolizing enzymes" or "drug transporter") AND ("anti-tuberculosis agents drug-induced liver injuries" or "hepatotoxicity"). The reference lists in the selected reviews and meta-analyses were reviewed to ensure the inclusion of all relevant evidence in this analysis.

Study selection

The types of studies included in the analysis were case-control or cohort studies evaluating the association between the risk of ATDILI and genetic polymorphisms of *NAT2*, *CYP2E1*, *GST*, and *SLCO1B1* in TB patients. Excluded studies were as follows: (1) studies available only in the form of abstracts or meeting posters; (2) review or meta-analysis articles; (3) studies providing insufficient data to estimate odds ratios (OR) and their 95% confidence intervals (CI); (4) studies in non-English language; (5) non-human studies including animal and *in vitro* studies; (6) studies with unpublished data; and (7) studies providing insufficient information on genotyping

methods.

Quality assessment and data extraction

The quality of included studies was assessed using the revised Little's recommendation based on the following criteria ^{16 17}. (1) scientific design; (2) definite inclusion of study population; (3) explicit information on study population; (4) explicit diagnostic criteria of ATDILI; (5) genetic detection method; (6) appropriate statistical analysis; and (7) logical discussion of study bias. Studies with an overall score of \geq 4 (range 0 to 7) were considered high quality and retained in the analysis. The following data were extracted from each study using a standardized extraction form: (1) name of the first author; (2) year of publication; (3) the polymorphic gene(s) and genotype(s) under investigation; (4) ethnicity; (5) sample size; (6) mean or median age; (7) sex distribution; (8) anti-TB drug regimens; (9) diagnostic criteria of ATDILI; (10) genotyping methods; (11) Hardy-Weinberg equilibrium (HWE) test results; and (12) the number of cases and controls for each polymorphic genotype.

Statistical analysis

The genotypes were analyzed based on the following genetic risk model: (1) *NAT2* (slow acetylator *vs.* intermediate and fast acetylator); (2) *CYP2E1* (c1/c1 *vs.* c1/c2 and c2/c2 for the *RsaI/PstI* polymorphism, D/D *vs.* D/C and C/C for the *DraI* polymorphism); (3) *GSTM1* (null *vs.* non-null); (4) *GSTT1* (null *vs.* non-null); (5) *GSTM1/GSTT1* (dual-null *vs.* one- or non-null); and (6) *SLCO1B1* (AA *vs.* AG and GG for 388A > G polymorphism, CC *vs.* TC and TT for 521T > C polymorphism) Fixed- or random-effects models were used depending on the presence of heterogeneity. The random-effects model was used in the presence of significant heterogeneity;

BMJ Open

otherwise, the fixed effects model was used. Heterogeneity of study outcomes among included studies was evaluated using Cochran's Q test (Q) and quantified using Higgin's I² test. Significant heterogeneity was defined as the I² score of > 40% accompanied by P < 0.10 from the Cochran's Q test ¹⁸. The strength of the association between the genetic polymorphisms and the risk of ATDILI was estimated using pooled ORs with the corresponding 95% CIs. The statistical significance of an OR was defined as P < 0.05 from the Z test. Subgroup analyses were performed to identify the source of heterogeneity and to investigate effects of the following covariates on the overall strength of the association between the genetic polymorphisms and the risk of ATDILI: ethnicity, the achievement of HWE, anti-TB drug regimen, the genotyping method used, and diagnostic criteria of ATDILI. In addition, sensitivity analyses were conducted to assess the robustness of the results. Publication bias was evaluated with a symmetrical funnel plot. Statistical analyses were performed using Review Manager Software (Cochrane Collaboration, London, UK).

Patient and public involvement

Patients and public were not involved in the design of this study.

Results

Study selection and characteristics

Overall, 384 articles were identified through electronic database search (n = 381) and through manual search by reviewing the reference lists of retrieved articles (n = 3). After removing 99 duplicates, 285 articles were screened for relevance based on the title and abstract. Among them, 70 relevant articles were assessed for eligibility through full-text evaluations. Finally, a total of

BMJ Open

53 articles which met the inclusion criteria were included in our analysis (Figure 1). Among the 53 studies, 26 studies were included for *CYP2E1*, 34 studies for *NAT2*, 19 studies for *GST* (19 for *GSTM1*, 17 for *GSTT1*, and 11 for *GSTM1/GSTT1*), and 4 studies for *SLCO1B1*.

Table 1 summarizes the characteristics of the included studies. Across the included studies, large variability in study population was observed in terms of ethnicity (Chinese, Japanese, Korean, Indian, Taiwanese, Brazilian, Caucasian, Iranian, Tunisian, and Turkish), age (mean or median age ranging from 27 to 70 years), and sex (the proportion of males ranging from 13% to 90%). Patients in our included studies received either monotherapy with INH or RIF or a combination therapy including a 4-drug regimen of INH, RIF, PZA, and EMB for the treatment of TB. ATDILI was defined as an elevated serum alanine aminotransferase (ALT) concentration by 1.5- to 5-fold or greater above the upper limit of normal (ULN) depending on the study. The quality score of the included studies was 5 or greater based on the revised Little's recommendation (Table 1) ^{16 17}. Genotype distribution, the achievement of HWE, and the genotyping method used in the included studies are summarized for each polymorphic gene in S1 to S4 Tables. Funnel plots for *CYP2E1, NAT2, GST*, and *SLCOIB1* are provided in S5 Figure. None of the funnel plots were substantially asymmetrical.

CYP2E1

For the *CYP2E1 RsaI/Pst*I polymorphism, 24 studies with 1293 cases and 5450 controls were included in our primary analysis. Using the random-effects model, the pooled estimates of all included studies (n = 24) showed a significant association between the risk of ATDILI and the *CYP2E1 RsaI/Pst*I polymorphism (OR for the c1/c1 genotype = 1.39; 95% CI 1.06–1.83, P = 0.02; I² = 60%, P_{heterogeneity} < 0.0001) (Figure 2A). In the subgroup analysis based on ethnicity,

BMJ Open

anti-TB drug regimens, and diagnostic criteria of ATDILI, the risk of ATDILI was significantly increased for the *CYP2E1 RsaI/Pst*I c1/c1 genotype in East Asian patients (OR = 1.62, 95% CI 1.26-2.36, P = 0.01; I² = 69%, P_{heterogeneity} = 0.0006), in patients receiving a combination of anti-TB medications (OR = 1.35, 95% CI 1.01-1.79, P < 0.00001; I² = 61%, P_{heterogeneity} = 0.0002), and in patients with ATDILI defined as a serum ALT concentration elevated by 2-fold or greater above the ULN (OR = 1.54, 95% CI 1.08-2.18, P = 0.02; I² = 70%, P_{heterogeneity} < 0.0001) (S6 Table). The association between the risk of ATDILI and the c1/c1 genotype remained significant after excluding the studies where HWE was not achieved (OR = 1.67, 95% CI 1.19-2.34, P = 0.002; I² = 58%, P_{heterogeneity} = 0.004) (S6 Table).

In our primary analysis for the *CYP2E1 Dra*I polymorphism with six studies including 233 cases and 1272 controls, no significant association was observed using the fixed-effects model between the risk of ATDILI and the *Dra*I polymorphism (OR for the D/D genotype = 0.93, 95% CI 0.68-1.27, P = 0.64; I² = 0%, P_{heterogeneity} = 0.51) (Figure 2B). No subgroup analysis for the *Dra*I polymorphism resulted in a significant association between the ATDILI risk and the *Dra*I polymorphism (S6 Table).

NAT2

Overall, 34 studies with 1270 cases and 7234 controls were included in our primary analysis for the *NAT2* polymorphism. Using the random-effects model, the pooled estimates of all included studies (n = 34) showed a significant association between the risk of ATDILI and the *NAT2* polymorphism (OR for the slow acetylator genotype = 3.11, 95% CI 2.53-3.82, P < 0.00001; I² = 47%, P_{heterogeneity} = 0.002) (Figure 3).

In the subgroup analysis based on ethnicity, anti-tuberculosis drug regimens, and

BMJ Open

diagnostic criteria of ATDILI, the risk of ATDILI was significantly increased in slow acetylators compared to fast or intermediate acetylators in all subgroups (S7 Table). Additionally, the association between the risk of ATDILI and the *NAT2* slow acetylator genotype remained significant after excluding the studies where HWE was not achieved (S7 Table). Similarly, slow acetylators were at the significantly increased risk of ATDILI regardless of the genotyping method used (e.g., polymerase chain reaction-restriction fragment length polymorphism [PCR-RFLP], sequencing) (S7 Table).

GST

For the *GSTM1* polymorphism, a total of 19 studies with 977 cases and 5119 controls were included in our primary analysis. Using the fixed-effects model, the pooled estimates of all included studies (n = 19) showed a significant association between the risk of ATDILI and the *GSTM1* polymorphism (OR for the *GSTM1* null genotype = 1.30, 95% CI 1.12-1.52, P = 0.0007; $I^2 = 33\%$, P_{heterogeneity} = 0.08) (Figure 4A). In the subgroup analysis based on ethnicity and diagnostic criteria of ATDILI, the risk of ATDILI was significantly increased for the *GSTM1* null genotype in Indians (OR = 1.68, 95% CI 1.30-2.19, P < 0.0001; I² = 36%, P_{heterogeneity} = 0.15) and in patients with ATDILI defined as a serum ALT concentration elevated by 2-fold or greater above the ULN (OR = 1.56, 95% CI 1.28-1.91, P < 0.0001; I² = 13%, P_{heterogeneity} = 0.32) (S8 Table).

For the *GSTT1* and *GSTM1/GSTT1* polymorphisms, 17 studies (768 cases, 4823 controls) and 11 studies (547 cases, 4233 controls) were included in our primary analyses, respectively. The risk of ATDILI was not significantly associated with the *GSTT1* polymorphism (OR for the null genotype = 1.03, 95% CI 0.85-1.25, P = 0.76; $I^2 = 16\%$, P_{heterogeneity} = 0.26) or the

BMJ Open

GSTM1/GSTT1 polymorphism (OR for the dual-null genotype = 1.05, 95% CI 0.67-1.62, P = 0.84; I² = 59%, P_{heterogeneity} = 0.006) (Figures 4B and 4C). The associations of the *GSTT1* and the *GSTM1/GSTT1* genetic polymorphisms with the risk of ATDILI were not significant in any of the subgroups tested (S8 Table).

SLC01B1

For the *SLCO1B1 388A*>*G* polymorphism, four studies with 279 cases and 837 controls were included in our primary analysis. Using the fixed-effects model, no significant association was observed between the risk of ATDILI and the *SLCO1B1 388A*>*G* polymorphism (OR for the AA genotype = 1.47, 95% CI 0.94-2.29, P = 0.09; I² = 0%, P_{heterogeneity} = 0.72) (Figure 5A). For the *SLCO1B1 521T*>*C* polymorphism, four studies with 310 cases and 901 controls were included in our primary analysis. Using the fixed-effects model, no significant association was found between the ATDILI risk and the *SLCO1B1 521T*>*C* polymorphism (OR for the CC genotype = 1.21, 95% CI 0.40-3.63, P = 0.74; I² = 0%, P_{heterogeneity} = 0.56) (Figure 5B). No significant association was observed between the risk of ATDILI and the *SLCO1B1* polymorphisms (both 388A>G and 521T>C) in any of the tested subgroups based on ethnicity, anti-TB drug regimen, diagnostic criteria of ATDILI, and the genotyping method used (S9 Table).

Discussion

To our knowledge, our current study is a large-scale meta-analysis evaluating the association between the risk of ATDILI and genetic polymorphisms of *SLCO1B1* as well as various DMEs including *CYP2E1*, *NAT2*, and *GST* to provide more updated, comprehensive, and compelling evidence. Compared with previous meta-analyses, our present study included a larger number

BMJ Open

of studies and explored various factors which may influence the association between genetic polymorphisms and the risk of ATDILI (S6, S7, S8, S9 Tables). The inclusion of a large number of studies in our current meta-analysis may sufficiently increase the statistical power compared to individual studies; however, a limited number of studies evaluating the association between the risk of ATDILI and the *SLCO1B1* genetic polymorphisms were included (n = 4). Consistent with previous studies, our current study suggested a significantly increased risk of ATDILI in patients with the *NAT2* slow acetylator genotype (OR = 3.11, 95% CI 2.53-3.82), the CYP2E1 RsaI/PstI c1/c1 genotype (OR = 1.39, 95% CI 1.06-1.83), and the GSTM1 null genotype (OR = 1.30, 95% CI 1.12-1.52)¹⁰¹³¹⁹. Among these genotypes, the risk of ATDILI was increased the most in patients with the NAT2 slow acetylator genotype. In contrast, no significant association was observed between the risk of ATDILI and the genetic polymorphisms of CYP2E1 DraI, GSTT1, GSTM1/GSTT1, SLCO1B1 388A>G, and SLCO1B1 521T>C. Caution needs to be exercised when interpreting this study finding because the lack of significant association between these polymorphisms and the risk of ATDILI might result from small sample sizes and the low frequency of ATDILI reported in patients with these genetic polymorphisms.

When evaluating the impacts of the *CYP2E1 RsaI/Pst*I and *Dra*I genetic polymorphisms on the risk of ATDILI in our study, patients with the *RsaI/Pst*I c1/c1 genotype were 1.39-times more likely to develop ATDILI. Similarly, in a previous meta-analysis by Deng and colleagues, the risk of ATDILI was 1.4-times higher in patients with the *RsaI/Pst*I c1/c1 genotype compared to other genotypes ²⁰. In the liver, INH is metabolized by NAT2 to acetylisoniazid which is consequently oxidized by CYP2E1 to reactive intermediates in the formation of hepatotoxins ²¹ ²². The increased inducibility or greater activity of CYP2E1 in patients with the *CYP2E1*

Page 15 of 67

BMJ Open

RsaI/PstI c1/c1 genotype may result in the production of more intermediate hepatotoxins, ultimately leading to the increased risk of ATDILI²¹²². Our subgroup analysis showed a significantly increased risk of ATDILI in the CYP2E1 RsaI/PstI c1/c1 genotype carriers of East Asian and Indian ethnicity (S6 Table), suggesting a potential gene-ethnicity interaction in these ethnic populations due to genetic characteristics of the ethnicity or environmental factors in these populations²³. In addition to ethnicity, combination anti-TB therapy was shown to significantly increase the risk of ATDILI in patients with the CYP2E1 RsaI/PstI c1/c1 genotype (S6 Table). This is consistent with previous study findings because hepatotoxicity commonly occurs with anti-TB drugs and thus, use of more than one hepatotoxic anti-TB medications increases the risk of ATDILI⁷. Moreover, patients with the CYP2E1 RsaI/PstI c1/c1 genotype were at a significantly increased risk of ATDILI when ATDILI was defined as serum ALT concentrations elevated > 2 times the ULN and when their genotype was determined by the PCR-RFLP or sequencing method. This may suggest more sensitive diagnostic criteria and genotyping method to identify patients at an increased risk of ATDILI as early in therapy as possible. However, caution needs to be exercised when applying this study finding in practice because of the potentially low specificity associated with the diagnostic criteria of ATDILI and genotyping method. Future studies are warranted to confirm our subgroup analysis results.

Similar to previous studies, our current study suggested a significantly increased risk of ATDILI in patients with the *NAT2* slow acetylator genotype compared to those with intermediate/fast acetylator genotypes ^{10 19}. The risk of ATDILI in slow acetylators remained significantly increased in all tested subgroups regardless of ethnicity, the anti-TB drug regimen used, the achievement of HWE, diagnostic criteria of ATDILI, and the genotyping method used (S7 Table). Among the subgroups, the ATDILI risk appeared the highest in the West Asian

BMJ Open

population (OR = 9.51, 95% CI 4.19-21.61, P < 0.00001). However, caution needs to be exercised when interpreting and applying this finding in practice because it is the result of subgroup analysis. Until more confirmative data are available, clinicians may closely monitor West Asian TB patients with the *NAT2* slow acetylator genotype receiving INH-based treatment.

According to previous studies, GST enzymes, particularly those coded by GSTM1 and GSTT1 loci, are associated with the risk of drug-induced hepatotoxicity ^{10 24}. Consistent with previous studies, our current study demonstrated a significantly increased risk of ATDILI in individuals with the GSTM1 null genotype compared to those with the non-null genotype; however, the risk of ATDILI was not affected by the GSTT1 or GSTM1/GSTT1 genetic polymorphisms. GSTs are important enzymes to detoxify various xenobiotics and play an essential role in INH metabolism by eliminating acetyldiazene ketene acetylonium ion (a possibly hepatotoxic free radical metabolite of INH) from the body through GSTM1. This may account for the significant association of the ATDILI risk with the GSTM1 genotype, but not with the *GSTT1* or *GSTM1/GSTT1* genotypes ^{10 24}. Our subgroup analysis showed a significantly increased risk of ATDILI in the GSTM1 null genotype carriers of Indian ethnicity (S8 Table), suggesting a potential gene-ethnicity interaction due to unknown genetic characteristics or environmental factors such as diet in Indian patients²³. In addition, the risk of ATDILI was significantly increased in patients with the *GSTM1* null genotype when ATDILI was defined as serum ALT concentrations elevated > 2 times the ULN (S8 Table). Based on this finding, serum ALT concentrations elevated > 2 times the ULN may be suggested as more sensitive diagnostic criteria of ATDILI; however, it may result in the false positive identification of ATDILI patients without clinical significance due to potentially low specificity. Considering this is a subgroup analysis result, caution is warranted in interpreting and applying this finding in practice until

BMJ Open

confirmative data are available in the future.

SLCO1B1 encodes organic anion transporting polypeptide 1B1 (OATP1B1) which is a major influx drug transporter responsible for the hepatic uptake of various endogenous and exogenous substances including RIF²⁵. Previous studies showed significantly altered systemic exposure of RIF in carriers of the *SLCO1B1* polymorphism ²⁶²⁷. To our knowledge, only four studies have been conducted to examine the association between the ATDILI risk and the SLCO1B1 genetic polymorphisms ^{11 25 28 29}. Various single nucleotide polymorphisms (SNPs) of SLCO1B1 were evaluated in these studies; however, SLCO1B1 388A>G (rs2306283) and 521T>C (rs4149056) were the only polymorphisms assessed in common ^{11 25 28 29}. Therefore, to maximize the sample size in our current meta-analysis, we examined the association between the risk of ATDILI and the polymorphic genotypes of SLCO1B1 388A>G and 521 T>C. Similar to each of the included studies, we did not find a significantly altered risk of ATDILI in patients with the SLCO1B1 388A>G and 521T>C genetic polymorphisms. However, caution should be exercised when interpreting and applying our study findings in practice due to the limited genetic risk model evaluated and a small sample size for the association between the ATDILI risk and the SLCO1B1 genetic polymorphisms.

In our study, significantly high heterogeneity between studies was observed for *CYP2E1 RsaI/PstI* ($I^2 = 60\%$, P < 0.0001), *NAT2* ($I^2 = 47\%$, P = 0.002), and *GSTM1/GSTT1* ($I^2 = 59\%$, P = 0.006). The high heterogeneity between studies may be due to substantial differences in ethnicity, the achievement of HWE, anti-TB drug regimen, the genotyping method used, and diagnostic criteria of ATDILI among the studies included in our analysis. To address the relatively high heterogeneity, we performed sensitivity analyses using the leave-one-out method by deleting one study after each analysis followed by repeating the meta-analysis. Through the

BMJ Open

sensitivity analyses, outlier studies were identified as the major source of heterogeneity. After removing these outlier studies, heterogeneity was remarkably reduced ($I^2 = 60\%$ to 34% for *CYP2E1 RsaI/PstI*, $I^2 = 47\%$ to 32% for *NAT2*, $I^2 = 33\%$ to 0% for *GSTM1*, $I^2 = 59\%$ to 0% for *GSTM1/GSTT1*). The overall results for the association between the risk of ATDILI and genetic polymorphisms of these enzymes after excluding the outlier studies were not changed, indicating the robustness of our analysis result.

There are limitations to this study. First, due to the lack of information regarding other patient characteristics potentially associated with liver injuries, our estimated ORs were not adjusted based on the potential risk factor of drug-induced liver injuries such as age, alcohol consumption, cigarette smoking, and other lifestyle characteristics ⁷⁹. Second, our literature search limited to the articles published in English may lead to language bias. Third, the effect of anti-tuberculosis drug dosages on the risk of ATDILI could not be accounted for in our study because this information was not available in most of the included studies. In addition, a specific causative agent of ATDILI could not be identified in our analysis because most patients in our included studies received a combination regimen of anti-tuberculosis drugs. Lastly, only the limited number of genotypes were assessed for the association with the risk of ATDILI, particularly for *SLCO1B1* genetic polymorphisms. Future studies are needed to comprehensively and adequately address the relationship between the ATDILI risk and various polymorphisms of the genes for drug-metabolizing enzymes and drug transporters by using different genetic risk models and including more polymorphic genotypes.

In conclusion, the risk of ATDILI during TB therapy was significantly increased in TB patients carrying *NAT2* slow acetylator, *CYP2E1 RsaI/Pst*I c1/c1, or *GSTM1* null genotype. Screening for these genetic polymorphisms, particularly for the *NAT2* slow acetylator genotype,

BMJ Open

may be of great clinical benefit to identify patients at high risk for ATDILI and minimize the risk of ATDILI. Future studies are pertinent to develop dose and/or treatment adjustment strategies, to evaluate the feasibility and cost-effectiveness of the genetic screening test, and to assess the effect of more genetic polymorphisms on the risk of ATDILI for appropriate prevention and management of ATDILI.

0, Acknowledgments

This study was supported by Research Resettlement Fund for the new faculty of Seoul National University.

Contributors

S.Y. devised and designed the study. S.Y., J.Y.P., and S.J.H. conducted the literature search, performed data extraction and analysis, and. interpreted the data. S.Y., E.K.C., and J.I.L. prepared and reviewed the manuscript. All authors reviewed, amended and approved the submitted manuscript

Funding

Research Resettlement Fund for the new faculty of Seoul National University provided funding to Jangik I. Lee and the funder had no role in data collection, data analysis, translation, and drafting of the manuscript

Competing interests

None declared

Patient consent

Not required

Provenance and peer review

Not commissioned, externally peer reviewed

Data sharing statement

No additional unpublished data are available

References

- 1. WHO. Global tuberculosis report Geneva, Switzerland: WHO, 2014.
- 2. WHO. Treatment of tuberculosis guidelines, 4th edition. Geneva, Switzerland: WHO, 2010.
- Blumberg H, Burman W, Chaisson R, et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med 2003;167:603.
- 4. Zumla A, Raviglione M, Hafner R, et al. Tuberculosis. N Engl J Med 2013;368:745-55.
- Lange C, Abubakar I, Alffenaar J-WC, *et al.* Management of patients with multidrugresistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. *Eur Respir J* 2014;44:23-63.
- 6. Tostmann A, Boeree MJ, Aarnoutse RE, *et al.* Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. *J Gastroenterol Hepatol* 2008;23:192-202.
- Saukkonen JJ, Cohn DL, Jasmer RM, *et al.* An official ATS statement: hepatotoxicity of antituberculosis therapy. *Am J Respir Crit Care Med* 2006;174:935-52.
- 8. Yee D, Valiquette C, Pelletier M, *et al.* Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. *Am J Respir Crit Care Med* 2003;167:1472-7.
- 9. Chen R, Wang J, Zhang Y, *et al.* Key factors of susceptibility to anti-tuberculosis druginduced hepatotoxicity. *Arch Toxicol* 2015;89:883-97.
- Cai Y, Yi J, Zhou C, *et al.* Pharmacogenetic Study of Drug-Metabolising Enzyme Polymorphisms on the Risk of Anti-Tuberculosis Drug-Induced Liver Injury: A Meta-Analysis. *PLoS ONE* 2012;7.
- Kim SH, Kim SH, Lee JH, *et al.* Polymorphisms in drug transporter genes (ABCB1, SLCO1B1 and ABCC2) and hepatitis induced by antituberculosis drugs. *Tuberculosis* 2012;92:100-4.
- 12. Roy PD, Majumder M, Roy B. Pharmacogenomics of anti-TB drugs-related hepatotoxicity. *Pharmacogenomics* 2008;9:311-21.
- 13. Sun F, Chen Y, Xiang Y, *et al.* Drug-metabolising enzyme polymorphisms and predisposition to anti-tuberculosis drug-induced liver injury: a meta-analysis. *Int J Tuberc*

Lung Dis 2008;12:994-1002.

- Kerb R. Implications of genetic polymorphisms in drug transporters for pharmacotherapy. *Cancer Lett* 2006;234:4-33.
- 15. Cui Y, Konig J, Leier I, *et al.* Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. *J Biol Chem* 2001;276:9626-30.
- 16. Little J, Bradley L, Bray MS, *et al.* Reporting, appraising, and integrating data on genotype prevalence and gene-disease associations. *American journal of epidemiology* 2002;156:300-10.
- 17. Tang N, Deng R, Wang Y, *et al.* GSTM1 and GSTT1 null polymorphisms and susceptibility to anti-tuberculosis drug-induced liver injury: a meta-analysis. *Int J Tuberc Lung Dis* 2013;17:17-25.
- 18. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Statistics in medicine* 2002;21:1539-58.
- 19. Wang PY, Xie SY, Hao Q, *et al.* NAT2 polymorphisms and susceptibility to antituberculosis drug-induced liver injury: a meta-analysis. *Int J Tuberc Lung Dis* 2012;16:589-95.
- 20. Deng R, Yang T, Wang Y, *et al.* CYP2E1 RsaI/PstI polymorphism and risk of antituberculosis drug-induced liver injury: a meta-analysis. *Int J Tuberc Lung Dis* 2012;16:1574-81.
- 21. Mitchell JR, Zimmerman HJ, Ishak KG, *et al.* Isoniazid liver injury: clinical spectrum, pathology, and probable pathogenesis. *Ann Intern Med* 1976;84:181-92.
- 22. Ryan D, Ramanathan L, Iida S, *et al.* Characterization of a major form of rat hepatic microsomal cytochrome P-450 induced by isoniazid. *Journal of Biological Chemistry* 1985;260:6385-93.
- 23. Ortega VE, Meyers DA. Pharmacogenetics: implications of race and ethnicity on defining genetic profiles for personalized medicine. *J Allergy Clin Immunol* 2014;133:16-26.
- 24. Ramachandran G, Swaminathan S. Role of pharmacogenomics in the treatment of tuberculosis: a review. *Pharmgenomics Pers Med* 2012;5:89-98.
- 25. Chen R, Wang J, Tang S, *et al.* Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese

BMJ Open

2		
4		cohort. Tuberculosis 2015;95:68-74.
6	26.	Weiner M, Peloquin C, Burman W, et al. Effects of tuberculosis, race, and human gene
7 8		SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother
9		2010;54:4192-200.
11	27.	Chigutsa E. Visser ME. Swart EC. <i>et al.</i> The SLCO1B1 rs4149032 polymorphism is highly
12 13		prevalent in South Africans and is associated with reduced rifampin concentrations: dosing
14		implications Antimicroh Agents Chemother 2011:55:4122-7
15 16	20	Li LM Chan L Dang CH at al. SI CO1P1*15 haplature is associated with rifemain
17 19	28.	LI LM, Chen L, Deng GH, <i>et al.</i> SECOTBT 15 haplotype is associated with manipun-
19		induced liver injury. <i>Mol Med Rep</i> 2012;6:75-82.
20 21	29.	Yimer G, Ueda N, Habtewold A, <i>et al.</i> Pharmacogenetic & pharmacokinetic biomarker for
22		efavirenz based ARV and rifampicin based anti-TB drug induced liver injury in TB-HIV
23 24		infected patients. PLoS One 2011;6:e27810.
25	30.	Ben Mahmoud L, Ghozzi H, Kamoun A, et al. Polymorphism of the N-acetyltransferase 2
26 27		gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in
28		Tunisian patients with tuberculosis. <i>Pathologie Biologie</i> 2012;60:324-30.
30	31	Bozok Cetintas V Erer OF Kosova B. et al. Determining the relation between N-
31 32		acetyltransferase-2 acetylator phenotype and antituberculosis drug induced hepatitis by
33		molecular biologic tests. Tuberk Toucks 2008:56:81.6
34 35	22	Historia biologic tests. <i>Tuberk Toruks</i> 2008,56:81-6.
36	32.	Higuchi N, Tahara N, Yanagihara K, et al. NAT2 6A, a haplotype of the N-
37 38		acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-
39		induced hepatotoxicity in Japanese patients with tuberculosis. World J Gastroenterol
40 41		2007;13:6003-8.
42	33.	Ho HT, Wang TH, Hsiong CH, et al. The NAT2 tag SNP rs1495741 correlates with the
43		susceptibility of antituberculosis drug-induced hepatotoxicity. <i>Pharmacogenet Genomics</i>
45 46		2013:23:200-7.
47	34	Huang VS Chern HD Su WI <i>et al</i> Polymorphism of the N-acetyltransferase 2 gene as a
48 49	54.	gugaantibility rick factor for antitubaroulogic drug induced hangtitic <i>Hangtology</i>
50		susceptionity fisk factor for antituberculosis drug-induced nepatitis. <i>Trepatology</i>
51		
53 54	35.	Khalili H, Fouladdel S, Sistanizad M, et al. Association of N-acetyltransferase-2 genotypes
55		and anti-tuberculosis induced liver injury: First case-controlled study from Iran. Curr Drug
56 57		23
58		
59		

Saf 2011;6:17-22.

- Leiro-Fernandez V, Valverde D, Vazquez-Gallardo R, et al. N-acetyltransferase 2 polymorphisms and risk of anti-tuberculosis drug-induced hepatotoxicity in Caucasians. International Journal of Tuberculosis and Lung Disease 2011;15:1403-8.
- 37. Lv X, Tang S, Xia Y, *et al.* NAT2 genetic polymorphisms and anti-tuberculosis druginduced hepatotoxicity in Chinese community population. *Ann Hepatol* 2012;11:700-7.
- 38. Ng CS, Hasnat A, Al Maruf A, *et al.* N-acetyltransferase 2 (NAT2) genotype as a risk factor for development of drug-induced liver injury relating to antituberculosis drug treatment in a mixed-ethnicity patient group. *Eur J Clin Pharmacol* 2014;70:1079-86.
- Ohno M, Yamaguchi I, Yamamoto I, *et al.* Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. *International Journal of Tuberculosis and Lung Disease* 2000;4:256-61.
- 40. Possuelo LG, Castelan JA, de Brito TC, *et al.* Association of slow N-acetyltransferase 2 profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil. *Eur J Clin Pharmacol* 2008;64:673-81.
- 41. Rana SV, Ola RP, Sharma SK, *et al.* Comparison between acetylator phenotype and genotype polymorphism of n-acetyltransferase-2 in tuberculosis patients. *Hepatology International* 2012;6:397-402.
- 42. Shimizu Y, Dobashi K, Mita Y, *et al.* DNA microarray genotyping of N-acetyltransferase 2 polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity. *Tuberculosis* 2006;86:374-81.
- 43. Yuliwulandari R, Susilowati RW, Wicaksono BD, *et al.* NAT2 variants are associated with drug-induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. *J Hum Genet* 2016; doi:10.1038/jhg.2016.10.
- 44. Feng FM, Guo M, Chen Y, *et al.* Genetic polymorphisms in metabolic enzymes and susceptibility to anti-tuberculosis drug-induced hepatic injury. *Genetics and Molecular Research* 2014;13:9463-71.
- 45. Kim SH, Kim SH, Bahn JW, *et al.* Genetic polymorphisms of drug-metabolizing enzymes and anti-TB drug-induced hepatitis. *Pharmacogenomics* 2009;10:1767-79.
- 46. Singh M, Gupta VH, Amarapurkar DN, et al. Association of genetic variants with anti-

BMJ Open

3		
4		tuberculosis drug induced hepatotoxicity. A high resolution melting analysis <i>Infection</i>
5		Constitute and Euclusian 2014/22/42.8
7		Genetics and Evolution 2014,25.42-8.
8	47.	Tang S, Lv X, Zhang Y, et al. Cytochrome P450 2E1 Gene Polymorphisms/Haplotypes
9 10		and Anti-Tuberculosis Drug-Induced Hepatitis in a Chinese Cohort. PLoS ONE
11		2013;8:e57526.
12 13	18	Chatteries S. Lule N. Mandal A. at al. GSTT1 and GSTM1 game deletions are not
14	40.	Chateljee 5, Eyle 10, Mandal A, <i>et al.</i> OSTITI and OSTIVIT gene detections are not
15		associated with hepatotoxicity caused by antitubercular drugs. Journal of Clinical
16 17		Pharmacy and Therapeutics 2010;35:465-70.
18	49.	Gupta VH, Singh M, Amarapurkar DN, et al. Association of GST null genotypes with anti-
19 20		tuberculosis drug induced hepatotoxicity in Western Indian population. Annals of
21		Hongtology 2012:12:050.65
22		Hepatology 2013,12.939-03.
24	50.	Huang YS, Su WJ, Huang YH, et al. Genetic polymorphisms of manganese superoxide
25		dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and
26 27		the susceptibility to drug-induced liver injury. J Hepatol 2007;47:128-34.
28	51.	Kim SH. Kim SH. Yoon HJ. et al. GSTT1 and GSTM1 null mutations and adverse
29 30		reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010:90:39-43
31	50	Let M. F. and M. M. A. M. L. D. S. L. M. C. S. L. M. C. S. M. S. M
32 33	52.	Leiro V, Fernandez-Villar A, Valverde D, et al. Influence of glutathione S-transferase MI
34		and T1 homozygous null mutations on the risk of antituberculosis drug-induced
35 36		hepatotoxicity in a Caucasian population. Liver International 2008;28:835-9.
37	53.	Liu F, Jiao AX, Wu XR, et al. Impact of Glutathione S-Transferase M1 and T1 on Anti-
38 39		Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. Plos One 2014;9.
40	54.	Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, et al. The roles of GSTM1 and GSTT1 null
41 42	0.11	genetures and other predictors in anti-tuberculosis drug induced liver injury. <i>Journal of</i>
43		genotypes and other predictors in anti-tuberculosis drug-induced river injury. <i>Journal of</i>
44 45		Clinical Pharmacy and Therapeutics 2012;37:712-8.
46	55.	Rana SV, Kamboj JK, Sharma SK, et al. Antioxidant status and GST gene polymorphisms
47 48		in antitubercular treatment-induced hepatotoxicity patients. Hepatol Int 2013;7:876-82.
49	56.	Roy B, Chowdhury A, Kundu S, et al. Increased risk of antituberculosis drug-induced
50 51		hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation <i>Journal of</i>
52		Castro enterology and Hangtology 2001;16:1022.7
53 54		Gastroenterology and Hepatology 2001,16.1033-7.
55	57.	An HR, Wu XQ, Wang ZY, et al. NAT2 and CYP2E1 polymorphisms associated with
56 57		25
57 58		

antituberculosis drug-induced hepatotoxicity in Chinese patients. *Clinical and Experimental Pharmacology and Physiology* 2012;39:535-43.

- 58. Bose PD, Sarma MP, Medhi S, *et al.* Role of polymorphic N-acetyl transferase2 and cytochrome P4502E1 gene in antituberculosis treatment-induced hepatitis. *J Gastroenterol Hepatol* 2011;26:312-8.
- Chamorro JG, Castagnino JP, Musella RM, *et al.* Sex, ethnicity, and slow acetylator profile are the major causes of hepatotoxicity induced by antituberculosis drugs. *J Gastroenterol Hepatol* 2013;28:323-8.
- 60. Cho HJ, Koh WJ, Ryu YJ, *et al.* Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. *Tuberculosis* 2007;87:551-6.
- 61. Gupta VH, Amarapurkar DN, Singh M, *et al.* Association of N-acetyltransferase 2 and cytochrome P450 2E1 gene polymorphisms with antituberculosis drug-induced hepatotoxicity in Western India. *J Gastroenterol Hepatol* 2013;28:1368-74.
- 62. Huang YS, Chern HD, Su WJ, *et al.* Cytochrome p450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. *Hepatology* 2003;37:924-30.
- 63. Lee SW, Chung LS, Huang HH, *et al.* NAT2 and CYP2E1 polymorphisms and susceptibility to first-line anti-tuberculosis drug-induced hepatitis. *Int J Tuberc Lung Dis* 2010;14:622-6.
- 64. Mishra S, Daschakraborty S, Shukla P, *et al.* N-acetyltransferase and cytochrome P450
 2E1 gene polymorphisms and susceptibility to antituberculosis drug hepatotoxicity in an Indian population. *National Medical Journal of India* 2013;26:260-5.
- 65. Santos NP, Callegari-Jacques SM, Ribeiro Dos Santos AK, et al. N-acetyl transferase 2 and cytochrome P450 2E1 genes and isoniazid-induced hepatotoxicity in Brazilian patients. *Int J Tuberc Lung Dis* 2013;17:499-504.
- 66. Vuilleumier N, Rossier MF, Chiappe A, *et al.* CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. *Eur J Clin Pharmacol* 2006;62:423-9.
- 67. Yamada S, Tang M, Richardson K, *et al.* Genetic variations of NAT2 and CYP2E1 and isoniazid hepatotoxicity in a diverse population. *Pharmacogenomics* 2009;10:1433-45.

Page 27 of 67

BMJ Open

2	
3	
4	68.
5	
0 7	
8	
9	69
10	0).
11	
13	
14	70
15	70.
16 17	
17	
19	
20	
21	71
22	/1.
23	
25	
26	70
27 29	12.
20 29	
30	
31	
32	73.
33	
35	
36	
37	74.
38	
39 40	
41	
42	75
43	,
44 45	
45	
47	76
48	/0.
49 50	
50 51	
52	
53	77.
54	
55 56	
50 57	
58	
59	
60	

- 68. Zaverucha-do-Valle C, Monteiro SP, El-Jaick KB, *et al.* The role of cigarette smoking and liver enzymes polymorphisms in anti-tuberculosis drug-induced hepatotoxicity in Brazilian patients. *Tuberculosis (Edinb)* 2014;94:299-305.
- 69. Sharma SK, Jha BK, Sharma A, *et al.* Genetic polymorphisms of CYP2E1 and GSTM1 loci and susceptibility to anti-tuberculosis drug-induced hepatotoxicity. *International Journal of Tuberculosis and Lung Disease* 2014;18:588-93.
- Wang T, Yu HT, Wang W, et al. Genetic Polymorphisms of Cytochrome P450 and Glutathione S-transferase Associated with Antituberculosis Drug-induced Hepatotoxicity in Chinese Tuberculosis Patients. *Journal of International Medical Research* 2010;38:977-86.
- 71. Tang SW, Lv XZ, Zhang Y, *et al.* CYP2E1, GSTM1 and GSTT1 genetic polymorphisms and susceptibility to antituberculosis drug-induced hepatotoxicity: a nested case-control study. *J Clin Pharm Ther* 2012;37:588-93.
- 72. Brito TC, Possuelo LG, Valim ARM, *et al.* Polymorphisms in CYP2E1, GSTM1 and GSTT1 and anti-tuberculosis drug-induced hepatotoxicity. *Anais Da Academia Brasileira De Ciencias* 2014;86:855-65.
- 73. Forestiero FJ, Cecon L, Hirata MH, *et al.* Relationship of NAT2, CYP2E1 and GSTM1/GSTT1 polymorphisms with mild elevation of liver enzymes in Brazilian individuals under anti-tuberculosis drug therapy. *Clinica Chimica Acta* 2013;415:215-9.
- 74. Rana SV, Sharma SK, Ola RP, *et al.* N-acetyltransferase 2, cytochrome P4502E1 and glutathione S-transferase genotypes in antitubercular treatment-induced hepatotoxicity in North Indians. *J Clin Pharm Ther* 2014;39:91-6.
- 75. Singla N, Gupta D, Birbian N, *et al.* Association of NAT2, GST and CYP2E1 polymorphisms and anti-tuberculosis drug-induced hepatotoxicity. *Tuberculosis* 2014;94:293-8.
- 76. Sotsuka T, Sasaki Y, Hirai S, *et al.* Association of Isoniazid-metabolizing Enzyme Genotypes and Isoniazid-induced Hepatotoxicity in Tuberculosis Patients. *In Vivo* 2011;25:803-12.
- 77. Teixeira RL, Morato RG, Cabello PH, *et al.* Genetic polymorphisms of NAT2, CYP2E1 and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in

Brazilian TB patients. Mem Inst Oswaldo Cruz 2011;106:716-24.

78. Xiang Y, Ma L, Wu WD, *et al.* The Incidence of Liver Injury in Uyghur Patients Treated for TB in Xinjiang Uyghur Autonomous Region, China, and Its Association with Hepatic Enzyme Polymorphisms NAT2, CYP2E1, GSTM1 and GSTT1. *Plos One* 2014;9.

to peer terier only

Page 29 of 67

Supporting information

Additional supporting information can be found in the online version of this article:

S1 Table. Genotype distribution, the achievement of Hardy-Weinberg equilibrium (HWE),

and the genotyping method used for CYP2E1 in the included studies (n = 26)

S2 Table. Genotype distribution, the achievement of Hardy-Weinberg equilibrium (HWE),

and the genotyping method used for NAT2 in the included studies (n = 34)

S3 Table. Genotype distribution, the achievement of Hardy-Weinberg equilibrium (HWE),

and the genotyping method used for *GST* in the included studies (n = 19)

S4 Table. Genotype distribution, the achievement of Hardy-Weinberg equilibrium (HWE),

and the genotyping method used for SLCO1B1 in the included studies (n = 4)

S5 Figure. Funnel plot of the meta-analysis of ATDILI risk and CYP2E1, NAT2, GST, and

SLCO polymorphisms. (A) CYP2E1 RsaI/PstI polymorphism, (B) CYP2E1 DraI

polymorphism, (C) NAT2 polymorphism, (D) GSTM1 polymorphism, (E) GSTT1 polymorphism,

(F) *GSTT1/M1* polymorphism, and (G) *SLCO1B1 388A>G* and *521T>C* polymorphism.

S6 Table. Subgroup analysis for the association between *CYP2E1* polymorphisms and ATDILI risk

S7 Table. Subgroup analysis for the association between *NAT2* polymorphism and ATDILI risk

S8 Table. Subgroup analysis for the association between *GST* polymorphisms and ATDILI risk

S9 Table. Subgroup analysis for the association between *SLCO1B1* polymorphisms and ATDILI risk

Figure legends

Figure 1. Study selection process flowchart according to the PRISMA guideline.

Figure 2. Risk of anti-tuberculosis drug-induced liver injury in patients with the *CYP2E1* (A) RsaI/PstI c1/c1 genotype compared to c1/c2 + c2/c2 genotypes and (B) DraI D/D genotype compared to D/C + C/C genotypes.

Figure 3. Risk of anti-tuberculosis drug-induced liver injury in patients with the *NAT2* slow acetylator genotype compared to those with the intermediate/fast acetylator genotypes.

Figure 4. Risk of anti-tuberculosis drug-induced liver injury in patients with (A) the *GSTM1* null genotype compared to the non-null genotype, (B) the *GSTT1* null genotype compared to the non-null genotype, and (C) the *GSTM1/GSTT1* dual-null genotype compared to the one- and non-null genotypes.

Figure 5. Risk of anti-tuberculosis drug-induced liver injury in patients with the *SLCO1B1* (A) 388 AA genotype compared to the 388 AG + GG genotypes and (B) 521 CC genotype compared to the 521 TC + TT genotypes.

BMJ Open

First author last name, year	Polymorphic gene	Ethnicity	Sample size (case/control)	Age (years) (case/ control) ^a	Male (%) (case/ control)	Anti-TB drug regimen administered	Diagnostic criteria of ATDILI	Quali score
Ben Mahmoud, 2012 ³⁰	NAT2	Tunisian	14/52	42.4/42.1	42.8/48.1	INH, RIF containing regimen	$ALT > 2 \times ULN$	6
Bozok Cetintas, 2008	NAT2	Turkish	30/70	39.8/37.3	50.0/72.8	INH, RIF, PZA, EMB	$ALT > 3 \times ULN$	5
Higuchi, 2007	NAT2	Japanese	18/82	60.8/64.7	50.0/57.3	INH ,RIF containing regimen	$ALT > 2 \times ULN$	6
Ho, 2013 ³³	NAT2	Taiwanese	20/328	NA/NA	NA/NA	INH, RIF, PZA, EMB	$ALT > 5 \times ULN$	5
Huang, 2002 ³⁴	NAT2	Taiwanese	33/191	73.3/63.7	87.9/88.5	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	6
Khalili, 2011 35	NAT2	Iranian	14/36	NA/NA	NA/NA	INH, RIF, PZA, EMB	$ALT > 3 \times ULN$	6
Leiro- Fernandez, 2011 ³⁶	NAT2	Caucasian	50/67	34.0/30.5 ^b	54.0/56.7	INH, RIF, PZA	$ALT > 3 \times ULN$	7
Lv, 2012 ³⁷	NAT2	Chinese	89/356	42.0/42.0 b	73.0/73.0	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Ng, 2014 ³⁸	NAT2	Mixed	26/101	48.3/NA	38.5/NA	INH containing regimen	$ALT > 5 \times ULN$	6
Ohno, 2000 ³⁹	NAT2	Japanese	14/63	NA/NA	NA/NA	INH, RIF	ALT > 1.5 × ULN	7
Possuelo, 2008 ⁴⁰	NAT2	Brazilian	14/240	38.9/36.5	50.0/66.9	INH, RIF, PZA	$ALT > 3 \times ULN$	7
Rana, 2012 41	NAT2	Indian	50/201	45.3/43.8	76.0/57.2	INH, RIF, PZA, EMB	$ALT > 5 \times ULN$	7
Shimizu, 2006 42	NAT2	Japanese	10/32	60.5/64.9	70.0/46.9	INH, RIF	ALT > 2 × ULN	5
Yuliwulandari, 2016 ⁴³	NAT2	Indonesian	50/191	NA/NA	NA/NA	NA	ALT > 2 × ULN	6
Feng, 2014 44	CYP2E1	Chinese	173/173	48.8/48.6	68.0/68.0	INH, RIF, PZA	$ALT > 3 \times ULN$	6

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Kim, 2009 ⁴⁵	CYP2E1	Korean	67/159	42.1/42.8	65.7/65.4	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	6
Singh, 2014 46	CYP2E1	Indian	50/135	NA/NA	NA/NA	NA	ALT > 2 × ULN	6
Tang, 2013 47	CYP2E1	Chinese	89/356	43.7/43.6	73.0/73.0	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Chatterjee, 2010 ⁴⁸	GSTM1, GSTT1	Indian	51/100	37.2/33.2	49.0/63.0	INH, RIF, PZA	$ALT > 3 \times ULN$	7
Gupta, 2013 49	GSTM1, GSTT1	Indian	50/246	37.0/36.5 ^b	48.0/56.5	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Huang, 2007	GSTM1, GSTT1	Taiwanese	63/63	62.0/NA	NA/NA	NA	$ALT > 5 \times ULN$	6
Kim, 2010 ⁵¹	GSTM1, GSTT1	Korean	57/190	47.3/42.4	59.6/67.9	INH, RIF, PZA, EMB	$ALT > 3 \times ULN$	7
Leiro, 2008 ⁵²	GSTM1, GSTT1	Caucasian	35/60	34.0/31.0 b	40.0/41.7	INH, RIF, PZA	ALT > 3 × ULN	7
Liu, 2014 ⁵³	GSTM1, GSTT1	Chinese	20/143	35.9/61.2	60.0/59.4	INH containing regimen	$ALT > 2 \times ULN$	7
Monteiro, 2012 ⁵⁴	GSTM1, GSTT1	Brazilian	59/118	37.0/38.0 b	76.0/61.0	NA	$\begin{array}{c} ALT > 2 \times \\ ULN \end{array}$	7
Rana, 2013 55	GSTM1, GSTT1	Indian	30/220	43.6/42.3	60.0/64.5	INH, RIF	$ALT > 5 \times ULN$	6
Roy, 2001 56	GSTM1, GSTT1	Indian	33/33	NA/NA	NA/NA	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Chen, 2015 ²⁵	SLCO1B1	Chinese	89/356	43.7/43.6	73.0/73.0	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Kim, 2012 ¹¹	SLCO1B1	Korean	67/159	43.0/42.8	65.7/65.4	INH, RIF, PZA, EMB	ALT > 2 × ULN	6
Li, 2012 ²⁸	SLCO1B1	Chinese	118/155	40.5/39.3	48.3/54.8	RIF	$ALT > 3 \times ULN$	7
An, 2012 57	NAT2, CYP2E1	Chinese	101/107	36.0/33.4 b	55.0/70.0	INH, RIF, PZA, EMB	ALT > 2 × ULN	7
Bose, 2011 58	NAT2, CYP2E1	Indian	41/177	38.0/36.0	43.9/47.4	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Chamorro, 2013 ⁵⁹	NAT2, CYP2E1	Mixed (South American)	47/128	29.0/27.0	41.3/64.8	INH, RIF, PZA, EMB	$ALT > 3 \times ULN$	7
Cho, 2007 60	NAT2,	Korean	18/114	51.2/46.7	66.7/55.3	INH, RIF,	$ALT > 2 \times$	6

Page 33 of 67

BMJ Open

	CYP2EI					PZA, EMB	ULN	
Gupta, 2013 61	NAT2, CYP2E1	Indian	50/165	37.0/38.0	48.0/60.0	INH, RIF, PZA, EMB	ALT > 2 × ULN	7
Huang, 2003	NAT2, CYP2E1	Taiwanese	49/269	70.0/59.0 b	18.4/14.9	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	6
Lee, 2010 ⁶³	NAT2, CYP2E1	Taiwanese	45/95	58.4/54.9	60.0/66.3	INH, RIF, PZA, EMB	ALT > 2 × ULN	6
Mishra, 2013 64	NAT2, CYP2E1	Indian	33/173	38.0/NA	52.0/NA	INH, RIF, PZA, EMB	$ALT > 3 \times ULN$	7
Santos, 2013 65	NAT2, CYP2E1	Brazilian	18/252	47.7/45.6	56.0/49.0	INH, RIF	$ALT > 3 \times ULN$	7
Vuilleumier, 2006 ⁶⁶	NAT2, CYP2E1	Mixed	8/63	27-35: 2/22° >36: 5/18°	38.0/51.0	INH	AST or ALT > 4 \times ULN	7
Yamada, 2009 ⁶⁷	NAT2, CYP2E1	Mixed	23/147	NA/NA	13.0/42.9	INH	ALT > 2 × ULN	7
Zaverucha-do- Valle, 2014 ⁶⁸	NAT2, CYP2E1	Brazilian	50/79	<40: 28/43 ^c >40: 20/36 ^c	60.4/72.2	INH, RIF, PZA	ALT > 2 × ULN	6
Sharma, 2014 ⁶⁹	CYP2E1, GSTM1	Indian	105/185	35.2/27.6	55.7/72.1	INH, RIF, PZA, EMB	$ALT > 5 \times ULN$	7
Wang, 2010 70	CYP2E1, GSTM1	Chinese	104/111	48.6/44.7	67.3/67.6	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Tang, 2012 71	CYP2E1, GSTM1, GSTT1	Chinese	89/356	43.7/43.6	73.0/73.0	INH, RIF, PZA, EMB	$\begin{array}{c} ALT > 2 \times \\ ULN \end{array}$	7
Yimer, 2011 ²⁹	NAT2, SLCO1B1	Ethiopian	41/160	NA/NA	NA/NA	INH, RIF, PZA, EMB	ALT > 2 × ULN	6
Brito, 2014 ⁷²	NAT2, CYP2E1, GSTM1, GSTT1	Brazilian	15/230	38.1/36.8	46.7/NA	INH, RIF, PZA	ALT > 3 × ULN	7
Forestiero, 2013 ⁷³	NAT2, CYP2E1, GSTM1, GSTT1	Brazilian	59/40	NA/NA	49.2/60.0	INH, RIF, PZA	$ALT > 2.5 \\ \times ULN$	5
Rana, 2014 74	NAT2, CYP2E1, GSTM1, GSTT1	Indian	55/245	43.6/42.3	60.0/62.0	INH, RIF, PZA, EMB	$ALT > 5 \times ULN$	6

Singla, 2014 ⁷⁵	NAT2, CYP2E1, GSTM1, GSTT1	Indian	17/391	48.2/32.7	64.7/61.4	INH, RIF, PZA, EMB, STM	ALT > 2 × ULN	7
Sotsuka, 2011 76	NAT2, CYP2E1, GSTM1, GSTT1	Japanese	20/92	54.9/50.4	90.0/73.9	INH, RIF, PZA, EMB or STM	$ALT > 3 \times ULN$	6
Teixeira, 2011	NAT2, CYP2E1, GSTM1, GSTT1	Brazilian	26/141	47.6/43.0	61.5/52.5	INH containing regimen	$ALT > 3 \times ULN$	7
Xiang, 2014 ⁷⁸	NAT2, CYP2E1, GSTM1, GSTT1	Chinese	89/2155	37.0/44.5	67.4/55.7	INH, RIF, PZA, EMB	ALT > 2 × ULN	7

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; ATDILI, antituberculosis drug-induced liver injury; CYP2E1, cytochrome P450 2E1; EMB, ethambutol; GSTM1, glutathione S-transferase Mu 1; GSTT1, glutathione S-transferase Theta 1; INH, isoniazid; NA, not available; NAT2, N-acetyltransferase 2; PZA, pyrazinamide; RIF, rifampicin; SLCO1B1, solute carrier organic anion transporter family, member 1B1 (encoding organic anion transporting polypeptide 1B1 [OATP1B1]); STM, streptomycin; TB, tuberculosis; ULN, upper limit of normal

^a Mean unless otherwise stated

^b Median age

^c Number of individuals in the age ranges
- Records identified through database search (n = 381) PubMed (n = 225) EMBASE (n = 60) Cochrane Library (n = 3) Web of Science (n = 93) Additional records identified through other sources (e.g. cross-reference check) (n = 3) Records after duplicates removed (n = 285) Records excluded (n = 215) Not related to the genetic polymorphisms of interest and/or ATDULrisk (n = 168) Non-human studies (n = 6) Non-human studies (n = 6) Non-human studies (n = 3) Abstract only (n = 2) Records screened on the basis of title and abstract (n = 285) Full-text articles assessed Full-text articles excluded (n = 17) Not related to the genetic polymorphisms of interest and/or for eligibility (n = 70) polymorphisms of interest and/or ATDIU risk (n = 9) Not able to calculate the number of individuals with the genetic polymorphisms of interest in the case and cortrol group (n = 1) No genotype methods used (n = 3) Non-TB patients (n = 2) Non-English (n = 2) Studies included in meta-analysis (n = 53) CYP2E2 polymorphism (n = 26) - CYP2E1 Rsal/Pstl (n =24) CYP2E1 Reality Str (n = 24
 CYP2E1 Drai (n = 6)
 NAT2 polymorphism (n = 34)
 GST polymorphism (n = 19)
 GSTMI (n = 19) - GSTT2 (n = 17) GS7MI/GS7T1 (n = 11)
 SLCO1B1 polymorphism (n = 4) SLCO181 388A>G (n = 4) SLCO1B1 521T>C (n = 4) Study selection process flowchart according to the PRISMA guideline 209x297mm (72 x 72 DPI)

(A) CYP2E1 Rsal/PstI c1/c1 genotype compared to c1/c2 + c2/c2 genotypes

		Odds Ratio	Odds Ratio
Study or Subgroup	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
An 2012	5.9%	1.67 [0.93, 2.98]	
Brito 2014	2.3%	1.17 [0.25, 5.40]	
Chamorro 2013	5.3%	0.96 [0.48, 1.92]	
Cho 2007	3.9%	0.94 [0.35, 2.56]	
Feng 2014	6.4%	4.22 [2.59, 6.89]	
Forestier 2013	3.5%	2.94 [0.97, 8.91]	
Gupta 2013	1.4%	2.83 [0.35, 22.87]	
Huang 2003	5.3%	2.52 [1.26, 5.05]	
Kim 2009	5.3%	2.66 [1.34, 5.26]	
Lee 2010	5.2%	1.00 [0.49, 2.04]	
Mishra 2013	2.0%	0.46 [0.09, 2.49]	
Rana 2014	5.9%	0.66 [0.36, 1.18]	
Santos 2013	3.0%	2.28 [0.64, 8.11]	
Sharma 2014	6.0%	1.12 [0.64, 1.96]	+
Singh 2014	4.6%	4.02 [1.76, 9.21]	
Singla 2014	2.2%	0.32 [0.07, 1.52]	
Sotsuka 2011	4.0%	0.65 [0.24, 1.74]	
Tang 2013	6.4%	0.99 [0.61, 1.60]	+
Tebeira 2011	2.8%	0.78 [0.21, 2.95]	
Vuilleumier 2006	1.2%	0.60 [0.06, 5.93]	
Wang 2010	5.7%	2.10 [1.14, 3.86]	
Xiang 2014	5.6%	1.28 [0.68, 2.42]	
Yamada 2009	3.9%	1.06 [0.39, 2.88]	
Zaverucha-do-valle 2014	2.3%	0.86 [0.19, 4.04]	
Total (95% CI)	100.0%	1.39 [1.06, 1.83]	•
Total events			
Heterogeneity: Tau ² = 0.24	; Chi# = 57	.52, df = 23 (P < 0.0001); P = 60%	
Test for overall effect: 7 - 7	36 /P = 0	0.25	0.01 0.1 1 10 100

		044- 0-6-					
Study or Subaroup	Weight	Mull Fixed 95% CI		14	Odds Ratio	CI	
Bose 2011	131%	0 49 10 16 1 471		10-		141	
Brito 2014	5.3%	1 14 [0.31 4 19]				-	
Gunta 2013	20.3%	1.05 [0.54, 2.05]			-		
Santos 2013	4 4 %	2 59 [0 73 9 19]				_	
Sotsuka 2011	10.6%	0.85 (0.32, 2.26)					
Tang 2012	46.3%	0.83 [0.52, 1.33]			-		
Total (95% CI)	100.0%	0.93 [0.68, 1.27]			+		
Total events							
Heterogeneity: Chi*:	= 4.28, df =	5 (P = 0.51); I ² = 0%	0.01	0.1	1	10	10
Test for overall effect	: Z = 0.46 (P = 0.64)	0.01	0.1		10	

Risk of anti-tuberculosis drug-induced liver injury in patients with the CYP2E1 (A) RsaI/PstI c1/c1 genotype compared to c1/c2 + c2/c2 genotypes and (B) DraI D/D genotype compared to D/C + C/C genotypes

209x297mm (72 x 72 DPI)

		Odds Ratio	Odds Ratio
Study or Subgroup	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
An 2012	3.8%	4.74 [2.35, 9.58]	
Ben Mohmoud 2012	1.7%	5.00 [1.25, 20.08]	
Bose 2011	3.7%	3.00 [1.44, 6.25]	
Bozok cetintas 2008	2.7%	8.82 [3.26, 23.89]	
Brito 2014	2.4%	4.66 [1.59, 13.67]	
Chamorro 2013	3.9%	2.46 [1.24, 4.87]	
Cho 2007	2.3%	5.41 [1.76, 16.59]	
Forestiero 2013	3.2%	1.88 [0.81, 4.33]	+
Gupta 2013	4.1%	2.06 [1.09, 3.91]	
Higuchi 2007	1.7%	9.75 [2.40, 39.68]	
Ho 2013	2.7%	8.70 [2.54, 17.68]	
Huang 2002	3.5%	2.87 [1.32, 6.23]	
Huang 2003	4.1%	2.30 [1.21, 4.39]	
Khalili 2011	1.6%	11.16 [2.63, 47.33]	
Lee 2010	3.5%	3.28 [1.53, 7.06]	
Leiro-Fernandez 2012	3.4%	1.34 [0.61, 2.98]	
Lv 2012	4.5%	0.97 [0.54, 1.72]	-
Mishra 2013	3.4%	3.15 [1.41, 7.02]	
Ng 2014	2.2%	4.25 [1.36, 13.22]	
Ohno 2000	0.5%	127.00 [8.57, 2453.41]	
Possuelo 2008	2.3%	5.40 [1.74, 16.74]	
Rana 2013	3.9%	3.49 [1.75, 6.97]	
Rana 2014	4.1%	3.59 [1.87, 6.86]	
Santos 2013	2.7%	3.71 [1.38, 9.93]	
Shimizu 2006	0.7%	20.67 [1.95, 218.71]	
Singla 2014	1.5%	6.27 [1.41, 27.78]	
Sotsuka 2011	2.1%	3.16 [0.98, 10.24]	
Teixeira 2011	3.0%	2.71 [1.10, 6.63]	
Vuilleumier 2006	1.3%	4.13 [0.82, 20.68]	
Xiang 2014	5.1%	1.52 [0.96, 2.40]	
Yamada 2009	3.0%	2.02 [0.82, 4.96]	
Yimer 2011	3.5%	1.54 [0.70, 3.37]	
Yuliwulandari 2016	4.1%	3.45 [1.80, 6.60]	
Zaverucha-do-valle 2014	3.6%	2.95 [1.40, 6.21]	100 Contraction (100 Contraction)
Total (95% CI)	100.0%	3.11 [2.53, 3.82]	•
Total events			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Heterogeneity: Tau* = 0.16	: Chi# = 62	28. df = 33 (P = 0.002); P = 47%	

Risk of anti-tuberculosis drug-induced liver injury in patients with the NAT2 slow acetylator genotype compared to those with the intermediate/fast acetylator genotypes

209x297mm (72 x 72 DPI)

1	
2	
3	
4	
5	
c	
0	
7	
8	
9	
10	
10	(A) GSTM1 null genotype compared to the non-null genotype
11	Odds Ratio Odds Ratio Study or Subaroum Weishlik Mik Fixed, 85% CT
12	Brito 2014 2.9% 0.88 [0.30,256] Chatterice 2010 5.9% 1.00 [0.51,1.98]
13	- constant of a 3 a 3 a 0 a 0 (2 a 0 a 1 4 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a
14	Kim 2010 9.2% 0.0891031,1201 Leiro 2009 4.3% 0.731031,174
15	Lu 2014 2.5% 1.14[0.4], 3.16[Montaino 2012 5.1% 1.37[0.70, 2.66]
16	Rana 2014 2.5% 2.5% 2.4.677
17	Bhama 2014 10.4% 115[070,188] Bingla 2014 2.0% 136[073,5.25]
17	Tang 2012 10.0% 1221074,190
18	Wang 2010 7.2% 1.62 [09.42,79] 30ang 2014 13.9% 1.14 [07.4, 17.4]
19	Total (95% CI) 100.0% 1.30 [1.12, 1.52] Total events
20	Heterogeneity, ChiP = 27,01, df = 18 (P = 0.00), P = 33% 0.01 0.1 1 10 100 Test for overall offect Z = 3.38 (P = 0.0007)
21	
22	(B) GSTT1 null genotype compared to the non-null genotype
22	Odds Ratio Odds Ratio <u>Study of Suboroup Wheidht M.4 Excel</u> , <u>55%</u> CL M.H.4 Excel, <u>55%</u> CL
23	Brite 2014 1 4 4 10 (2014, 5, 16) Contanging 2010 3 4 4 (2014, 5, 16) Contanging 2010 3 4 (2014, 16, 2014)
24	Ouple 2013 2.9% 2.03 [0.94, 3.9] Huang 2007 7.4% 0.94 [0.40, 191]
25	Km 2010 9.2% 1.25 (0.68, 2.81 Letro 2009 2.9% 2.40 (1.08, 6.23)
26	Lu 2014 2012 2013 2013 2019
27	Rana 2014 10.6% 0.69 [0.5,1,34]
20	Bingle 2014 2.2% 2.52[0.96,670] Botsuka 2014 4.5% 0.70[0.26,192]
20	Terevera 2011 2.4% 0.77 [0:42, 2.41] Xiang 2014 1.4.5% 0.89 [0:52, 1:51]
29	Total (95% C) 100.0% 1.03 [0.85, 1.25]
30	Total events Heterogenetity, Chi [*] = 19.14, df = 16 (<i>G</i> = 0.26), i [*] = 18 % 0.01 0.1 10 100
31	lest for overall energy $L = 0.31$ ($r = 0.76$)
32	(C) GSTMI/GSTT1 dual-null genotype compared to the one- and non-null genotypes
33	Odd8 Rabb Odd8 Rabb
24	Brito 2014 3.95% 1.30 [24:071]
54	Forestiler 2013 6.4% 6.57 [10.3, 203] Oupta 2013 6.5% 6.27 [174, 26:00]
35	Han 2010 7.7% 1.25 (2017) 7.24 Bran 2013 10.7% 0.55 (2017)
36	Rana 2014 12.1% 0.057 [0.27, 122] Singla 2014 0.2% 4.2[155, 14.10]
37	Tang 2012 12.7% 0.02 [05.4, 56] Siang 2014 11.1% 0.56 [0.26, 1.20]
38	Total (1995-CL) 100.0% 1.05 [0.67, 1.62]
30	Heterogeneikh Tau ¹² 0.20; Ch ¹² = 24.66; df = 10 (P = 0.006); (P = 59% 0.01 0.1 10 100 100 100 100 100 100 100
10	
40	
41	
42	
43	
44	
45	Risk of anti-tuberculosis drug-induced liver injury in nations with (Δ) the GSTM1 null genetype compared to
4J	the non-null genotype (B) the GSTT1 null genotype compared to the non-null genotype and (C) the
40	GSTM1/GSTT1 dual-null genotype compared to the one- and non-null genotype, and (c) the
47	GSTRI/GSTTI dua hai genotype compared to the one and non-hai genotypes
48	200x207mm (72 x 72 DDI)
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
57	
50	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

(A) 388 AA genotype compared to the 388 AG + GG genotypes

Study or Subproup	Weight	Odds Ratio M.H. Fixed, 95% Cl		м	Odds Ratio	CI	
Chen 2015	32.7%	1 25 ID 55 2 811					
Kim 2012	19.0%	1.38 (0.49, 3.92)					
Li 2012	30.6%	1.25 [0.53, 2.95]					
Yimer 2011	17.8%	2.35 [0.95, 5.80]			-	-	
Total (95% CI)	100.0%	1.47 [0.94, 2.29]			•		
Total events							
Heterogeneity: ChiP = 1.33, df = 3 (P = 0.72); P = 0%				t.		1	400
Test for overall effect: Z = 1.69 (P = 0.09)				0.1	1	10	100

(B) 521 CC genotype compared to the 521 TC + TT genotypes

Study or Subgroup	Weight	Odds Ratio M-H, Fixed, 95% Cl		Od M-H, F	Odds Ratio M-H, Fixed, 95% Cl			
Chen 2015	17.6%	3.41 [0.56, 20.73]				-		
Kim 2012	38.1%	0.32 [0.02, 6.35]	_					
LI 2012	15.5%	1.32 [0.08, 21.31]			•	•		
Yimer 2011	28.8%	0.97 [0.11, 8.97]			-			
Total (95% CI)	100.0%	1.21 [0.40, 3.63]		-	-			
Total events					10 A.M.			
Heterogeneity: Chi ² =	2.06, df =	3 (P = 0.56); P = 0%	0.01		1	100		
Test for overall effect	Z=0.34 (P = 0.74)	0.01	U.1	1 10	100		

Risk of anti-tuberculosis drug-induced liver injury in patients with the SLCO1B1 (A) 388 AA genotype compared to the 388 AG + GG genotypes and (B) 521 CC genotype compared to the 521 TC + TT genotypes

209x297mm (72 x 72 DPI)

Supplementary data

S1 Table. Genotype distribution, the achievement of Hardy-Weinberg equilibrium (HWE), and the genotyping method used for *CYP2E1* in the included studies (n = 26)

		RsaI/PstI genotype (n = 24)				DraI genotype (n = 6)					
Study	Case (nu individu	umber of als [%])	Control (r individu	number of als [%])	HWE	Case (n individu	umber of uals [%])	Control (1 individu	number of als [%])	HWE	Genotyping
	C1/C1	C1/C2 + C2/C2	C1/C1	C1/C2 + C2/C2		D/D	D/C + C/C	D/D	D/C + C/C	-	method
An^1	72 (71.3)	29 (28.7)	64 (59.8)	43 (40.2)	Yes	NA	NA	NA	NA	NA	Sequencing
Bose ²	NA	NA	NA	NA	NA	4 (9.8)	37 (90.2)	32 (18.1)	145 (81.9)	No	PCR-RFLP
Brito ³	13 (86.7)	2 (13.3)	195 (84.8)	35 (15.2)	No	12 (80.0)	3 (20.0)	179 (76.8)	54 (23.2)	Yes	PCR-RFLP
Chamorro ⁴	30 (63.8)	17 (36.2)	83 (64.8)	45 (35.2)	No	NA	NA	NA	NA	NA	PCR-RFLP
Cho ⁵	10 (55.6)	8 (44.4)	65 (57.0)	49 (43.0)	No	NA	NA	NA	NA	NA	Sequencing
Feng ⁶	142 (82.1)	31 (17.9)	90 (52.0)	83 (48.0)	Yes	NA	NA	NA	NA	NA	Sequencing
Forestiero ⁷	53 (89.8)	6 (10.2)	30 (75.0)	10 (25.0)	Yes	NA	NA	NA	NA	NA	PCR-RFLP
Gupta ⁸	49 (98.0)	1 (2.0)	156 (94.5)	9 (5.5)	No	33 (66.0)	17 (34.0)	107 (64.9)	58 (35.1)	Yes	PCR-RFLP
Huang ⁹	37 (75.5)	12 (24.5)	148 (55.0)	121 (45.0)	Yes	NA	NA	NA	NA	NA	PCR-RFLP

Kim ¹⁰	54 (81.8)	12 (18.2)	97 (63.4)	56 (36.6)	Yes	NA	NA	NA	NA	NA	SNP stream
Lee ¹¹	26 (57.8)	19 (42.2)	55 (57.9)	40 (42.1)	No	NA	NA	NA	NA	NA	Taqman
Mishra ¹²	31 (93.9)	2 (6.1)	168 (97.1)	5 (2.9)	No	NA	NA	NA	NA	NA	PCR-RFLP
Rana ¹³	28 (50.9)	27 (49.1)	150 (61.2)	95 (38.8)	No	NA	NA	NA	NA	NA	PCR-RFLP
Santos ¹⁴	15 (83.3)	3 (16.7)	173 (75.6)	56 (24.4)	Yes	15 (83.3)	3 (16.7)	166 (72.8)	62 (27.2)	Yes	Taqman
Sharma ¹⁵	81 (77.1)	24 (22.9)	139 (75.1)	46 (24.9)	Yes	NA	NA	NA	NA	NA	PCR-RFLP
Singh ¹⁶	42 (84.0)	8 (16.0)	77 (56.6)	59 (43.4)	No	NA	NA	NA	NA	NA	PCR-RFLP
Singla ¹⁷	15 (88.0)	2 (12.0)	375 (96.0)	16 (4.0)	No	NA	NA	NA	NA	NA	PCR-RFLP
Sotsuka ¹⁸	11 (55.0)	9 (45.0)	60 (65.2)	32 (34.8)	No	9 (45.0)	11 (55.0)	45 (48.9)	47 (51.1)	Yes	PCR-RFLP
Tang ¹⁹	NA	NA	NA	NA	NA	47 (52.8)	42 (47.2)	204 (57.3)	152 (42.7)	Yes	PCR-RFLP
Tang ²⁰	56 (62.9)	33 (37.1)	225 (63.2)	131 (36.8)	Yes	NA	NA	NA	NA	NA	Taqman
Teixeira ²¹	23 (88.5)	3 (11.5)	128 (90.8)	13 (9.2)	Yes	NA	NA	NA	NA	NA	PCR-RFLP
Vuilleumier ²²	7 (87.5)	1 (12.5)	58 (92.1)	5 (7.9)	Yes	NA	NA	NA	NA	NA	PCR-RFLP
					2						

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Wang ²³	82 (78.8)	22 (21.2)	71 (64.0)	40 (36.0)	No	NA	NA	NA	NA	NA	PCR-RFLP
Xiang ²⁴	58 (82.9)	12 (17.1)	1264 (79.0)	336 (21.0)	Yes	NA	NA	NA	NA	NA	PCR/ligase detection reaction assays
Yamada ²⁵	17 (73.9)	6 (26.1)	107 (72.8)	40 (27.2)	Yes	NA	NA	NA	NA	NA	PCR-RFLP
Zaverucha-do-Valle ²⁶	48 (94.1)	3 (5.9)	74 (94.9)	4 (5.1)	Yes	NA	NA	NA	NA	NA	PCR-RFLP

Abbreviations: *HWE*, Hardy-Weinberg equilibrium; *NA*, not available; *PCR*, polymerase chain reaction; *RFLP*, restriction fragment length polymorphism; *SNP*, single nucleotide polymorphism

Page 43 of 67

BMJ Open

1	
2	
2	
2	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
77	
45	
46	

S2 Table. Genotype distribution, the achievement of Hardy-Weinberg equilibrium (HWE), and the genotyping method used for NAT2 in the included studies (n = 34)

	Case (number of	individuals [%])	Control (number	of individuals [%])			
Study	Slow acetylator	Intermediate and fast acetylator	Slow acetylator	Intermediate and fast acetylator	HWE	Genotyping method	
An ¹	40 (39.6)	61 (60.4)	13 (12.1)	94 (87.9)	Yes	Sequencing	
Ben Mahmoud ²⁷	11 (78.5)	3 (21.5)	22 (42.4)	30 (57.6)	Yes	PCR-RFLP	
Bose ²	29 (70.7)	12 (29.3)	79 (44.6)	98 (55.4)	No	PCR-RFLP	
Bozok Cetintas ²⁸	23 (76.7)	7 (23.3)	19 (27.1)	51 (72.9)	No	PCR	
Brito ³	9 (60.0)	6 (40.0)	56 (24.3)	174 (75.7)	No	PCR-RFLP	
Chamorro ⁴	28 (58.7)	19 (41.3)	48 (37.5)	80 (62.5)	No	PCR-RFLP	
Cho ⁵	7 (38.9)	11 (61.1)	12 (10.5)	102 (89.5)	No	Sequencing	
Forestiero ⁷	28 (47.4)	31 (52.6)	13 (32.5)	27 (67.5)	Yes	PCR-RFLP	
Gupta ⁸	28 (56.0)	22 (44.0)	63 (38.2)	102 (61.8)	Yes	PCR-RFLP	
Higuchi ²⁹	6 (33.3)	12 (66.7)	4 (4.9)	78 (95.1)	Yes	PCR-RFLP	
Ho ³⁰	12 (63.2)	7 (36.8)	67 (20.4)	262 (79.6)	Yes	Sequenom MassARRAY	

4

Page 44	of (57
---------	------	----

Huang ³¹	14 (42.4)	19 (57.6)	39 (20.4)	152 (79.6)	No	PCR-RFLP
Huang ⁹	19 (38.8)	30 (61.2)	58 (21.6)	211 (78.4)	Yes	PCR-RFLP
Khalili, ³²	9 (64.3)	5 (35.7)	5 (13.9)	31 (86.1)	Yes	PCR-RFLP
Lee ¹¹	21 (46.7)	24 (53.3)	20 (21.1)	75 (78.9)	No	Taqman
Leiro-Fernandez 33	36 (72.0)	14 (28.0)	44 (65.7)	23 (34.3)	No	PCR-RFLP
Lv ³⁴	18 (20.2)	71 (79.8)	74 (20.8)	282 (79.2)	Yes	PCR-RFLP
Mishra ¹²	23 (70.0)	10 (30.0)	73 (42.0)	100 (58.0)	Yes	PCR-RFLP
Ng ³⁵	22 (84.6)	4 (15.4)	57 (56.4)	44 (43.6)	Yes	PCR-RFLP
Ohno ³⁶	7 (50.0)	7 (50.0)	0 (0.0)	63 (100.0)	Yes	PCR-RFLP
Possuelo 37	9 (64.3)	5 (35.7)	60 (25.0)	180 (75.0)	No	Sequencing
Rana ³⁸	19 (38.0)	31 (62.0)	30 (14.9)	171 (85.1)	No	PCR-RFLP
Rana ¹³	21 (38.2)	34 (61.8)	36 (14.7)	209 (85.3)	Yes	PCR-RFLP
Santos 14	11 (61.1)	7 (38.9)	75 (29.8)	177 (70.2)	Yes	Sequencing
Shimizu ³⁹	4 (40.0)	6 (60.0)	1 (3.1)	31 (96.9)	No	PCR-RFLP
Singla ¹⁷	15 (88.2)	2 (11.8)	213 (54.5)	178 (45.5)	No	PCR-RFLP

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 45 of 67

 BMJ Open

2							
3	Sotsuka ¹⁸	8 (15.4)	44 (84.6)	5 (5.4)	87 (94.6)	No	PCR-RFLP
4							
5	Teixeira ²¹	18 (75.0)	6 (25.0)	64 (51.2)	61 (48.8)	Yes	Sequencing
6							1 8
7	Vuilleumier ²²	3 (37 5)	5 (62 5)	8 (12 7)	55 (87 3)	Ves	PCR-RELP
8	vunieumer	5 (57.5)	5 (02.5)	0 (12.7)	55 (67.5)	105	
9							PCR/ligase detection
10	Xiang ²⁴	28 (31.5)	61 (68.5)	501 (23.2)	1654 (76.8)	Yes	reaction assays
12							reaction assays
13	Yamada ²⁵	14 (60.9)	9 (39.1)	64 (43.5)	83 (56.5)	Yes	Sequencing
14							
15	Vimer ⁴⁰	31 (75.6)	10 (24.4)	107 (66.9)	53 (33.1)	Yes	Tagman
16		01 ((000)		107 (000)			
17	Vuliumlandari ⁴¹	22(64.0)	18 (26 0)	65 (24.0)	126 (66 0)	Vac	Sequencing
18	Tullwulaildall	32 (04.0)	18 (30.0)	03 (34.0)	120 (00.0)	105	Sequencing
19							
20	Zaverucha-do-Valle ²⁰	37 (71.2)	15 (28.8)	36 (45.6)	43 (54.4)	Yes	Sequencing
∠ I วว			NA not ovailable. DCI	nalumanaa ahain ra	action DELD mastriction	fragmant langth no	

Abbreviations: HWE, Hardy-Weinberg equilibrium; NA, not available; PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism lable; PCR, polymerase enam reaction, ...

2	
3	
1	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
10	

S3 Table. Genotype distribution, the achievement of Hardy-Weinberg equilibrium (HWE), and the genotyping method used for GST i
the included studies (n = 19)

	G	STM1 geno	otype (n =	19)	GSTT1 genotype (n = 17)				GS	TM1/GSTT1	genotype	(n = 11)		
Study	Case (number of individuals [%])Control (number individuals [%])		(number of duals [%])	Case (number of Control (number individuals [%]) individuals [%]			(number of uals [%])	Case (number of Co individuals [%])			l (number of duals [%])	HWE ^a	Genotyping	
·	Null	Non- null	Null	Non-null	Null	Non-null	Null	Non-null	Dual- null	One-/non- null	Dual- null	One-/non- null		method
\mathbf{Prito}^{3}	6	9	99	131	2	13	28	202	1	14	12	218	No	DCD
DIIIO	(40.0)	(60.0)	(43.0)	(57.0)	(13.3)	(86.7)	(12.2)	(87.8)	(6.7)	(93.3)	(5.2)	(94.8)	110	FUK
Chatterje	25	26	49	51	3	48	3	97	3	48	11	89	No	Multiplex
e ⁴²	(49.0)	(51.0)	(49.0)	(51.0)	(5.9)	(94.1)	(3.0)	(97.0)	(5.9)	(94.1)	(11.0)	(89.0)	INO	PCR
Forestier	25	34	21	19	10	49	8	32	4	55	5	35	V	Multiplex
o ⁷	(42.4)	(57.6)	(52.5)	(47.5)	(17.0)	(83.0)	(20.0)	(80.0)	(6.8)	(93.2)	(12.5)	(87.5)	ies	PCR
Country 43	21	29	61	185	11	39	30	216	5	45	4	242	N-	Multiplex
Gupta	(42.0)	(58.0)	(24.8)	(75.2)	(22.0)	(78.0)	(12.2)	(87.8)	(10.0)	(90.0)	(1.6)	(98.4)	INO	PCR
TT 44	42	21	29	34	24	39	25	38				NT A	V	Multiplex
Huang "	(66.7)	(33.3)	(46.0)	(54.0)	(38.1)	(61.9)	(39.7)	(60.3)	NA	NA	NA	NA	Yes	PCR
IZ : 45	26	31	104	86	34	23	103	87	17	40	56	133	N	DCD
Kim ¹⁰	(45.6)	(54.4)	(54.7)	(45.3)	(59.6)	(40.4)	(54.2)	(45.8)	(29.8)	(70.2)	(29.6)	(70.4)	No	PCR
т • 46	12	23	25	35	17	18	16	44	7	28	6	54	N	DCD
Leiro	(34.3)	(65.7)	(41.7)	(58.3)	(48.6)	(51.4)	(26.7)	(73.3)	(20.0)	(80.0)	(10.0)	(90.0)	No PCR	PCR
T · 47	14	6	96	47	13	7	97	46					NT	Multiplex
Liu *'	(70.0)	(30.0)	(67.1)	(32.9)	(65.0)	(35.0)	(67.8)	(32.2)	NA	NA	NA	NA	No	PCR

7

Monteiro	21	38	34	84	11	48	28	90			NT A		N	DC
48	(35.6)	(64.4)	(28.8)	(71.2)	(18.7)	(81.3)	(23.8)	(76.2)	NA	NA	NA	NA	INO	PC
D 49	10	20	37	183	6	24	68	152	9	21	96	124	N	DC
Kalla	(41.6)	(58.4)	(18.5)	(81.5)	(25.0)	(75.0)	(33.8)	(66.2)	(37.5)	(62.5)	(47.7)	(52.3)	INO	PC
D ama 13	19	36	42	203	14	41	81	164	22	33	122	123	Vac	DC
Kalla	(34.5)	(65.5)	(17.1)	(82.9)	(25.5)	(74.5)	(33.1)	(66.9)	(40.0)	(60.0)	(49.8)	(50.2)	ies	PC
P ov ⁵⁰	17	15	8	25	5	28	1	32	NA	ΝA	ΝA	ΝA	No	D
KUY	(52.0)	(48.0)	(24.0)	(76.0)	(15.0)	(85.0)	(3.0)	(97.0)	INA	INA	INA	NA	INU	ΓV
Sharma 15	42	63	68	117	NA	ΝA	N A	NA	NA	NA	ΝA	NIA	No	D
Sharma	(40.0)	(60.0)	(36.7)	(63.3)	INA	INA	INA	INA	ΝA	INA	INA	NA	INU	ΓV
Single ¹⁷	10	7	165	226	8	9	102	289	5	12	32	359	No	Mult
Siligia	(59.0)	(41.0)	(42.0)	(58.0)	(47.0)	(53.0)	(26.0)	(74.0)	(29.0)	(71.0)	(8.0)	(92.0)	No	Р
Sotsuka	12	8	50	42	7	13	40	52	NIA	NIA	NT A	NIA	Na	D
18	(60.0)	(40.0)	(54.3)	(45.7)	(35.0)	(65.0)	(43.5)	(56.5)	NA	NA	INA	NA	INO	P
Tama 19	55	34	203	153	40	49	164	192	22	67	94	262	Vac	Mult
Tang	(61.8)	(38.2)	(57.0)	(43.0)	(44.9)	(55.1)	(46.1)	(53.9)	(24.7)	(75.3)	(26.4)	(73.6)	ies	Р
Teixeira	11	15	61	80	4	22	27	114			NT A	NIA	V	Mul
21	(42.3)	(41.7)	(43.3)	(56.7)	(15.4)	(84.6)	(19.2)	(80.8)	NA	NA	INA	NA	res	Р
Wang ²³	63	41	54	57	NA	ΝA	ΝA	NA	NA	NA	NA	NIA	No	D/
wang	(60.6)	(39.4)	(48.6)	(51.4)	INA	INO	P							
Viena ²⁴	41	48	925	1230	18	71	477	1678	7	68	283	1427	Vac	D
Alang 27	(46.1)	(53.9)	(42.9)	(57.1)	(20.2)	(79.8)	(22.1)	(77.9)	(9.3)	(90.7)	(16.5)	(83.5)	res	PG

Abbreviations: HWE, Hardy-Weinberg equilibrium; NA, not available; PCR, polymerase chain reaction

^a HWE tested for GSTM1, GSTT1, and GSTM1/GSTT1 genotypes simultaneously

2	
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
∡ד ⊿२	
45 44	
44 45	
45	
46	

S4 Table. Genotype distribution, the achievement of Hardy-Weinberg equilibrium (HWE), and the genotyping method used for SLCO1BA
in the included studies $(n = 4)$

		<i>SLCO1B1</i> 388A	>G (rs2306283	3)		SLCOIBI 521T				
Study	Case (n individ	Case (number of individuals [%])		Control (number of individuals [%])		Case (number of individuals [%])		Control (number of individuals [%])		Genotyping method
	AA	AG + GG	AA	AG + GG	CC	TC + TT	CC	TC + TT		
Chen ⁵¹	8 (9.0)	81 (91.0)	33 (55.4)	409 (44.6)	2 (2.2)	87 (97.8)	3 (0.7)	438 (99.3)	Yes	Taqman
Kim ⁵²	6 (9.2)	59 (90.8)	11 (54.5)	145 (45.5)	0 (0.0)	66 (100.0)	3 (1.9)	153 (98.1)	Yes	SNPstream
Li ⁵³	11 (9.3)	107 (90.7)	12 (61.3)	143 (38.7)	1 (0.8)	117 (99.2)	1 (0.6)	154 (99.4)	Yes	PCR direct sequencing
Yimer 40	9 (22.0)	32 (78.0)	20 (33.1)	140 (66.9)	1 (2.4)	40 (97.6)	4 (2.5)	156 (97.5)	Yes	Taqman

Abbreviations: HWE, Hardy-Weinberg equilibrium; PCR, polymerase chain reaction; SNP, single nucleotide polymorphism

^a HWE tested for *SLCO1B1* 388A>G and *SLCO1B1* 521T>C genotypes simultaneously

OR,

100

OR 100

OR 100

うん

0

'n 00

0

0.1

0.1

0.1

SE(log[OR])

0

0 00

Ø

0

o

0

0

0 ର୍ଦ୍ଦର୍

´@

0

60 00

0

0

0,0

Ŷ

С

10

0

0

JQ

0 0

0

10

C

10

10

Page 51 of 67

S5 Figure. Funnel plots to evaluate publication bias for the *CYP2E1, NAT2, GST,* and *SLCO1B1* polymorphisms associated with the ATDILI risk. (A) *CYP2E1 RsaI/PstI* polymorphism, (B) *CYP2E1 Dra*I polymorphism, (C) *NAT2* polymorphism, (D) *GSTM1* polymorphism, (E) *GSTT1* polymorphism, (F) *GSTT1/M1* polymorphism, and (G) *SLCO1B1 388A>G* and *521T>C* polymorphism.

S6 Table. Subgroup analysis for the association between CYP2E1 polymorphisms and ATDILI risk

			Number	Case/	Test of associa	ation	Model of	Test of heterogeneity	
Polymorphic gene	S	ubgroup	of studies	control – (n)	OR [95% CI]	P value ^a	meta- – analysis	I ² ,%	P value ^b
CYP2E1 RsaI/PstI	Total		24	1293/5450	1.39 [1.06, 1.83]	0.02	Random	60	< 0.0001
(c1/c1 vs. c1/c2 + c2/c2)	Ethnicity	East Asian	10	736/3076	1.62 [1.12, 2.36]	0.01	Random	69	0.0006
		Indian	6	310/1295	1.08 [0.52, 2.25]	0.85	Random	70	0.005
		South American	6	216/869	1.30 [0.83, 2.03]	0.25	Fixed	0	0.49
		Others	2	31/210	0.98 [0.39, 2.45]	0.96	Fixed	0	0.66
	Anti-TB	INH alone	2	31/210	0.98 [0.39, 2.45]	0.96	Fixed	0	0.66
	drug regimen	Combination	21	1212/5104	1.35 [1.01, 1.79]	< 0.00001	Random	61	0.0002
	HWE test	HWE achieved	13	839/3570	1.67 [1.19, 2.34]	0.002	Random	58	0.004
	Diagnostic	$ALT > 2 \times ULN$	15	981/4701	1.54 [1.08, 2.18]	0.02	Random	70	< 0.0001
	criteria of ATDILI	$ALT > 3-5 \times ULN$	9	331/1034	1.11 [0.80, 1.54]	0.52	Fixed	0	0.52
	Genotyping	PCR-RELP	17	782/4194	1.24 [0.91, 1.70]	0.18	Random	46	0.02
	method	Sequencing	3	292/394	2.03 [0.87, 4.71]	0.10	Random	80	0.007
		Taqman	3	152/703	1.09 [0.74, 1.58]	0.67	Fixed	0	0.47
CYP2E1 DraI ^c	Total		6	233/1272	0.93 [0.68, 1.27]	0.64	Fixed	0	0.51
(D/D vs. D/C + C/C)	Ethnicity	East Asian	2	109/448	0.84 [0.55, 1.28]	0.41	Fixed	0	0.96
		Indian	2	91/342	0.83 [0.48, 1.45]	0.51	Fixed	27	0.24
		South American	2	33/482	1.80 [0.73, 4.45]	0.20	Fixed	0	0.37

Page 53 of 67

BMJ Open

HWE test	HWE achieved	5	116/701	1.00 [0.72, 1.38]	0.98	Fixed	0	0.57	
Diagnostic	$ALT > 2 \times ULN$	3	108/698	0.83 [0.58, 1.19]	0.32	Fixed	0	0.51	
ATDILI	$ALT > 3-5 \times ULN$	3	53/574	1.31 [0.69, 2.48]	0.41	Fixed	0	0.39	
Genotyping	PCR-RELP	5	215/1020	0.85 [0.62, 1.18]	0.33	Fixed	0	0.82	
method	Taqman	1	18/252	2.59 [0.73, 9.19]	0.14	NA	NA	NA	

Abbreviations: *ALT*, alanine aminotransferase; *ATDILI*, anti-tuberculosis drug-induced liver injury; *CI*, confidence interval; *CYP2E1*, cytochrome P450 2E1; *HWE*, Hardy-Weinberg equilibrium; *INH*, isoniazid; *NA*, not applicable; *OR*, odds ratio; *PCR-RFLP*, polymerase chain reaction-restriction fragment length polymorphism; *TB*, tuberculosis; *ULN*, upper limit of normal

^a P value from Z test

^b P value from Cochran's Q test based on chi-square statistic

° Subgroup analysis based on anti-TB drug regimen could not be performed due to insufficient information provided.

S7 Table. Subgroup analysis for the association between NAT2 polymorphism and ATDILI risk

Abbreviations: ALT, alanine aminotransferase; ATDILI, anti-tuberculosis drug-induced liver injury; CI, confidence interval; HWE, Hardy-Weinberg equilibrium; INH,

	â	_	Number	Case/	Test of associa	tion	Model of	Test of heterogeneity		
Polymorphic gene	S	ubgroup	of studies	control - (n)	OR [95% CI]	P value ^a	meta- analysis	I ² ,%	P value ^b	
NAT2	Total		34	1270/7234	3.11 [2.53, 3.82]	< 0.00001	Random	47	0.002	
(Slow acetylator vs. fast and intermediate	Ethnicity	East Asian	12	537/3885	3.48 [2.16, 5.60]	< 0.00001	Random	71	< 0.0001	
acetylator)		Indian	6	246/1352	3.07 [2.26, 4.16]	< 0.00001	Fixed	0	0.74	
		West Asian	2	44/106	9.51 [4.19, 21.61]	< 0.00001	Fixed	0	0.79	
		South American	7	231/1110	2.94 [2.11, 4.08]	< 0.00001	Fixed	0	0.75	
		African	2	55/212	2.08 [1.06, 4.10]	0.03	Fixed	52	0.15	
		Others	5	157/569	2.56 [1.72, 3.79]	< 0.00001	Fixed	15	0.32	
	Anti-TB	INH alone	2	31/210	2.32 [1.05, 5.13]	0.04	Fixed	0	0.45	
	arug regimen	Combination	31	591/1894	3.16 [2.52, 3.95]	< 0.00001	Random	51	0.0007	
	HWE test	HWE achieved	21	848/5206	2.92 [2.21, 3.85]	< 0.00001	Random	55	0.001	
	Diagnostic	$ALT > 2 \times ULN$	20	859/5272	2.90 [2.21, 3.81]	<0.00001	Random	55	0.002	
	ATDILI	$ALT > 3-5 \times ULN$	14	411/1692	3.30 [2.56, 4.27]	<0.00001	Fixed	26	0.18	
	Genotyping	PCR-RELP	23	792/3476	3.23 [2.44, 4.26]	< 0.00001	Random	50	0.003	
	method	Sequencing	7	284/1019	3.45 [2.52, 4.71]	< 0.00001	Fixed	0	0.70	
		Others	4	194/2739	2.47 [1.31, 4.67]	0.005	Random	68	0.02	

isoniazid; *NAT2*, N-acetyltransferase 2; *OR*, odds ratio; *PCR-RFLP*, polymerase chain reaction-restriction fragment length polymorphism; *TB*, tuberculosis; *ULN*, upper limit of normal

^a P value from Z test

^b P value from Cochran's Q test based on chi-square statistic

Page 55 of 67

BMJ Open

1	
2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
27	
25	
20	
2/	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	

S8 Table. Subgroup analysis for the association between GST polymorphisms and ATDILI risk

				Case/	Test of associa	tion	Model of	Test of heterogeneity	
Polymorphic gene	Subgroup		Number of studies	control (n)	OR [95% CI]	P value ^a	meta- analysis	I ² ,%	P value ^b
GSTM1°	Total		19	977/5119	1.30 [1.12, 1.52]	0.0007	Fixed	33	0.08
(null vs. non-null)	Ethnicity	East Asian	7	442/3110	1.23 [0.99, 1.54]	0.06	Fixed	23	0.25
		Indian	7	341/1420	1.68 [1.30, 2.19]	< 0.0001	Fixed	36	0.15
		Brazilian	4	159/529	0.98 [0.66, 1.47]	0.94	Fixed	0	0.60
	HWE test	HWE achieved	6	381/3000	1.34 [0.93, 1.93]	0.12	Random	52	0.07
	Diagnostic criteria of	$ALT > 2 \times ULN$	10	546/4018	1.56 [1.28, 1.91]	< 0.0001	Fixed	13	0.32
	ATDILI	$ALT > 3-5 \times ULN$	9	431/1101	1.01 [0.80, 1.29]	0.91	Fixed	10	0.35
GSTT1°	Total	0.211	17	768/4823	1.03 [0.85, 1.25]	0.76	Fixed	16	0.26
(null vs. non-null)	Ethnicity	East Asian	6	338/2999	0.96 [0.74, 1.24]	0.75	Fixed	0	0.94
		Indian	6	236/1235	1.37 [0.72, 2.59]	0.33	Random	57	0.04
		Brazilian	4	159/529	0.80 [0.47, 1.33]	0.39	Fixed	0	0.97
	HWE test	HWE achieved	6	381/3000	0.87 [0.66, 1.13]	0.29	Fixed	0	0.98
	Diagnostic criteria of	$ALT > 2 \times ULN$	9	442/3907	0.97 [0.77, 1.24]	0.83	Fixed	37	0.13
	ATDILI	$ALT > 3-5 \times ULN$	8	101/250	1.14 [0.83, 1.57]	0.42	Fixed	0	0.54
GSTM1/GSTT1°	Total		11	547/4233	1.05 [0.67, 1.62]	0.84	Random	59	0.006
(dual-null vs. one-/non-	Ethnicity	East Asian	3	235/2701	0.83 [0.58, 1.20]	0.33	Fixed	0	0.49
nun)		Indian	5	203/1202	1.33 [0.50, 3.53]	0.56	Random	80	0.0005
		Brazilian	2	74/270	0.67 [0.20, 2.18]	0.50	Fixed	0	0.47
	HWE test	HWE achieved	4	55/504	0.72 [0.51, 1.01]	0.06	Fixed	0	0.70
	Diagnostic criteria of	$ALT > 2 \times ULN$	6	330/3613	1.16 [0.60, 2.24]	0.67	Random	76	0.0009

16

	ATDILI	ALT > 3-5 × ULN	5	217/620	0.97 [0.61, 1.55]	0.90	Fixed	0	(
Abbreviations: <i>ALT</i> , alanin <i>GSTT1</i> , glutathione S-tran polymorphism; <i>ULN</i> , upper	ne aminotrans nsferase Theta er limit of nor	sferase; <i>ATDILI</i> , an 1 ; <i>HWE</i> , Hardy-Wermal	ti-tuberculosis einberg equilib	drug-induced liver inj prium; OR , odds ratio;	ury; <i>CI</i> , confidence interv <i>PCR-RFLP</i> , polymerase	ral; <i>GSTM1</i> chain reacti	, glutathione S on-restriction f	-transferase l ragment leng	Mu 1; gth
^a P value from Z test									
^b P value from Cochran's C	Q test based of	n chi-square statisti	c						
				17					

 BMJ Open

				Case/	Test of associa	ition	Model of	Test of h	eterogeneity
Polymorphic gene	Si	ubgroup	of studies	Control (n)	OR [95% CI]	P value ^a	meta- analysis	I ² ,%	P value
SLCO1B1 388A>G ^c (rs2306283)	Total Ethnicity	East Asian	4 3	279/837 274/670	1.47 [0.94, 2.29] 1.28 [0.77, 2.14]	0.09 0.35	Fixed Fixed	0 0	0.72 0.99
(AA vs. AG + GG)	Anti-TB drug regimen	Combination	3	195/758	1.57 [0.93, 2.63]	0.09	Fixed	0	0.57
	Diagnostic criteria of ATDILI	$ALT > 2 \times ULN$	3	195/758	1.57 [0.93, 2.63]	0.09	Fixed	0	0.57
	Genotyping method	Taqman	2	130/602	1.64 [0.90, 2.97]	0.11	Fixed	4	0.31
		Others	2	183/311	1.30 [0.67, 2.53]	0.44	Fixed	0	0.89
SLCO1B1 521T>C ^c	Total		4	310/901	1.21 [0.40, 3.63]	0.74	Fixed	0	0.56
<i>(rs4149056)</i> (CC vs. TC + TT)	Ethnicity	East Asian	3	273/752	1.30 [0.36, 4.66]	0.68	Fixed	0	0.38
	Anti-TB drug regimen	Combination	3	196/757	1.19 [0.36, 3.95]	0.78	Fixed	4	0.35
	Diagnostic criteria of ATDILI	$ALT > 2 \times ULN$	3	196/757	1.19 [0.36, 3.95]	0.78	Fixed	4	0.35
	Genotyping	Taqman	2	130/601	1.90 [0.49, 7.40]	0.36	Fixed	0	0.39
	metnoa	Others	2	184/311	0.61 [0.09, 4.11]	0.61	Fixed	0	0.49

anion transporter family, member IBI (encoding organic anion transporting polypeptide IBI [OAIPIBI]); **TB**, tuberculosis; **ULN**, upper limit of normal

^a P value from Z test

^b P value from Cochran's Q test based on chi-square statistic

^c Subgroup analysis based on the achievement of Hardy-Weinberg equilibrium could not be performed due to insufficient information provided

.enberg equilibrium could not be perfor.

References

1. An HR, Wu XQ, Wang ZY *et al.* NAT2 and CYP2E1 polymorphisms associated with antituberculosis drug-induced hepatotoxicity in Chinese patients. *Clinical and Experimental Pharmacology and Physiology* 2012; **39**: 535-43.

2. Bose PD, Sarma MP, Medhi S *et al.* Role of polymorphic N-acetyl transferase2 and cytochrome P4502E1 gene in antituberculosis treatment-induced hepatitis. *J Gastroenterol Hepatol* 2011; **26**: 312-8.

3. Brito TC, Possuelo LG, Valim ARM *et al.* Polymorphisms in CYP2E1, GSTM1 and GSTT1 and anti-tuberculosis drug-induced hepatotoxicity. *Anais Da Academia Brasileira De Ciencias* 2014; **86**: 855-65.

4. Chamorro JG, Castagnino JP, Musella RM *et al.* Sex, ethnicity, and slow acetylator profile are the major causes of hepatotoxicity induced by antituberculosis drugs. *J Gastroenterol Hepatol* 2013; **28**: 323-8.

5. Cho HJ, Koh WJ, Ryu YJ *et al.* Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. *Tuberculosis* 2007; **87**: 551-6.

6. Feng FM, Guo M, Chen Y *et al.* Genetic polymorphisms in metabolic enzymes and susceptibility to anti-tuberculosis drug-induced hepatic injury. *Genetics and Molecular Research* 2014; **13**: 9463-71.

7. Forestiero FJ, Cecon L, Hirata MH *et al.* Relationship of NAT2, CYP2E1 and GSTM1/GSTT1 polymorphisms with mild elevation of liver enzymes in Brazilian individuals under anti-tuberculosis drug therapy. *Clinica Chimica Acta* 2013; **415**: 215-9.

8. Gupta VH, Amarapurkar DN, Singh M *et al.* Association of N-acetyltransferase 2 and cytochrome P450 2E1 gene polymorphisms with antituberculosis drug-induced hepatotoxicity in Western India. *J Gastroenterol Hepatol* 2013; **28**: 1368-74.

Huang YS, Chern HD, Su WJ *et al.* Cytochrome p450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. *Hepatology* 2003; 37: 924-30.
 Kim SH, Kim SH, Bahn JW *et al.* Genetic polymorphisms of drug-metabolizing enzymes and anti-TB drug-induced hepatitis. *Pharmacogenomics* 2009; 10: 1767-79.
 Lee SW, Chung LS, Huang HH *et al.* NAT2 and CYP2E1 polymorphisms and susceptibility to first-line anti-tuberculosis drug-induced hepatitis. *Int J Tuberc Lung Dis*

2010; 14: 622-6.

12. Mishra S, Daschakraborty S, Shukla P *et al.* N-acetyltransferase and cytochrome
P450 2E1 gene polymorphisms and susceptibility to antituberculosis drug hepatotoxicity in
an Indian population. *National Medical Journal of India* 2013; 26: 260-5.

13. Rana SV, Sharma SK, Ola RP *et al.* N-acetyltransferase 2, cytochrome P4502E1 and glutathione S-transferase genotypes in antitubercular treatment-induced hepatotoxicity in North Indians. *J Clin Pharm Ther* 2014; **39**: 91-6.

14. Santos NP, Callegari-Jacques SM, Ribeiro Dos Santos AK *et al.* N-acetyl transferase
2 and cytochrome P450 2E1 genes and isoniazid-induced hepatotoxicity in Brazilian
patients. *Int J Tuberc Lung Dis* 2013; 17: 499-504.

15. Sharma SK, Jha BK, Sharma A *et al.* Genetic polymorphisms of CYP2E1 and GSTM1 loci and susceptibility to anti-tuberculosis drug-induced hepatotoxicity. *International Journal of Tuberculosis and Lung Disease* 2014; **18**: 588-93.

16. Singh M, Gupta VH, Amarapurkar DN *et al.* Association of genetic variants with anti-tuberculosis drug induced hepatotoxicity: A high resolution melting analysis. *Infection Genetics and Evolution* 2014; **23**: 42-8.

17. Singla N, Gupta D, Birbian N *et al.* Association of NAT2, GST and CYP2E1
polymorphisms and anti-tuberculosis drug-induced hepatotoxicity. *Tuberculosis* 2014; 94:
293-8.

BMJ Open

18. Sotsuka T, Sasaki Y, Hirai S *et al.* Association of Isoniazid-metabolizing Enzyme
Genotypes and Isoniazid-induced Hepatotoxicity in Tuberculosis Patients. *In Vivo* 2011;
25: 803-12.

19. Tang SW, Lv XZ, Zhang Y *et al.* CYP2E1, GSTM1 and GSTT1 genetic polymorphisms and susceptibility to antituberculosis drug-induced hepatotoxicity: a nested case-control study. *J Clin Pharm Ther* 2012; **37**: 588-93.

20. Tang S, Lv X, Zhang Y *et al.* Cytochrome P450 2E1 Gene

Polymorphisms/Haplotypes and Anti-Tuberculosis Drug-Induced Hepatitis in a Chinese Cohort. *PLoS ONE* 2013; **8**: e57526.

21. Teixeira RL, Morato RG, Cabello PH *et al.* Genetic polymorphisms of NAT2, CYP2E1 and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in Brazilian TB patients. *Mem Inst Oswaldo Cruz* 2011; **106**: 716-24.

22. Vuilleumier N, Rossier MF, Chiappe A *et al.* CYP2E1 genotype and isoniazidinduced hepatotoxicity in patients treated for latent tuberculosis. *Eur J Clin Pharmacol* 2006; **62**: 423-9.

23. Wang T, Yu HT, Wang W *et al.* Genetic Polymorphisms of Cytochrome P450 and Glutathione S-transferase Associated with Antituberculosis Drug-induced Hepatotoxicity in Chinese Tuberculosis Patients. *Journal of International Medical Research* 2010; **38**: 977-86.

24. Xiang Y, Ma L, Wu WD *et al.* The Incidence of Liver Injury in Uyghur Patients Treated for TB in Xinjiang Uyghur Autonomous Region, China, and Its Association with Hepatic Enzyme Polymorphisms NAT2, CYP2E1, GSTM1 and GSTT1. *Plos One* 2014; 9.
25. Yamada S, Tang M, Richardson K *et al.* Genetic variations of NAT2 and CYP2E1 and isoniazid hepatotoxicity in a diverse population. *Pharmacogenomics* 2009; 10: 1433-45. **26.** Zaverucha-do-Valle C, Monteiro SP, El-Jaick KB *et al.* The role of cigarette smoking and liver enzymes polymorphisms in anti-tuberculosis drug-induced hepatotoxicity in Brazilian patients. *Tuberculosis (Edinb)* 2014; **94**: 299-305.

27. Ben Mahmoud L, Ghozzi H, Kamoun A *et al.* Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis. *Pathologie Biologie* 2012; 60: 324-30.

28. Bozok Cetintas V, Erer OF, Kosova B *et al.* Determining the relation between N-acetyltransferase-2 acetylator phenotype and antituberculosis drug induced hepatitis by molecular biologic tests. *Tuberk Toraks* 2008; **56**: 81-6.

29. Higuchi N, Tahara N, Yanagihara K *et al.* NAT2 6A, a haplotype of the N-acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-induced hepatotoxicity in Japanese patients with tuberculosis. *World J Gastroenterol* 2007;
13: 6003-8.

30. Ho HT, Wang TH, Hsiong CH *et al.* The NAT2 tag SNP rs1495741 correlates with the susceptibility of antituberculosis drug-induced hepatotoxicity. *Pharmacogenet Genomics* 2013; **23**: 200-7.

31. Huang YS, Chern HD, Su WJ *et al.* Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. *Hepatology* 2002;
35: 883-9.

32. Khalili H, Fouladdel S, Sistanizad M *et al.* Association of N-acetyltransferase-2 genotypes and anti-tuberculosis induced liver injury: First case-controlled study from Iran. *Curr Drug Saf* 2011; **6**: 17-22.

33. Leiro-Fernandez V, Valverde D, Vazquez-Gallardo R *et al.* N-acetyltransferase 2 polymorphisms and risk of anti-tuberculosis drug-induced hepatotoxicity in Caucasians.

BMJ Open

International Journal of Tuberculosis and Lung Disease 2011; 15: 1403-8.

34. Lv X, Tang S, Xia Y *et al.* NAT2 genetic polymorphisms and anti-tuberculosis druginduced hepatotoxicity in Chinese community population. *Ann Hepatol* 2012; **11**: 700-7.

35. Ng CS, Hasnat A, Al Maruf A *et al.* N-acetyltransferase 2 (NAT2) genotype as a risk factor for development of drug-induced liver injury relating to antituberculosis drug treatment in a mixed-ethnicity patient group. *Eur J Clin Pharmacol* 2014; **70**: 1079-86.

36. Ohno M, Yamaguchi I, Yamamoto I *et al.* Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. *International Journal of Tuberculosis and Lung Disease* 2000; **4**: 256-61.

37. Possuelo LG, Castelan JA, de Brito TC *et al.* Association of slow N-acetyltransferase
2 profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil. *Eur J Clin Pharmacol* 2008; 64: 673-81.

38. Rana SV, Ola RP, Sharma SK *et al.* Comparison between acetylator phenotype and genotype polymorphism of n-acetyltransferase-2 in tuberculosis patients. *Hepatology International* 2012; **6**: 397-402.

39. Shimizu Y, Dobashi K, Mita Y *et al.* DNA microarray genotyping of N-acetyltransferase 2 polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity. *Tuberculosis* 2006; **86**: 374-81.

40. Yimer G, Ueda N, Habtewold A *et al.* Pharmacogenetic & pharmacokinetic biomarker for efavirenz based ARV and rifampicin based anti-TB drug induced liver injury in TB-HIV infected patients. *PLoS One* 2011; **6**: e27810.

41. Yuliwulandari R, Susilowati RW, Wicaksono BD *et al.* NAT2 variants are associated with drug-induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. *J Hum Genet* 2016.

42. Chatterjee S, Lyle N, Mandal A et al. GSTT1 and GSTM1 gene deletions are not

associated with hepatotoxicity caused by antitubercular drugs. *J Clin Pharm Ther* 2010; **35**: 465-70.

43. Gupta VH, Singh M, Amarapurkar DN *et al.* Association of GST null genotypes with anti-tuberculosis drug induced hepatotoxicity in Western Indian population. *Ann Hepatol* 2013; **12**: 959-65.

44. Huang YS, Su WJ, Huang YH *et al.* Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. *J Hepatol* 2007; 47: 128-34.
45. Kim SH, Kim SH, Yoon HJ *et al.* GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. *Tuberculosis* 2010; 90: 39-43.
46. Leiro V, Fernandez-Villar A, Valverde D *et al.* Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. *Liver International* 2008; 28: 835-9.

47. Liu F, Jiao AX, Wu XR *et al.* Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. *Plos One* 2014; **9**.

48. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL *et al.* The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. *J Clin Pharm Ther* 2012; **37**: 712-8.

49. Rana SV, Kamboj JK, Sharma SK *et al.* Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. *Hepatol Int* 2013; **7**: 876-82.

50. Roy B, Chowdhury A, Kundu S *et al.* Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. *J Gastroenterol Hepatol* 2001; **16**: 1033-7.

51. Chen R, Wang J, Tang S *et al.* Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. *Tuberculosis* 2015; **95**: 68-74.

52. Kim SH, Kim SH, Lee JH *et al.* Polymorphisms in drug transporter genes (ABCB1, SLCO1B1 and ABCC2) and hepatitis induced by antituberculosis drugs. *Tuberculosis* 2012; 92: 100-4.

53. Li LM, Chen L, Deng GH *et al.* SLCO1B1*15 haplotype is associated with rifampininduced liver injury. *Mol Med Rep* 2012; **6**: 75-82.

Tore teries only

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Page 1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Page 3
Rationale	3	Describe the rationale for the review in the context of what is already known.	Page 5-6
) Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Page 5-6
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	not applicable
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Page 7-8
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Page 7
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Page 7
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Page 7-8
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Page 8
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Page 8
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Page 8
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Page 8-9
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	Page 8-9

 Page 67 of 67

2 3

PRISMA 2009 Checklist

1	I	rage 1 01 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Page 8
O Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Page 8-9
RESULTS			
4 Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Page 8
P Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Table 1
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Page 8-13
23 Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Page 8-13
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Supplementar y Figure S5
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Supplementar y Table S6-S9
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Page 13-14
33 Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Page 18
Gonclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Page 18-19
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Page 19

 42 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097.
 43 doi:10.1371/journal.pmed1000097 44

For more information, visit: <u>www.prisma-statement.org</u>. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml Page 2 of 2

- 45 46
- 47

BMJ Open

Association of genetic polymorphisms of CYP2E1, NAT2, GST, and SLCO1B1 with the risk of anti-tuberculosis druginduced liver injury: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027940.R1
Article Type:	Research
Date Submitted by the Author:	16-Apr-2019
Complete List of Authors:	Yang , Seungwon ; Yonsei University, Department of Pharmacy and Yonsei Institute of Pharmaceutical Science Hwang, Se Jung ; Kyung Hee University, Department of Pharmacy Park, Jung Yun ; Seoul National University, Department of Pharmacy Chung, Eun Kyoung; Kyung Hee University, College of Pharmacy, Department of Pharmacy; Kyung Hee University Hospital at Gangdong, Department of Pharmacy Lee , Jangik I.; Seoul National University, College of Pharmacy; Seoul National University, College of Pharmacy and Research Institute of Pharmaceutical Sciences
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Genetics and genomics, Infectious diseases, Evidence based practice
Keywords:	Anti-tuberculosis drug-induced liver injury, genetic polymorphisms, meta-analysis, drug-metabolizing enzyme, drug transporter, Tuberculosis < INFECTIOUS DISEASES
	·

SCHOLARONE[™] Manuscripts

1 2		
3		
4 5 6	1	Original article
/ 8 9	2	Association of genetic polymorphisms of CYP2E1, NAT2, GST, and
10 11 12	3	SLCO1B1 with the risk of anti-tuberculosis drug-induced liver
13 14 15 16	4	injury: a systematic review and meta-analysis
17 18 19	5	Seungwon Yang ¹ , Se Jung Hwang ² , Jung Yun Park ³ , Eun Kyoung Chung ^{2,4*} , Jangik Ike Lee ^{3,,5*}
20 21	6	¹ Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy,
22 23 24	7	Yonsei University, Incheon 21983, Republic of Korea
25 26	8	² Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic
27 28	9	of Korea
29 30 31	10	³ College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
32 33	11	⁴ Department of Pharmacy, Kyung Hee University Hospital at Gangdong, Seoul, 05278,
34 35 26	12	Republic of Korea
30 37 38	13	⁵ College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National
39 40	14	University, Seoul 08826, Republic of Korea
41 42 43	15	
44 45 46 47	16	Word counts: 4453 words
48 49 50	17	
50 51 52	18	*Corresponding authors
53 54 55 56 57 58	19	Prof., Eun Kyoung Chung, PharmD, Ph.D. 1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

20 Department of Pharmacy, College of Pharmacy, Kyung Hee University

- 21 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447
- 22 South Korea
- 23 Tel: +82-2-962-2122
- 24 Fax: +82-2-961-9580
 - 25 E-mail: cekchung@khu.ac.kr
- 27 Prof. Jangik I. Lee, PharmD, Ph.D.
- 28 Department of Pharmacy, College of Pharmacy, Seoul National University
- 29 103 Daehak-Ro, Jongno-Gu, Seoul 03080

Genetics of anti-tuberculosis liver injury

30 South Korea

- 31 Tel: +82-2-3668-7474
- 32 Fax: +82-2-3668-7475
- 33 E-mail: jangik.lee@snu.ac.kr
- ³⁴ *Jangik I. Lee and Eun Kyung Chung have equally contributed to this study.
 - 36 Running head

reliev.
1

ว	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
10	
IŎ	
19	
20	
21	
22	
25	
∠_) _/	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
25	
35	
36	
37	
38	
39	
⊿∩	
-+U / 1	
41	
42	
43	
44	
45	
46	
40	
4/	
48	
49	
50	
51	
57	
52	
53	
54	
55	
56	
57	
50	
50 50	
59	
60	

ABSTRACT

Objectives The objective of this study was to investigate the association between genetic 40 polymorphisms of NAT2, CYP2E1, GST, and SLCO1B1 and the risk of anti-tuberculosis drug-41 induced liver injury (ATDILI). 42 **Design** Systematic review and meta-analysis 43 Data Sources PubMed, EMBASE, Web of Science, and Cochrane Reviews databases were 44 searched through February 2018. 45 Eligibility Criteria We included case-control or cohort studies investigating an association 46 between NAT2, CYP2E1, GST, or SLCO1B1 polymorphisms and the ATDILI risk in tuberculosis 47 patients. 48 Data extraction and synthesis Three authors screened articles, extracted data, and assessed 49 study quality. The strength of association was evaluated for each gene using the pooled odds 50 ratio (OR) with a 95% confidence interval (CI) based on the fixed- or random-effects model. 51 Sensitivity analysis was performed to confirm the reliability and robustness of the results. 52 **Results** Fifty-four studies were included in this analysis (n = 26 for *CYP2E1*, n = 35 for *NAT2*, n 53 = 19 for GST, n = 4 for SLCO1B1). The risk of ATDILI was significantly increased with the 54 following genotypes: CYP2E1 RsaI/PstI c1/c1 (OR = 1.39; 95% CI 1.06-1.83), NAT2 slow 55 acetylator (OR = 3.30, 95% CI 2.65–4.11), and GSTM1 null (OR = 1.30, 95% CI 1.12–1.52). No 56 significant association with ATDILI was found for the genetic polymorphisms of CYP2E1 DraI, 57

59 **Conclusions**

58

ATDILI is more likely to occur in tuberculosis patients with *NAT2* slow acetylator genotype,

GSTT1, *GSTM1/GSTT1*, *SLCO1B1* 388A>G, and *SLCO1B1* 521T>C (P > 0.05).

2		
3 4 5	61	CYP2E1 RsaI/PstI c1/c1 genotype, and GSTM1 null genotype. Close monitoring may be
6 7	62	warranted for patients with these genotypes.
8 9 10	63	
10 11 12	64	Strengths and limitations of this study
13 14 15	65	• This is the first meta-analysis to evaluate the association between the risk of ATDILI
16 17 18	66	and SLCO1B1 in TB patients.
19 20	67	• We included most updated studies with the large sample sizes to better clarify the
21 22	68	association of genetic polymorphisms with the risk of ATDILI.
23 24 25	69	• The effect of anti-tuberculosis drug dosages on the risk of ATDILI could not be
26 27	70	accounted for in this study due to the lack of drug dosing information in the majority of
28 29	71	the included studies.
30 31 32	72	
33 34	73	
35 36 37		
38 39		
40 41		
42 43		
44 45 46		
47 48		
49 50		
51 52		
55 55		
56 57		4
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

74 Introduction

75	Tuberculosis (TB) is a rampant infectious disease caused by <i>Mycobacterium tuberculosis</i> . It
76	poses a major public health threat globally with approximately 1.3 million deaths and 10 million
77	new cases in 2017 ¹ . The mainstay of first-line TB treatment is a 4-drug combination regimen of
78	isoniazid (INH), rifampicin (RIF), pyrazinamide (PZA), and ethambutol (EMB) during the first 2
79	months, followed by INH and RIF for additional 4 months ²³ . The currently recommended
80	therapy for TB is highly effective, resulting in high cure rates if patients are adherent to therapy
81	⁴ . However, treatment adherence is often suboptimal in patients receiving the combination anti-
82	TB therapy due to many adverse drug reactions, some of which are considered detrimental ⁵ . One
83	of the common adverse drug reactions associated with anti-TB medications is anti-TB drug-
84	induced liver injury (ATDILI) affecting 2-28% of tuberculosis patients ⁶ . ATDILI could be
85	potentially serious and fatal, resulting in the treatment interruption and ultimately, treatment
86	failure ^{7 8} .
87	Recently, increasing evidence suggests an association between the risk of ATDILI and genetic
88	polymorphisms of drug-metabolizing enzymes (DMEs) and drug transporters ^{9 10} . Altered
89	enzyme activity due to polymorphic genotypes of various DMEs including cytochrome P450
90	2E1 (CYP2E1), N-acetyltransferase 2 (NAT2), and glutathione S-transferase (GST) can result in
91	the accumulation of toxic substances in the liver, leading to the development of ATDILI ¹¹ .
92	However, conflicting results have been reported regarding the association between the risk of
93	ATDILI and genetic polymorphisms of various DMEs in tuberculosis patients 9 12 13. In addition
94	to DMEs, drug transporters have been emerging as a key determinant of the pharmacokinetics
95	and pharmacodynamics of a drug ¹⁴ . Among various drug transporters, organic anion

transporting polypeptide 1B1 (OATP1B1), encoded by SLCO1B1, is the major influx transporter responsible for hepatic uptake of RIF¹⁵. Although several studies have previously examined the association between SLCO1B1 polymorphisms and the risk of ATDILI, conflicting results have been reported regarding the effect of *SLCO1B1* polymorphisms on ATDILI risk. Therefore, an updated meta-analysis has been warranted to confirm the association between the ATDILI risk and genetic polymorphisms of DMEs. In our preliminary literature search, several polymorphic genes, including many DMEs, transporters, and other genes such as those involved in the immune system, were identified to have an association with the risk of ATDILI. Among these, sufficient, published information was available to confirm the effect of CYP2E1, NAT2, GST, and SLCO1B1 genetic polymorphisms on the ATDILI risk through meta-analysis.

Objectives

The objective of this meta-analysis was to evaluate the association between the risk of ATDILI and genetic polymorphisms of *CYP2E1*, *NAT2*, *GST*, and *SLCO1B1* in tuberculosis patients.

110 Methods

This study was in compliance with the Meta-analysis Of Observational Studies in Epidemiology
(MOOSE) checklist for reporting the study design, search strategy, methods, results, and
conclusions (S1 Table). Three authors (SY, JP, and SH) independently conducted a literature
search, study selection, quality assessment, and data extraction. Any discrepancies were
adjudicated by corresponding authors (JIL and EKC).

Search strategy

BMJ Open

Electronic databases of PubMed, EMBASE, Web of Science, and Cochrane Reviews were systematically searched from their inception to February 2018 to identify relevant studies evaluating the association of NAT2, CYP2E1, GST, and SLCO1B1 polymorphisms with ATDILI risk. A comprehensive literature search was conducted using a combination of the following keywords and Medical Subject Heading (MeSH) terms: ("genetic polymorphism" or "NAT2" or "*CYP2E1*" or "*GST*" or "*SLCO1B1*" or "drug-metabolizing enzymes" or "drug transporter") AND ("anti-tuberculosis agents drug-induced liver injuries" or "hepatotoxicity"). The detailed search strategies for each electronic database used in this analysis are presented in S2 Table. The reference lists in the selected reviews and meta-analyses were reviewed to ensure the inclusion of all relevant evidence in this analysis.

127 Study selection

Studies were considered eligible if they met all of the following inclusion criteria: (1) studies with TB patients receiving anti-TB drug regimen; (2) studies with the control group of TB patients tolerant of anti-TB medications; (3) studies evaluating the association between the occurrence of ATDILI and genetic polymorphisms of CYP2E1, NAT2, GST, and SLCO1B1 388A>G and 521T>C; and (4) case-control or cohort observational studies. Excluded studies were as follows: (1) studies available only in the form of abstracts or meeting posters; (2) review or meta-analysis articles; (3) studies providing insufficient data necessary for the statistical data analysis; (4) studies in non-English language; (5) non-human studies including animal and in vitro studies; (6) studies with unpublished data; (7) studies providing insufficient information on genotyping methods; and (8) healthy controls.

Quality assessment and data extraction

The quality of included studies was assessed using the revised Little's recommendation based on the following criteria ^{16 17}: (1) scientific design; (2) definite inclusion of study population; (3) explicit information on study population; (4) explicit diagnostic criteria of ATDILI; (5) genetic detection method; (6) appropriate statistical analysis; and (7) logical discussion of study bias. Studies with an overall score of \geq 4 (range 0 to 7) were considered high quality and retained in the analysis.

The following data were extracted from each study using a standardized extraction form: (1) name of the first author; (2) year of publication; (3) the polymorphic gene(s) and genotype(s) under investigation; (4) ethnicity; (5) sample size; (6) mean or median age; (7) sex distribution; (8) anti-TB drug regimens; (9) diagnostic criteria of ATDILI; (10) genotyping methods; and (11) the number of cases and controls for each polymorphic genotype.

150 Statistical analysis

The genotypes were analyzed based on the following proposed genetic risk model: (1) NAT2 (slow acetylator vs. intermediate and fast acetylator); (2) CYP2E1 (c1/c1 vs. c1/c2 and c2/c2 for the *Rsal/PstI* polymorphism, D/D vs. D/C and C/C for the *DraI* polymorphism); (3) *GSTM1* (null vs. non-null); (4) GSTT1 (null vs. non-null); (5) GSTM1/GSTT1 (dual-null vs. one- or non-null); and (6) SLCO1B1 388A>G and 521T>C polymorphisms. The genetic risk models for NAT2, CYP2E1, GSTM1, GSTT1, and GSTM1/GSTT1 have been studied in previous studies^{9 18 19}. Based on these previous studies, the most clinically significant and plausible model for each polymorphic gene was selected. Due to the relative paucity of data suggesting the most clinically relevant genetic model for SLCO1B1 388A>G and 521T>C polymorphisms, all three genomic

Page 9 of 69

BMJ Open

models including dominant, recessive, and additive models were evaluated. The Mantel-Haenszel or DerSimonian-Laird method based on fixed- or random-effects models, respectively, were used depending on the presence of heterogeneity ^{20 21}. The random-effects model was used in the presence of significant heterogeneity; otherwise, the fixed-effects model was used to estimate the total effect of a polymorphic gene genotype on the risk of ATDILI. Heterogeneity of study outcomes among included studies was evaluated using Cochran's Q test (Q) and quantified using Higgin's I^2 test. Significant heterogeneity was defined as the I^2 score of > 40% accompanied by P < 0.10 from the Cochran's Q test ²². The strength of the association between the genetic polymorphisms and the risk of ATDILI was estimated using pooled odds ratios (ORs) with the corresponding 95% confidence intervals (CIs). The statistical significance of an OR was defined as P < 0.05 from the Z test. Subgroup analysis was performed based on ethnicity, anti-TB drug regimen used, and the type of study design. Sensitivity analysis was conducted to assess the robustness of the results and to identify the source of heterogeneity using the leave-one-out method. In each analysis, one study was deleted, and with the one study left out, the meta-analysis was performed; this process was repeated until every study had been deleted from our included study pool for each tested polymorphic gene. Publication bias was evaluated with a symmetrical funnel plot. Statistical analyses were performed using Review Manager Software version 5.3 (Cochrane Collaboration,

180 Patient and public involvement

London, UK).

181 Patients and public were not involved in the design of this study.

Study selection and characteristics

Results

Overall, 388 articles were identified through electronic database search and 3 articles through manual search by reviewing the reference lists of retrieved articles. After removing 99 duplicates, 289 articles were screened for relevance based on the title and abstract. Among them, 72 relevant articles were assessed for eligibility through full-text evaluations. Finally, a total of 54 articles which met the inclusion criteria were included in our analysis (Figure 1). Among the 54 studies, 26 studies were included for CYP2E1, 35 studies for NAT2, 19 studies for GST (19 for GSTM1, 17 for GSTT1, and 11 for GSTM1/GSTT1), and 4 studies for SLCO1B1 388A>G and 521T>C.

Table 1 summarizes the characteristics of the included studies. Across the included studies, large variability in study population was observed in terms of ethnicity (Chinese, Japanese, Korean, Indian, Taiwanese, Brazilian, Caucasian, Iranian, Tunisian, and Turkish), age (mean or median age ranging from 27 to 70 years), and sex (the proportion of males ranging from 13% to 90%). Patients in our included studies received either monotherapy with INH or RIF or a combination therapy including a 4-drug regimen of INH, RIF, PZA, and EMB for the treatment of TB. ATDILI was defined as an elevated serum alanine aminotransferase (ALT) concentration by 1.5- to 5-fold or greater above the upper limit of normal (ULN) depending on the study. The quality score of the included studies was 6 or greater based on the revised Little's recommendation (Table 1, S3 Table)^{16 17}. Genotype distribution and genotyping method used in the included studies are summarized for each polymorphic gene in S4 to S7 Tables. Funnel plots

for *CYP2E1, NAT2, GST*, and *SLCO1B1* are provided in S8 Figure. None of the funnel plots showed an asymmetric inverted funnel shape, indicating the absence of potential publication bias.

CYP2E1

For the CYP2E1 RsaI/PstI polymorphism, 24 studies with 1293 cases and 5450 controls were included in our primary analysis. Using the random-effects model, the pooled estimates of all included studies (n = 24) showed a significant association between the risk of ATDILI and the CYP2E1 RsaI/PstI polymorphism (OR for the c1/c1 genotype = 1.39, 95% CI 1.06–1.83, P = 0.02; $I^2 = 60\%$, $P_{heterogeneity} < 0.0001$) (Figure 2A). In the subgroup analysis based on ethnicity, and anti-TB drug regimens, the risk of ATDILI was significantly increased for the CYP2E1 *RsaI/PstI c1/c1* genotype in East Asian patients (OR = 1.62, 95% CI 1.26–2.36, P = 0.01; I^2 = 69%, P_{heterogeneity} = 0.0006) and in patients receiving a combination of anti-TB medications (OR = 1.35, 95% CI 1.01–1.79, P < 0.00001; $I^2 = 61\%$, P_{heterogeneity} = 0.0002) (S9 Table). No significant association was observed between the risk of ATDILI and the CYP2E1 RsaI/PstI c1/c1 genotype when evaluating studies with the same study design only (i.e., either case-control studies or cohort studies) (S9 Table).

In our primary analysis for the *CYP2E1 Dra*I polymorphism with six studies including 233 cases and 1272 controls, no significant association was observed using the fixed-effects 226 model between the risk of ATDILI and the *Dra*I polymorphism (OR for the D/D genotype = 227 0.93, 95% CI 0.68–1.27, P = 0.64; $I^2 = 0\%$, P_{heterogeneity} = 0.51) (Figure 2B).

NAT2

Overall, 35 studies with 1323 cases and 7319 controls were included in our primary analysis for

the *NAT2* polymorphism. Using the random-effects model, the pooled estimates of all included studies (n = 35) showed a significant association between the risk of ATDILI and the *NAT2* polymorphism (OR for the slow acetylator genotype = 3.30, 95% CI 2.65–4.11, P < 0.00001; I^2 = 54%, P_{heterogeneity} < 0.0001) (Figure 3). In the subgroup analysis based on ethnicity, anti-TB drug regimens used, and study design, the risk of ATDILI was significantly increased in slow acetylators compared to fast or intermediate acetylators in all subgroups (S10 Table).

GST

For the GSTM1 polymorphism, a total of 19 studies with 977 cases and 5119 controls were included in our primary analysis. Using the fixed-effects model, the pooled estimates of all included studies (n = 19) showed a significant association between the risk of ATDILI and the GSTM1 polymorphism (OR for the GSTM1 null genotype = 1.30, 95% CI 1.12-1.52, P = 0.0007; $I^2 = 33\%$, P_{heterogeneity} = 0.08) (Figure 4A). When studies were stratified for ethnicity, the risk of ATDILI was significantly increased for the GSTM1 null genotype in Indians (OR = 1.68, 95% CI 1.30-2.19, P < 0.0001; $I^2 = 36\%$, P_{heterogeneity} = 0.15) (S11 Table). In the subgroup analyses by study design, the estimated OR (95% CI, P-value; l², P_{heterogeneity}) for the GSTM1 null genotype relative to the non-null genotype was 1.41 (1.04-1.93, P = 0.03; $I^2 = 44\%$, $P_{heterogeneity} = 0.08$) in cohort studies and 1.25 (1.01-1.55, P = 0.20; $I^2 = 29\%$, $P_{heterogeneity} = 0.17$) in case-control studies, respectively (S11 Table).

For the *GSTT1* and *GSTM1/GSTT1* polymorphisms, 17 studies (768 cases, 4823 controls) and 11 studies (547 cases, 4233 controls) were included in our primary analyses, respectively. The risk of ATDILI was not significantly associated with the *GSTT1* polymorphism (OR for the null genotype = 1.03, 95% CI 0.85-1.25, P = 0.76; $l^2 = 16\%$, P_{heterogeneity} = 0.26) or the

GSTM1/GSTT1 polymorphism (OR for the dual-null genotype = 1.05, 95% CI 0.67–1.62, P = 0.84; $I^2 = 59\%$, P_{heterogeneity} = 0.006) (Figures 4B and 4C). When studies were stratified for ethnicity, anti-TB drug regimens used, and study design, no subgroups showed significant association between the risk of ATDILI and the *GSTT1* and the *GSTM1/GSTT1* polymorphisms (S11 Table).

SLCO1B1

For the SLCO1B1 388A>G polymorphism, four studies with 302 cases and 913 controls were included in our primary analysis. Using the dominant, recessive, or additive genomic model, no significant association was observed between the risk of ATDILI and the SLCO1B1 388A>G polymorphism (Table 2). For the SLCO1B1 521T>C polymorphism, four studies with 314 cases and 912 controls were included in our primary analysis. No significant association was found between the ATDILI risk and the SLCO1B1 521T>C polymorphism under the dominant, recessive, or additive genetic model (Table 2). Due to the lack of significant association between the risk of ATDILI and the tested SLCO1B1 genetic polymorphisms in our primary meta-analysis, subgroup analyses were not performed for these genetic polymorphisms.

263 Sensitivity analysis

Our primary analysis results showed significantly high heterogeneity between studies for

 $CYP2E1 RsaI/PstI (I^2 = 60\%, P < 0.0001), NAT2 (I^2 = 54\%, P < 0.0001), GSTM1/GSTT1 (I^2 = 54\%, P < 0.0001), GSTM1/G$

266 59%, P = 0.006), and *SLCO1B1* 521T>C (dominant genetic model: $I^2 = 66\%$, P = 0.03)

polymorphisms. This high heterogeneity between studies may be due to substantial differences in

ethnicity, anti-TB drug regimen, the genotyping method used, study design, and diagnostic

criteria of ATDILI among the included studies (Table 1). Through the sensitivity analyses,

outlier studies were identified as the major source of heterogeneity. After removing these outlier studies, heterogeneity was substantially reduced ($I^2 = 60\%$ to 42% for *CYP2E1 RsaI/PstI*²³, $I^2 =$ 54% to 34% for *NAT2*²⁴²⁵, $I^2 = 59\%$ to 0% for *GSTM1/GSTT1*²⁶²⁷, and $I^2 = 66\%$ to 0% for *SLCO1B1* 521T>C dominant genetic model ²⁸). The overall results for the association between the risk of ATDILI and these genetic polymorphisms after excluding the outlier studies stayed the same as those from our primary analysis results.

Discussion

In this study, we conducted a large-scale meta-analysis evaluating the association between the risk of ATDILI and genetic polymorphisms of SLCO1B1 as well as various DMEs including *CYP2E1*, *NAT2*, and *GST* to provide more updated, comprehensive, and compelling evidence. Compared with previous meta-analyses, our present study included a larger number of studies, which may sufficiently increase the statistical power compared to individual studies. However, a limited number of studies for the SLCO1B1 genetic polymorphisms were included (n = 4). Consistently with previous studies, our current study suggested a significantly increased risk of ATDILI in patients with the CYP2E1 RsaI/PstI c1/c1 genotype (OR = 1.39, 95% CI 1.06–1.83), the *NAT2* slow acetylator genotype (OR = 3.30, 95% CI 2.65–4.11), and the *GSTM1* null genotype (OR = 1.30, 95% CI 1.12-1.52) 91229 . Among these genotypes, the largest increase in the risk of ATDILI was shown in patients with the NAT2 slow acetylator genotype. In contrast, no significant association was observed between the risk of ATDILI and the genetic polymorphisms of CYP2E1 DraI, GSTT1, GSTM1/GSTT1, SLCO1B1 388A>G, and SLCO1B1 521T > C. Caution needs to be exercised when interpreting this study finding because the lack of

significant association between these polymorphisms and the risk of ATDILI might be due to
small sample sizes and the low frequency of ATDILI reported in patients with these genetic
polymorphisms.

When evaluating the impact of the CYP2E1 RsaI/PstI and DraI genetic polymorphisms on the risk of ATDILI in our study, patients with the Rsal/PstI c1/c1 genotype were 1.39-times more likely to develop ATDILI. Similarly, in a previous meta-analysis by Deng and colleagues, the risk of ATDILI was 1.4-times higher in patients with the RsaI/PstI c1/c1 genotype compared to other genotypes ³⁰. In the liver, INH is metabolized by NAT2 to acetylisoniazid which is consequently oxidized by CYP2E1 to reactive hepatotoxic intermediates ^{31 32}. The increased inducibility or greater activity of CYP2E1 in patients with the CYP2E1 RsaI/PstI c1/c1 genotype may result in the production of more intermediate hepatotoxins, ultimately leading to the increased risk of ATDILI ^{31 32}. Our subgroup analysis showed a significantly increased risk of ATDILI in the CYP2E1 RsaI/PstI c1/c1 genotype carriers of East Asian ethnicity (S9 Table), suggesting a potential gene-ethnicity interaction ³³. A previous study identified age, female sex, white race, non-Hispanic ethnicity, lower body mass index, elevated plasma aspartate transaminase concentrations at baseline, and nine months of daily INH use as risk factors for ATDILI³⁴. Considering their race, ethnicity, and relatively lower body mass index compared to other ethnicities, East Asians may be at an increased risk of ATDILI. As the CYP2E1 Rsal/PstI c1 allele frequency is relatively low in this population (79.8% vs. 88.5% to 99.8% in other ethnicities), the ethnicity itself might play an important role in developing hepatotoxicity through gene-ethnicity interaction³⁵. Furthermore, the relatively high frequency of c2 allele in this population might serve as a good control to estimate the effect of c1 allele on the risk of ATDILI; the rarity of this minor allele in other ethnicities could make it difficult to evaluate the

4 5	315	association between the ATDILI risk and this genetic polymorphism ³⁵ . In addition to ethnicity,
6 7	316	combination anti-TB therapy was shown to significantly increase the risk of ATDILI in patients
8 9 10	317	with the CYP2E1 RsaI/PstI c1/c1 genotype (S9 Table). This is consistent with previous study
10 11 12	318	findings because hepatotoxicity commonly occurs with anti-TB drugs such as INH and RIF and
13 14	319	thus, use of more than one hepatotoxic anti-TB medication increases the risk of ATDILI 7.
15 16	320	Similar to previous studies, our current study suggested a significantly increased risk of
17 18 19	321	ATDILI in patients with the NAT2 slow acetylator genotype compared to those with
20 21	322	intermediate/fast acetylator genotypes ^{9 29} . The risk of ATDILI in slow acetylators remained
22 23	323	significantly increased in all tested subgroups regardless of ethnicity and the anti-TB drug
24 25 26	324	regimen used (S10 Table). The frequencies of NAT2 slow acetylator alleles are highly variable
20 27 28	325	between ethnic groups, ranging from 32% in Koreans to 76% in Caucasians ³⁶ . Despite this large
29 30	326	inter-ethnic variability in the NAT2 polymorphic allele frequency, the NAT2 slow acetylator
31 32	327	genotype consistently and significantly increased the risk of ATDILI across all ethnicities,
33 34 35	328	suggesting the critical role of NAT2 polymorphism in the development of ATDILI. In addition,
36 37	329	the increased risk of ATDILI in slow acetylators receiving INH monotherapy or combination
38 39	330	therapy further highlights the importance of the NAT2 polymorphism in the development of
40 41 42	331	INH-induced hepatotoxicity. The clearance of INH is slower in slow acetylators compared to
43 44	332	rapid or intermediate acetylators, resulting in the accumulation of INH in these patients ^{37 38} . This
45 46	333	high level of INH may increase the risk of ATDILI in tuberculosis patients with the NAT2 slow
47 48 40	334	acetylator genotype due to immune-mediated liver injury through the binding of INH to liver
49 50 51	335	proteins ³⁹ . Therefore, clinicians should closely monitor tuberculosis patients with the <i>NAT2</i> slow
52 53	336	acetylator genotype for hepatotoxicity when INH-based treatment is administered to these
54 55	337	patients.
56 57 58		16

Page 17 of 69

BMJ Open

According to previous studies, GST enzymes, particularly those coded by GSTM1 and GSTT1 loci, are associated with the risk of drug-induced hepatotoxicity ⁹⁴⁰. Similar to previous studies, our current study demonstrated a significantly increased risk of ATDILI in individuals with the *GSTM1* null genotype compared to those with the non-null genotype; however, the risk of ATDILI was not affected by the GSTT1 or GSTM1/GSTT1 genetic polymorphisms. GSTs are important enzymes to detoxify various xenobiotics and play an essential role in INH metabolism by eliminating acetyldiazene ketene acetylonium ion, which is a possibly hepatotoxic free radical metabolite of INH, from the body through GSTM1. This may account for the significant association of the ATDILI risk with the GSTM1 genotype, but not with the GSTT1 or *GSTM1/GSTT1* genotypes ⁹⁴⁰. Our subgroup analysis showed a significantly increased risk of ATDILI in the GSTM1 null genotype carriers of Indian ethnicity; although not statistically significant, the risk of ATDILI was relatively high in the East Asian population with the GSTM1 null genotype (S11 Table). Considering the substantial difference in the GSTM1 null allele frequency between Indians (29.6%) and East Asians (52.1%), a potential gene-ethnicity interaction may exist based on their race, ethnicity, and body size as aforementioned ^{34 41}. Other characteristics than the *GSTM1* polymorphism in these ethnicities may play a more important role in the development of ATDILI. In addition, when studies were stratified by study design, the risk of ATDILI was significantly increased in patients with the GSTM1 null genotype for cohort studies only, but not for case-control studies, probably due to a relatively larger sample size with cohort studies compared to case-control studies.

SLCO1B1 encodes organic anion transporting polypeptide 1B1 (OATP1B1) which is a major influx drug transporter responsible for the hepatic uptake of various endogenous and exogenous substances including RIF ⁴². Previous studies showed significantly altered systemic

2 3		
4 5	361	exposure of RIF in carriers of the SLCO1B1 polymorphism ^{43 44} . To our knowledge, only four
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	362	studies have been conducted to examine the association between the ATDILI risk and the
	363	SLCO1B1 genetic polymorphisms ^{10 28 42 45} . Various single nucleotide polymorphisms (SNPs) of
	364	SLCO1B1 were evaluated in these studies; however, SLCO1B1 388A>G (rs2306283) and
	365	521T>C (rs4149056) were the only polymorphisms assessed in common ^{10 28 42 45} . Therefore, to
	366	maximize the sample size in our current meta-analysis, we examined the association between the
	367	risk of ATDILI and the polymorphic genotypes of SLCO1B1 388A>G and 521T>C. Similar to
	368	each of the included studies, we did not find significant difference in the risk of ATDILI among
22 23	369	patients with different SLCO1B1 388A>G and 521T>C genotypes.
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	370	There are limitations to this study. First, due to the lack of information regarding other
	371	patient characteristics potentially associated with ATDILI, our estimated ORs were not adjusted
	372	based on the potential risk factors such as age, anti-TB drug dosages, alcohol consumption,
	373	cigarette smoking, and other lifestyle characteristics ⁷⁴⁶ . Second, our literature search limited to
	374	the articles published in English may lead to language bias. Third, a specific causative agent of
	375	ATDILI could not be identified in our analysis because most patients in our included studies
	376	received a combination regimen of anti-TB drugs. Fourth, only the limited number of
40 41 42	377	polymorphic genotypes were assessed for the association with the risk of ATDILI, particularly
43 44	378	for SLCO1B1. In addition, only one genetic model was used for CYP2E1, NAT2, and GST when
45 46	379	evaluating the association between genetic polymorphisms of these genes and the risk of
47 48 40	380	ATDILI. Although we acknowledge dominant, recessive, and additive genomic models can be
50 51	381	used for two alleles, it could not be applied to our meta-analysis because we compared patients
52 53	382	with different genotype-based phenotype, i.e., slow acetylator vs. fast/intermediate acetylator and
54 55 56	383	null vs. non-null GSTs. Multiple allelic variants or allele subgroups may represent the same
57 58		18

59

BMJ Open

2 2	
2	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
40	
41	
42	
13	
ΔT- ΛΛ	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
23	
54	
55	
56	
57	
58	
50	

phenotype (e.g., NAT2*5B, *6A, and *7B all represent slow acetylator genotypes), and the 384 385 genetic model selection can be varied depending on the specific allelic variant⁴⁷. Therefore, the genetic models used in previous original and meta-analysis studies were adopted for these 386 polymorphic genes in our current study 91819. Future studies are needed to comprehensively and 387 adequately address the relationship between the ATDILI risk and various genetic polymorphisms 388 by using different genetic risk models and including more polymorphic genotypes. 389 In conclusion, the risk of ATDILI during TB therapy was significantly increased in 390 tuberculosis patients carrying NAT2 slow acetylator, CYP2E1 Rsal/PstI c1/c1, or GSTM1 null 391 genotypes. Screening for these genetic polymorphisms, particularly for the NAT2 slow acetylator 392 genotype, may be of great clinical benefit to identify patients at high risk for ATDILI and 393 minimize the risk of ATDILI. Future studies are pertinent to develop dose and/or treatment 394 adjustment strategies, to evaluate the feasibility and cost-effectiveness of the genetic screening 395 test, and to assess the effect of more genetic polymorphisms on the risk of ATDILI for optimal 396 prevention and management of ATDILI. 397 398

399 Acknowledgments

This study was supported by Research Resettlement Fund for the new faculty of Seoul National University.

402

403

60

400

401

Contributors

S.Y. devised and designed the study. S.Y., J.Y.P., and S.J.H. conducted the literature search, 19

performed data extraction and analysis, and. interpreted the data. S.Y., E.K.C., and J.I.L. prepared and reviewed the manuscript. All authors reviewed, amended and approved the submitted manuscript Funding Research Resettlement Fund for the new faculty of Seoul National University provided funding ole in sts to Jangik I. Lee. The funder had no role in data collection, data analysis, translation, and drafting of the manuscript **Competing interests** None declared **Patient consent** Not required **Provenance and peer review** Not commissioned, externally peer reviewed **Data sharing statement**

1 2		
3 4 5	424	No additional unpublished data are available
7 8 9 10 11 12	425	
13 14 15 16 17 18		
19 20 21 22 23 24		
25 26 27 28 29 30		
31 32 33 34 35 36 27		
37 38 39 40 41 42 43		
44 45 46 47 48 49		
50 51 52 53 54		
55 56 57 58 59 60		21 For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

2 3 4	426	Dofo	
5	426	Kele.	
о 7	427	l.	WHO. Global tuberculosis report Geneva, Switzerland: WHO, 2014.
8 9	428	2.	WHO. Treatment of tuberculosis guidelines, 4th edition. Geneva, Switzerland: WHO, 2010.
10	429	3.	Blumberg H, Burman W, Chaisson R, et al. American Thoracic Society/Centers for
11	430		Disease Control and Prevention/Infectious Diseases Society of America: treatment of
13 14	431		tuberculosis. Am J Respir Crit Care Med 2003;167:603.
15	432	4.	Zumla A, Raviglione M, Hafner R, et al. Tuberculosis. N Engl J Med 2013;368:745-55.
16 17	433	5.	Lange C, Abubakar I, Alffenaar J-WC, et al. Management of patients with multidrug-
18 10	434		resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement.
20	435		<i>Eur Respir J</i> 2014;44:23-63.
21 22	436	6.	Tostmann A, Boeree MJ, Aarnoutse RE, et al. Antituberculosis drug-induced
23	437		hepatotoxicity: concise up-to-date review. J Gastroenterol Hepatol 2008;23:192-202.
24	438	7.	Saukkonen JJ, Cohn DL, Jasmer RM, et al. An official ATS statement: hepatotoxicity of
26 27	439		antituberculosis therapy. Am J Respir Crit Care Med 2006;174:935-52.
28 20	440	8.	Yee D, Valiquette C, Pelletier M, et al. Incidence of serious side effects from first-line
30	441		antituberculosis drugs among patients treated for active tuberculosis. Am J Respir Crit Care
31 32	442		Med 2003;167:1472-7.
33 34	443	9.	Cai Y. Yi J. Zhou C. et al. Pharmacogenetic Study of Drug-Metabolising Enzyme
35	444		Polymorphisms on the Risk of Anti-Tuberculosis Drug-Induced Liver Injury: A Meta-
36 37	445		Analysis PLoS ONE 2012:7
38 39	446	10	Kim SH Kim SH Lee IH <i>et al</i> Polymorphisms in drug transporter genes (ABCB)
40	110	10.	SI CO1B1 and ABCC2) and hepatitis induced by antituberculosis drugs. <i>Tuberculosis</i>
41 42	447		2012:92:100-4
43 44	440	11	Pou DD Maiumdar M. Pou P. Pharmacogonomics of anti TP drugs related hanatotoxicity
45	449	11.	<i>Dharman and a manual of 2008:0:211-21</i>
46 47	450	10	Pharmacogenomics 2008;9:311-21.
48 40	451	12.	Sun F, Chen Y, Xiang Y, et al. Drug-metabolising enzyme polymorphisms and
50	452		predisposition to anti-tuberculosis drug-induced liver injury: a meta-analysis. Int J Tuberc
51 52	453		Lung Dis 2008;12:994-1002.
53	454	13.	Chan SL, Chua APG, Aminkeng F, et al. Association and clinical utility of NAT2 in the
55	455		prediction of isoniazid-induced liver injury in Singaporean patients. PloS one
56 57			22
58 59			

Page 23 of 69

BMJ Open

3 4 5	456		2017;12:e0186200.
6 7	457	14.	Kerb R. Implications of genetic polymorphisms in drug transporters for pharmacotherapy.
8	458		Cancer Lett 2006;234:4-33.
9 10	459	15.	Cui Y, Konig J, Leier I, et al. Hepatic uptake of bilirubin and its conjugates by the human
11 12	460		organic anion transporter SLC21A6. J Biol Chem 2001;276:9626-30.
13	461	16.	Little J, Bradley L, Bray MS, et al. Reporting, appraising, and integrating data on genotype
14 15	462		prevalence and gene-disease associations. American journal of epidemiology
16 17 18	463		2002;156:300-10.
18 19	464	17.	Tang N, Deng R, Wang Y, et al. GSTM1 and GSTT1 null polymorphisms and
20	465		susceptibility to anti-tuberculosis drug-induced liver injury: a meta-analysis. Int J Tuberc
21 22	466		Lung Dis 2013;17:17-25.
23 24	467	18.	Wang F-J, Wang Y, Niu T, et al. Update meta-analysis of the CYP2E1 Rsal/PstI and DraI
25 26	468		polymorphisms and risk of antituberculosis drug-induced hepatotoxicity: evidence from 26
20	469		studies. Journal of Clinical Pharmacy and Therapeutics 2016;41:334-40.
28 29	470	19.	Li C, Long J, Hu X, et al. GSTM1 and GSTT1 genetic polymorphisms and risk of anti-
30 31	471		tuberculosis drug-induced hepatotoxicity: an updated meta-analysis. Eur J Clin Microbiol
32	472		Infect Dis 2013;32:859-68.
34	473	20.	Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies
35 36	474		of disease. Journal of the national cancer institute 1959;22:719-48.
37 38	475	21.	DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical trials
39 40	476		1986;7:177-88.
40 41	477	22.	Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in
42 43	478		<i>medicine</i> 2002;21:1539-58.
44 45	479	23.	Feng FM, Guo M, Chen Y, et al. Genetic polymorphisms in metabolic enzymes and
46	480		susceptibility to anti-tuberculosis drug-induced hepatic injury. Genetics and Molecular
47 48	481		<i>Research</i> 2014;13:9463-71.
49 50	482	24.	Lv X, Tang S, Xia Y, et al. NAT2 genetic polymorphisms and anti-tuberculosis drug-
51 52	483		induced hepatotoxicity in Chinese community population. Ann Hepatol 2012;11:700-7.
53	484	25.	Wattanapokayakit S, Mushiroda T, Yanai H, et al. NAT2 slow acetylator associated with
54 55	485		anti-tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung Dis
56 57 58			23
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

486 2016;20:1364-9.

- 487 26. Singla N, Gupta D, Birbian N, *et al.* Association of NAT2, GST and CYP2E1
 488 polymorphisms and anti-tuberculosis drug-induced hepatotoxicity. *Tuberculosis*489 2014;94:293-8.
- Gupta VH, Amarapurkar DN, Singh M, *et al.* Association of N-acetyltransferase 2 and cytochrome P450 2E1 gene polymorphisms with antituberculosis drug-induced hepatotoxicity in Western India. *Journal of Gastroenterology and Hepatology* 2013;28:1368-74.
- 494 28. Li LM, Chen L, Deng GH, *et al.* SLCO1B1*15 haplotype is associated with rifampin 495 induced liver injury. *Mol Med Rep* 2012;6:75-82.
- 496 29. Wang PY, Xie SY, Hao Q, et al. NAT2 polymorphisms and susceptibility to anti 497 tuberculosis drug-induced liver injury: a meta-analysis. Int J Tuberc Lung Dis
 498 2012;16:589-95.
- 499 30. Deng R, Yang T, Wang Y, et al. CYP2E1 RsaI/PstI polymorphism and risk of anti 500 tuberculosis drug-induced liver injury: a meta-analysis. Int J Tuberc Lung Dis
 501 2012;16:1574-81.
- Mitchell JR, Zimmerman HJ, Ishak KG, *et al.* Isoniazid liver injury: clinical spectrum,
 pathology, and probable pathogenesis. *Ann Intern Med* 1976;84:181-92.
- ³⁵ 504 32. Ryan D, Ramanathan L, Iida S, *et al.* Characterization of a major form of rat hepatic
 ³⁷ 505 microsomal cytochrome P-450 induced by isoniazid. *Journal of Biological Chemistry* ³⁸ 506 1985;260:6385-93.
- 507 33. Ortega VE, Meyers DA. Pharmacogenetics: implications of race and ethnicity on defining
 508 genetic profiles for personalized medicine. *J Allergy Clin Immunol* 2014;133:16-26.
- 44 509 34. Bliven-Sizemore EE, Sterling TR, Shang N, *et al.* Three months of weekly rifapentine plus
 45 510 isoniazid is less hepatotoxic than nine months of daily isoniazid for LTBI. *Int J Tuberc*47 511 *Lung Dis* 2015;19:1039-44, i-v.
- 512 35. Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide distribution of cytochrome
 513 513 P450 alleles: a meta-analysis of population-scale sequencing projects. *Clinical* 514 *Pharmacology & Therapeutics* 2017;102:688-700.
- 54 515 36. Lin HJ, Han C-Y, Lin BK, *et al.* Ethnic distribution of slow acetylator mutations in the

Page 25 of 69

1

BMJ Open

2 3			
4 5	516		polymorphic N-acetyltransferase (NAT2) gene. Pharmacogenetics 1994;4:125-34.
6	517	37.	Seng KY, Hee KH, Soon GH, et al. Population Pharmacokinetic Analysis of Isoniazid,
7 8	518		Acetylisoniazid, and Isonicotinic Acid in Healthy Volunteers. Antimicrobial Agents and
9 10	519		<i>Chemotherapy</i> 2015;59:6791-9.
11 12	520	38.	Wang P, Pradhan K, Zhong XB, et al. Isoniazid metabolism and hepatotoxicity. Acta
13	521		<i>Pharm Sin B</i> 2016;6:384-92.
14 15	522	39.	Metushi IG, Nakagawa T, Uetrecht J. Direct oxidation and covalent binding of isoniazid
16 17	523		to rodent liver and human hepatic microsomes: humans are more like mice than rats. Chem
18	524		<i>Res Toxicol</i> 2012;25:2567-76.
19 20	525	40.	Ramachandran G, Swaminathan S. Role of pharmacogenomics in the treatment of
21 22	526		tuberculosis: a review. Pharmgenomics Pers Med 2012;5:89-98.
23 24	527	41.	Kasthurinaidu SP, Ramasamy T, Ayyavoo J, et al. GST M1-T1 null allele frequency
25	528		patterns in geographically assorted human populations: a phylogenetic approach. PLoS
26 27	529		One 2015;10:e0118660.
28 29	530	42.	Chen R, Wang J, Tang S, et al. Association of polymorphisms in drug transporter genes
30 31	531		(SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese
32	532		cohort. Tuberculosis 2015;95:68-74.
33 34	533	43.	Weiner M, Peloquin C, Burman W, et al. Effects of tuberculosis, race, and human gene
35 36	534		SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother
37	535		2010;54:4192-200.
39	536	44.	Chigutsa E, Visser ME, Swart EC, et al. The SLCO1B1 rs4149032 polymorphism is highly
40 41	537		prevalent in South Africans and is associated with reduced rifampin concentrations: dosing
42 43	538		implications. Antimicrob Agents Chemother 2011;55:4122-7.
44	539	45.	Yimer G, Ueda N, Habtewold A, et al. Pharmacogenetic & pharmacokinetic biomarker for
45 46	540		efavirenz based ARV and rifampicin based anti-TB drug induced liver injury in TB-HIV
47 48	541		infected patients. PLoS One 2011;6:e27810.
49 50	542	46.	Chen R, Wang J, Zhang Y, et al. Key factors of susceptibility to anti-tuberculosis drug-
51	543		induced hepatotoxicity. Arch Toxicol 2015;89:883-97.
52 53	544	47.	Khan S, Mandal RK, Elasbali AM, et al. Pharmacogenetic association between NAT2 gene
54 55	545		polymorphisms and isoniazid induced hepatotoxicity: trial sequence meta-analysis as
56 57			25
58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3			
4 5 6	546		evidence. Bioscience reports 2019;39:BSR20180845.
	547	48.	Kim SH, Kim SH, Bahn JW, et al. Genetic polymorphisms of drug-metabolizing enzymes
/ 8	548		and anti-TB drug-induced hepatitis. Pharmacogenomics 2009;10:1767-79.
9 10	549	49.	Singh M, Gupta VH, Amarapurkar DN, et al. Association of genetic variants with anti-
11 12	550		tuberculosis drug induced hepatotoxicity: A high resolution melting analysis. Infection
13	551		Genetics and Evolution 2014;23:42-8.
14 15	552	50.	Tang S, Lv X, Zhang Y, et al. Cytochrome P450 2E1 Gene Polymorphisms/Haplotypes
16 17	553		and Anti-Tuberculosis Drug-Induced Hepatitis in a Chinese Cohort. PLoS ONE
18 19	554		2013;8:e57526.
20	555	51.	Ben Mahmoud L, Ghozzi H, Kamoun A, et al. Polymorphism of the N-acetyltransferase 2
21 22 23 24	556		gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in
	557		Tunisian patients with tuberculosis. Pathologie Biologie 2012;60:324-30.
25	558	52.	Bozok Cetintas V, Erer OF, Kosova B, et al. Determining the relation between N-
26 27	559		acetyltransferase-2 acetylator phenotype and antituberculosis drug induced hepatitis by
28 29	560		molecular biologic tests. Tuberk Toraks 2008;56:81-6.
30 31	561	53.	Higuchi N, Tahara N, Yanagihara K, et al. NAT2 6A, a haplotype of the N-
32	562		acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-
33 34	563		induced hepatotoxicity in Japanese patients with tuberculosis. World J Gastroenterol
35 36	564		2007;13:6003-8.
30 37 38 39 40 41	565	54.	Ho HT, Wang TH, Hsiong CH, et al. The NAT2 tag SNP rs1495741 correlates with the
	566		susceptibility of antituberculosis drug-induced hepatotoxicity. Pharmacogenet Genomics
	567		2013;23:200-7.
42 43	568	55.	Huang YS, Chern HD, Su WJ, et al. Polymorphism of the N-acetyltransferase 2 gene as a
44	569		susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology
45 46 47 48 49 50 51 52 53 54 55 56 57 58	570		2002;35:883-9.
	571	56.	Khalili H, Fouladdel S, Sistanizad M, et al. Association of N-acetyltransferase-2 genotypes
	572		and anti-tuberculosis induced liver injury: First case-controlled study from Iran. Current
	573		Drug Safety 2011;6:17-22.
	574	57.	Leiro-Fernandez V, Valverde D, Vazquez-Gallardo R, et al. N-acetyltransferase 2
	575		polymorphisms and risk of anti-tuberculosis drug-induced hepatotoxicity in Caucasians.
			26
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3			
4 5	576		International Journal of Tuberculosis and Lung Disease 2011;15:1403-8.
6	577	58.	Ng CS, Hasnat A, Al Maruf A, et al. N-acetyltransferase 2 (NAT2) genotype as a risk
7 8	578		factor for development of drug-induced liver injury relating to antituberculosis drug
9 10	579		treatment in a mixed-ethnicity patient group. European Journal of Clinical Pharmacology
11 12	580		2014;70:1079-86.
13	581	59.	Ohno M, Yamaguchi I, Yamamoto I, et al. Slow N-acetyltransferase 2 genotype affects the
14 15	582		incidence of isoniazid and rifampicin-induced hepatotoxicity. International Journal of
16 17	583		Tuberculosis and Lung Disease 2000;4:256-61.
18	584	60.	Possuelo LG, Castelan JA, de Brito TC, et al. Association of slow N-acetyltransferase 2
20	585		profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil.
21 22	586		European Journal of Clinical Pharmacology 2008;64:673-81.
23 24	587	61.	Rana SV, Ola RP, Sharma SK, et al. Comparison between acetylator phenotype and
25	588		genotype polymorphism of n-acetyltransferase-2 in tuberculosis patients. Hepatology
26 27	589		International 2012;6:397-402.
28 29	590	62.	Shimizu Y, Dobashi K, Mita Y, et al. DNA microarray genotyping of N-acetyltransferase
30 31	591		2 polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity.
32	592		Tuberculosis 2006;86:374-81.
33 34	593	63.	Yuliwulandari R, Susilowati RW, Wicaksono BD, et al. NAT2 variants are associated with
35 36	594		drug-induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with
37	595		tuberculosis. J Hum Genet 2016; doi:10.1038/jhg.2016.10.
39	596	64.	Chatterjee S, Lyle N, Mandal A, et al. GSTT1 and GSTM1 gene deletions are not
40 41	597		associated with hepatotoxicity caused by antitubercular drugs. Journal of Clinical
42 43	598		Pharmacy and Therapeutics 2010;35:465-70.
44	599	65.	Gupta VH, Singh M, Amarapurkar DN, et al. Association of GST null genotypes with anti-
45 46	600		tuberculosis drug induced hepatotoxicity in Western Indian population. Annals of
47 48	601		Hepatology 2013;12:959-65.
49 50	602	66.	Huang YS, Su WJ, Huang YH, et al. Genetic polymorphisms of manganese superoxide
51	603		dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and
52 53	604		the susceptibility to drug-induced liver injury. Journal of Hepatology 2007;47:128-34.
54 55	605	67.	Kim SH, Kim SH, Yoon HJ, et al. GSTT1 and GSTM1 null mutations and adverse
56 57			27
58			
59			

2 3			
4	606		reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43.
6	607	68.	Leiro V, Fernandez-Villar A, Valverde D, et al. Influence of glutathione S-transferase M1
7 8	608		and T1 homozygous null mutations on the risk of antituberculosis drug-induced
9 10	609		hepatotoxicity in a Caucasian population. Liver International 2008;28:835-9.
11	610	69.	Liu F, Jiao AX, Wu XR, et al. Impact of Glutathione S-Transferase M1 and T1 on Anti-
12 13	611		Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. Plos One 2014;9.
14 15	612	70.	Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, et al. The roles of GSTM1 and GSTT1 null
16 17	613		genotypes and other predictors in anti-tuberculosis drug-induced liver injury. Journal of
18	614		Clinical Pharmacy and Therapeutics 2012;37:712-8.
19 20	615	71.	Rana SV, Kamboj JK, Sharma SK, et al. Antioxidant status and GST gene polymorphisms
21 22	616		in antitubercular treatment-induced hepatotoxicity patients. Hepatol Int 2013;7:876-82.
23 24	617	72.	Roy B, Chowdhury A, Kundu S, et al. Increased risk of antituberculosis drug-induced
25	618		hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. Journal of
26 27	619		Gastroenterology and Hepatology 2001;16:1033-7.
28 29	620	73.	An HR, Wu XQ, Wang ZY, et al. NAT2 and CYP2E1 polymorphisms associated with
30 31	621		antituberculosis drug-induced hepatotoxicity in Chinese patients. Clinical and
32	622		Experimental Pharmacology and Physiology 2012;39:535-43.
33 34	623	74.	Bose PD, Sarma MP, Medhi S, et al. Role of polymorphic N-acetyl transferase2 and
35 36	624		cytochrome P4502E1 gene in antituberculosis treatment-induced hepatitis. Journal of
37	625		Gastroenterology and Hepatology 2011;26:312-8.
38 39	626	75.	Chamorro JG, Castagnino JP, Musella RM, et al. Sex, ethnicity, and slow acetylator profile
40 41	627		are the major causes of hepatotoxicity induced by antituberculosis drugs. Journal of
42 43	628		Gastroenterology and Hepatology 2013;28:323-8.
44	629	76.	Cho HJ, Koh WJ, Ryu YJ, et al. Genetic polymorphisms of NAT2 and CYP2E1 associated
45 46	630		with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary
47 48	631		tuberculosis. Tuberculosis 2007;87:551-6.
49 50	632	77.	Huang YS, Chern HD, Su WJ, et al. Cytochrome p450 2E1 genotype and the susceptibility
51	633		to antituberculosis drug-induced hepatitis. Hepatology 2003;37:924-30.
52 53	634	78.	Lee SW, Chung LS, Huang HH, et al. NAT2 and CYP2E1 polymorphisms and
54 55	635		susceptibility to first-line anti-tuberculosis drug-induced hepatitis. Int J Tuberc Lung Dis
56 57			28
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

BMJ Open

2 3			
4	636		2010;14:622-6.
6	637	79.	Mishra S, Daschakraborty S, Shukla P, et al. N-acetyltransferase and cytochrome P450
/ 8	638		2E1 gene polymorphisms and susceptibility to antituberculosis drug hepatotoxicity in an
9 10	639		Indian population. National Medical Journal of India 2013;26:260-5.
11	640	80.	Santos NP, Callegari-Jacques SM, Ribeiro Dos Santos AK, et al. N-acetyl transferase 2
12 13	641		and cytochrome P450 2E1 genes and isoniazid-induced hepatotoxicity in Brazilian patients.
14 15	642		Int J Tuberc Lung Dis 2013;17:499-504.
16 17	643	81.	Vuilleumier N, Rossier MF, Chiappe A, et al. CYP2E1 genotype and isoniazid-induced
18	644		hepatotoxicity in patients treated for latent tuberculosis. Eur J Clin Pharmacol
19 20	645		2006;62:423-9.
21 22	646	82.	Yamada S, Tang M, Richardson K, et al. Genetic variations of NAT2 and CYP2E1 and
23	647		isoniazid hepatotoxicity in a diverse population. <i>Pharmacogenomics</i> 2009;10:1433-45.
24	648	83.	Zaverucha-do-Valle C, Monteiro SP, El-Jaick KB, et al. The role of cigarette smoking and
26 27	649		liver enzymes polymorphisms in anti-tuberculosis drug-induced hepatotoxicity in Brazilian
28 29	650		patients. Tuberculosis (Edinb) 2014;94:299-305.
30 31	651	84.	Sharma SK, Jha BK, Sharma A, et al. Genetic polymorphisms of CYP2E1 and GSTM1
32	652		loci and susceptibility to anti-tuberculosis drug-induced hepatotoxicity. International
33 34	653		Journal of Tuberculosis and Lung Disease 2014;18:588-93.
35 36	654	85.	Wang T, Yu HT, Wang W, et al. Genetic Polymorphisms of Cytochrome P450 and
37	655		Glutathione S-transferase Associated with Antituberculosis Drug-induced Hepatotoxicity
39	656		in Chinese Tuberculosis Patients. Journal of International Medical Research 2010;38:977-
40 41	657		86.
42 43	658	86.	Tang SW, Lv XZ, Zhang Y, et al. CYP2E1, GSTM1 and GSTT1 genetic polymorphisms
44	659		and susceptibility to antituberculosis drug-induced hepatotoxicity: a nested case-control
45 46	660		study. Journal of Clinical Pharmacy and Therapeutics 2012;37:588-93.
47 48	661	87.	Brito TC, Possuelo LG, Valim ARM, et al. Polymorphisms in CYP2E1, GSTM1 and
49 50	662		GSTT1 and anti-tuberculosis drug-induced hepatotoxicity. Anais Da Academia Brasileira
51 52	663		De Ciencias 2014;86:855-65.
52 53	664	88.	Forestiero FJ, Cecon L, Hirata MH, et al. Relationship of NAT2, CYP2E1 and
54 55	665		GSTM1/GSTT1 polymorphisms with mild elevation of liver enzymes in Brazilian
56 57			29
58			
59			

4 5	666		individuals under anti-tuberculosis drug therapy. Clinica Chimica Acta 2013;415:215-9.
6	667	89.	Rana SV, Sharma SK, Ola RP, et al. N-acetyltransferase 2, cytochrome P4502E1 and
7 8	668		glutathione S-transferase genotypes in antitubercular treatment-induced hepatotoxicity in
9 10	669		North Indians. J Clin Pharm Ther 2014;39:91-6.
11 12	670	90.	Sotsuka T, Sasaki Y, Hirai S, et al. Association of Isoniazid-metabolizing Enzyme
13	671		Genotypes and Isoniazid-induced Hepatotoxicity in Tuberculosis Patients. In Vivo
14 15	672		2011;25:803-12.
16 17	673	91.	Teixeira RL, Morato RG, Cabello PH, et al. Genetic polymorphisms of NAT2, CYP2E1
18 10	674		and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in
20	675		Brazilian TB patients. Mem Inst Oswaldo Cruz 2011;106:716-24.
21 22	676	92.	Xiang Y, Ma L, Wu WD, et al. The Incidence of Liver Injury in Uyghur Patients Treated
23 24	677		for TB in Xinjiang Uyghur Autonomous Region, China, and Its Association with Hepatic
25 26	678		Enzyme Polymorphisms NAT2, CYP2E1, GSTM1 and GSTT1. Plos One 2014;9.
20	679		
28 29			
30 31			
32 33			
34 25			
35 36			
37 38			
39 40			
41			
42 43			
44 45			
46 47			
47 48			
49 50			
51			
52 53			
54			
55 56			
57			30
58 59			

1 2		
3		
4 5 6	680	Supporting information
7 8 9	681	Additional supporting information can be found in the online version of this article:
10 11	682	S1 Table. Completed MOOSE (Meta-analysis Of Observational Studies in Epidemiology)
12 13 14	683	checklist
14 15 16	684	S2 Table. Search strategies
17 18	685	S3 Table. Study quality assessment
19 20 21	686	S4 Table. Genotype distribution and the genotyping method used for the <i>CYP2E1</i> genetic
22 23	687	polymorphisms in the included studies (n = 26)
24 25 26	688	S5 Table. Genotype distribution and the genotyping method used for the <i>NAT2</i> genetic nelumorphism in the included studies $(n = 25)$
27 28	689	polymorphism in the included studies ($n = 35$) S6 Table. Genotype distribution and the genotyping method used for the GST genetic
29 30 31	691	polymorphisms in the included studies ($n = 19$)
32 33	692	S7 Table. Genotype distribution and the genotyping method used for the <i>SLCO1B1</i> genetic
34 35	693	polymorphisms in the included studies (n = 4)
30 37 38	694	S8 Figure. Funnel plots to evaluate publication bias for the CYP2E1, NAT2, GST, and
39 40	695	SLCO1B1 polymorphisms associated with the risk of anti-tuberculosis drug-induced liver
41 42 43	696	injury. (A) CYP2E1 RsaI/PstI polymorphism, (B) CYP2E1 DraI polymorphism, (C) NAT2
44 45	697	polymorphism, (D) GSTM1 polymorphism, (E) GSTT1 polymorphism, (F) GSTT1/M1
46 47 48	698	polymorphism, and (G) SLCO1B1 388A>G and 521T>C polymorphism.
49 50	699	S9 Table. Subgroup analysis for the association between CYP2E1 polymorphisms and the
51 52 53	700	risk of anti-tuberculosis drug-induced liver injury based on ethnicity, anti-tuberculosis drug
55 54 55	701	regimen, and study design
56 57		31
58 59		

1 2		
3		
4 5	702	S
6 7	703	0
8 9	704	r
10 11	705	5
12 13	706	0
13 14 15	707	r
15 16	708	
17 18		
19 20		
21 22		
23		
24 25		
26 27		
28 29		
30		
31 32		
33 34		
35 36		
30 37		
38 39		
40 41		
42		
43 44		
45 46		
47		
48 49		
50 51		
52 53		
54		
55 56		
57 50		
58 59		

60

S10 Table. Subgroup analysis for the association between NAT2 polymorphism and the risk of anti-tuberculosis drug-induced liver injury based on ethnicity, anti-tuberculosis drug regimen, and study design S11 Table. Subgroup analysis for the association between GST polymorphisms and the risk is. induc. gn of anti-tuberculosis drug-induced liver injury based on ethnicity, anti-tuberculosis drug regimen, and study design

1 2 3		
4 5	709	Figure legends
6 7 8	710	Figure 1. Study selection process flowchart.
9 10	711	Figure 2. Risk of anti-tuberculosis drug-induced liver injury in patients with the CYP2E1 (A)
11 12 12	712	<i>RsaI/PstI</i> c1/c1 genotype compared to $c1/c2 + c2/c2$ genotypes and (B) <i>DraI</i> D/D genotype
13 14 15	713	compared to $D/C + C/C$ genotypes.
16 17	714	Figure 3. Risk of anti-tuberculosis drug-induced liver injury in patients with the NAT2 slow
18 19	715	acetylator genotype compared to those with the intermediate/fast acetylator genotypes.
20 21 22	716	Figure 4. Risk of anti-tuberculosis drug-induced liver injury in patients with (A) the GSTM1 null
23 24	717	genotype compared to the non-null genotype, (B) the GSTT1 null genotype compared to the non-
25 26	718	null genotype, and (C) the GSTMI/GSTT1 dual-null genotype compared to the one- and non-null
27 28 20	719	genotypes.
30 31	720	
32 33		
34 35 36		
37 38		
39 40		
41 42 43		
43 44 45		
46 47		
48 49 50		
50 51 52		
53 54		
55 56		33
57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1. Characteristics of the studies included in the meta-analysis ($n = 54$ studies)

Last name of the first author, year	Polymorphic gene	Study design	Ethnicity	Sample size (case/control)	Age (years) (case/ control) ^a	Male (%) (case/ control)	Anti-TB drug regimen administered	Diagnostic criteria of ATDILI	Quality score ^d
Feng, 2014 ²³	CYP2E1	Case- control	Chinese	173/173	48.8/48.6	68.0/68.0	INH, RIF, PZA	$ALT > 3 \times ULN$	6
Kim, 2009 ⁴⁸	CYP2E1	Case- control	Korean	67/159	42.1/42.8	65.7/65.4	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Singh, 2014 49	CYP2E1	Cohort	Indian	50/135	NA/NA	NA/NA	NA	$ALT > 2 \times ULN$	7
Tang, 2013 50	CYP2E1	Case- control	Chinese	89/356	43.7/43.6	73.0/73.0	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Ben Mahmoud, 2012 ⁵¹	NAT2	Cohort	Tunisian	14/52	42.4/42.1	42.8/48.1	INH, RIF containing regimen	$ALT > 2 \times ULN$	7
Bozok Cetintas, 2008 ⁵²	NAT2	Case- control	Turkish	30/70	39.8/37.3	50.0/72.8	INH, RIF, PZA, EMB	$ALT > 3 \times ULN$	6
Higuchi, 2007 53	NAT2	Cohort	Japanese	18/82	60.8/64.7	50.0/57.3	INH ,RIF containing regimen	$ALT > 2 \times ULN$	7
Ho, 2013 ⁵⁴	NAT2	Cohort	Taiwanese	20/328	NA/NA	NA/NA	INH, RIF, PZA, EMB	$ALT > 5 \times ULN$	6
Huang, 2002 ⁵⁵	NAT2	Cohort	Taiwanese	33/191	73.3/63.7	87.9/88.5	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Khalili, 2011 56	NAT2	Case- control	Iranian	14/36	NA/NA	NA/NA	INH, RIF, PZA, EMB	$ALT > 3 \times ULN$	6
Leiro-Fernandez, 2011 57	NAT2	Case- control	Caucasian	50/67	34.0/30.5 ^b	54.0/56.7	INH, RIF, PZA	$ALT > 3 \times ULN$	7
Lv, 2012 ²⁴	NAT2	Case-	Chinese	89/356	42.0/42.0 ^b	73.0/73.0	INH, RIF, PZA,	$ALT > 2 \times ULN$	7

Page 35 of 69

 BMJ Open

		control					EMB		
Ng, 2014 ⁵⁸	NAT2	Case- control	Mixed	26/101	48.3/NA	38.5/NA	INH containing regimen	$ALT > 5 \times ULN$	7
Ohno, 2000 ⁵⁹	NAT2	Cohort	Japanese	14/63	NA/NA	NA/NA	INH, RIF	$ALT > 1.5 \times ULN$	7
Possuelo, 2008 60	NAT2	Cohort	Brazilian	14/240	38.9/36.5	50.0/66.9	INH, RIF, PZA	$ALT > 3 \times ULN$	7
Rana, 2012 ⁶¹	NAT2	Cohort	Indian	50/201	45.3/43.8	76.0/57.2	INH, RIF, PZA, EMB	$ALT > 5 \times ULN$	7
Shimizu, 2006 62	NAT2	Case- control	Japanese	10/32	60.5/64.9	70.0/46.9	INH, RIF	$ALT > 2 \times ULN$	6
Yuliwulandari, 2016 ⁶³	NAT2	Case- control	Indonesian	50/191	NA/NA	NA/NA	NA	$ALT > 2 \times ULN$	7
Wattanapokayakit, 2016 ²⁵	NAT2	Case- control	Thai	53/85	51.4/50.2	58.5/60.0	INH containing regimen	$ALT > 2 \times ULN$	7
Chatterjee, 2010 ⁶⁴	GSTM1, GSTT1	Case- control	Indian	51/100	37.2/33.2	49.0/63.0	INH, RIF, PZA	$ALT > 3 \times ULN$	7
Gupta, 2013 65	GSTM1, GSTT1	Cohort	Indian	50/246	37.0/36.5 ^b	48.0/56.5	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Huang, 2007 66	GSTM1, GSTT1	Case- control	Taiwanese	63/63	62.0/NA	NA/NA	NA	$ALT > 5 \times ULN$	6
Kim, 2010 67	GSTM1, GSTT1	Case- control	Korean	57/190	47.3/42.4	59.6/67.9	INH, RIF, PZA, EMB	$ALT > 3 \times ULN$	7
Leiro, 2008 68	GSTM1, GSTT1	Case- control	Caucasian	35/60	34.0/31.0 ^b	40.0/41.7	INH, RIF, PZA	$ALT > 3 \times ULN$	7
Liu, 2014 ⁶⁹	GSTM1, GSTT1	Case- control	Chinese	20/143	35.9/61.2	60.0/59.4	INH containing regimen	$ALT > 2 \times ULN$	7
Monteiro, 2012 70	GSTM1, GSTT1	Cohort	Brazilian	59/118	37.0/38.0 ^b	76.0/61.0	NA	$ALT > 2 \times ULN$	7

Rana, 2013 71	GSTM1, GSTT1	Cohort	Indian	30/220	43.6/42.3	60.0/64.5	INH, RIF	$ALT > 5 \times ULN$	6
Roy, 2001 ⁷²	GSTM1, GSTT1	Case- control	Indian	33/33	NA/NA	NA/NA	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Chen, 2015 42	SLCO1B1	Case- control	Chinese	89/356	43.7/43.6	73.0/73.0	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Kim, 2012 ¹⁰	SLCO1B1	Case- control	Korean	67/159	43.0/42.8	65.7/65.4	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Li, 2012 ²⁸	SLCO1B1	Case- control	Chinese	118/155	40.5/39.3	48.3/54.8	RIF	$ALT > 3 \times ULN$	7
An, 2012 ⁷³	NAT2, CYP2E1	Case- control	Chinese	101/107	36.0/33.4 ^b	55.0/70.0	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Bose, 2011 ⁷⁴	NAT2, CYP2E1	Cohort	Indian	41/177	38.0/36.0	43.9/47.4	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Chamorro, 2013 ⁷⁵	NAT2, CYP2E1	Cohort	Mixed (South American)	47/128	29.0/27.0	41.3/64.8	INH, RIF, PZA, EMB	ALT > 3 × ULN	7
Cho, 2007 ⁷⁶	NAT2, CYP2E1	Cohort	Korean	18/114	51.2/46.7	66.7/55.3	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Gupta, 2013 ²⁷	NAT2, CYP2E1	Case- control	Indian	50/165	37.0/38.0	48.0/60.0	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Huang, 2003 77	NAT2, CYP2E1	Cohort	Taiwanese	49/269	70.0/59.0 ^b	18.4/14.9	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Lee, 2010 ⁷⁸	NAT2, CYP2E1	Cohort	Taiwanese	45/95	58.4/54.9	60.0/66.3	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Mishra, 2013 79	NAT2, CYP2E1	Case- control	Indian	33/173	38.0/NA	52.0/NA	INH, RIF, PZA, EMB	$ALT > 3 \times ULN$	7
Santos, 2013 80	NAT2,	Case-	Brazilian	18/252	47.7/45.6	56.0/49.0	INH, RIF	$ALT > 3 \times ULN$	7

Page 37 of 69

 BMJ Open

	CYP2E1	control							
Vuilleumier, 2006	NAT2, CYP2E1	Case- control	Mixed	8/63	27-35: 2/22° >36 : 5/18°	38.0/51.0	INH	AST or ALT > 4 × ULN	7
Yamada, 2009 82	NAT2, CYP2E1	Case- control	Mixed	23/147	NA/NA	13.0/42.9	INH	$ALT > 2 \times ULN$	7
Zaverucha-do- Valle, 2014 83	NAT2, CYP2E1	Cohort	Brazilian	50/79	< 40: 28/43° > 40: 20/36°	60.4/72.2	INH, RIF, PZA	$ALT > 2 \times ULN$	6
Sharma, 2014 ⁸⁴	CYP2E1, GSTM1	Cohort	Indian	105/185	35.2/27.6	55.7/72.1	INH, RIF, PZA, EMB	$ALT > 5 \times ULN$	7
Wang, 2010 ⁸⁵	CYP2E1, GSTM1	Case- control	Chinese	104/111	48.6/44.7	67.3/67.6	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Tang, 2012 ⁸⁶	CYP2E1, GSTM1, GSTT1	Case- control	Chinese	89/356	43.7/43.6	73.0/73.0	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Yimer, 2011 45	NAT2, SLCO1B1	Cohort	Ethiopian	41/160	NA/NA	NA/NA	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	6
Brito, 2014 87	NAT2, CYP2E1, GSTM1, GSTT1	Cohort	Brazilian	15/230	38.1/36.8	46.7/NA	INH, RIF, PZA	ALT > 3 × ULN	7
Forestiero, 2013 88	NAT2, CYP2E1, GSTM1, GSTT1	Cohort	Brazilian	59/40	NA/NA	49.2/60.0	INH, RIF, PZA	ALT > 2.5 × ULN	6
Rana, 2014 ⁸⁹	NAT2, CYP2E1, GSTM1, GSTT1	Cohort	Indian	55/245	43.6/42.3	60.0/62.0	INH, RIF, PZA, EMB	ALT > 5 × ULN	6
Singla, 2014 ²⁶	NAT2, CYP2E1, GSTM1,	Case- control	Indian	17/391	48.2/32.7	64.7/61.4	INH, RIF, PZA, EMB, STM	$ALT > 2 \times ULN$	7

	GSTT1								
Sotsuka, 2011 90	NAT2, CYP2E1, GSTM1, GSTT1	Case- control	Japanese	20/92	54.9/50.4	90.0/73.9	INH, RIF, PZA, EMB or STM	ALT > 3 × ULN	7
Teixeira, 2011 ⁹¹	NAT2, CYP2E1, GSTM1, GSTT1	Case- control	Brazilian	26/141	47.6/43.0	61.5/52.5	INH containing regimen	ALT > 3 × ULN	7
Xiang, 2014 92	NAT2, CYP2E1, GSTM1, GSTT1	Cohort	Chinese	89/2155	37.0/44.5	67.4/55.7	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; ATDILI, anti-tuberculosis drug-induced liver injury; CYP2E1, cytochrome P450 2E1; EMB, ethambutol; GSTM1, glutathione S-transferase Mu 1; GSTT1, glutathione S-transferase Theta 1; INH, isoniazid; NA, not available; NAT2, N-acetyltransferase 2; PZA, pyrazinamide; RIF, rifampicin; SLCO1B1, solute carrier organic anion transporter family, member 1B1 (encoding organic anion transporting polypeptide 1B1 [OATP1B1]); STM, streptomycin; TB, tuberculosis; ULN, upper limit of normal

^a Mean unless otherwise stated

^b Median age

 ^c Number of individuals in the age ranges

^d Detailed scoring for each quality assessment criterion based on the revised Little's recommendation in supplementary data S2 Table.
Polymorphism	Genetic model		Numbe r of studies	OR (95% CI)	P value	<i>I</i> ² , %	Pheterogeneity	Model of meta-analysis
<i>SLCO1B1</i> <i>388A>G</i>	dominant model	AA + AG vs.GG	4	1.00 [0.76, 1.31]	1.00	0	0.73	Fixed
(rs2306283)	recessive model	AA vs. AG + GG	4	1.45 [0.93, 2.25]	0.10	0	0.84	Fixed
	additive model	AA vs. GG	4	1.36 [0.85, 2.15]	0.20	0	0.98	Fixed
<i>SLCO1B1</i> <i>521T>C</i> °	dominant model	CC + TC vs. TT	4	0.74 [0.43, 1.28]	0.28	66	0.03	Random
(rs4149056)	recessive model	CC vs. TC + TT	4	1.21 [0.40, 3.64]	0.73	0	0.57	Fixed
	additive model	CC vs. TT	4	1.27 [0.42, 3.84]	0.67	0	0.61	Fixed
bbreviations: O	<i>R</i> , odds ratio <i>; CI</i> ,	confidence interval						

Table 2. Association between the SLCO1B1 polymorphisms and the risk of anti-tuberculosis drug-induced liver injury

58	
59	
60	

(A) CYP2E1 RsaL/PstI c1/c1 genotype compared to c1/c2 + c2/c2 genotypes

		Odds Ratio	Odds Ratio
Study or Subgroup	Weight	M-H. Random, 95% Cl	M-H. Random, 95% Cl
CYP2E1 Rsal/Pstl c	/c genotyp	0	a second a second s
An 2012	5.9%	1.67 [0.93, 2.98]	
Brito 2014	2.3%	1.17 [0.25, 5.40]	
Chamorro 2013	5.3%	0.96 [0.48, 1.92]	
Cho 2007	3.9%	0.94 [0.35, 2.56]	
eng 2014	6.4%	4.22 [2.59, 6.89]	
Forestier 2013	3.5%	2.94 [0.97, 8.91]	
Supla 2013	1.4%	2.83 [0.35, 22.87]	
luang 2003	5.3%	2.52 [1.26, 5.05]	
(im 2009	5.3%	2.66 [1.34, 5.26]	
.ee 2010	5.2%	1.00 [0.49, 2.04]	
Mishra 2013	2.0%	0.46 [0.09, 2.49]	
Rana 2014	5.9%	0.66 [0.36, 1.18]	
Santos 2013	3.0%	2.28 [0.64, 8.11]	
Sharma 2014	6.0%	1.12 [0.64, 1.96]	
Singh 2014	4.6%	4.02 [1.76, 9.21]	
Singla 2014	2.2%	0.32 [0.07, 1.52]	
Sotsuka 2011	4.0%	0.65 [0.24, 1.74]	
Tang 2013	6.4%	0.99 [0.61, 1.60]	
Teixeira 2011	2.8%	0.78 [0.21, 2.95]	
/uilleumier 2006	1.2%	0.60 [0.06, 5.93]	
Vang 2010	5.7%	2.10 [1.14, 3.86]	
Kiang 2014	5.6%	1.28 [0.68, 2.42]	
Yamada 2009	3.9%	1.06 [0.39, 2.88]	
Zaverucha-do-valle 2014	2.3%	0.86 [0.19, 4.04]	
Subtotal (95% CI)	100.0%	1.39 [1.06, 1.83]	•
Fotal events			
leterogeneity: Tau ² = 0.24	; Chi ² = 57	.52, df = 23 (P < 0.0001); P = 609	6
Test for overall effect: Z =	2.35 (P = 0	.02)	G
			0.01 0.1 1 10

(B) CYP2E1 DraI D/D genotype compared to D/C + C/C genotypes.

Risk of anti-tuberculosis drug-induced liver injury in patients with the CYP2E1 (A) RsaI/PstI c1/c1 genotype compared to c1/c2 + c2/c2 genotypes and (B) DraI D/D genotype compared to D/C + C/C genotypes.

.

2	
3	
4	
5	
6	
7	
8	
g	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
27	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
/1	
יד ⊿2	
42	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	

60

		Odds Ratio	Odds Ratio
Study or Subgroup NAT2	Weight	M-H. Random. 95% Cl	M-H. Random, 95% Cl
An 2012	3.6%	4.74 [2.35, 9.58]	
Ben Mohmoud 2012	1.7%	5.00 [1.25, 20.08]	
Bose 2011	3.5%	3.00 [1.44, 6.25]	
Bozok 2008	2.6%	8.82 [3.26, 23.89]	
Brito 2014	2.4%	4.66 [1.59, 13.67]	
Chamorro 2013	3.7%	2.46 [1.24, 4.87]	
Cho 2007	2.3%	5.41 [1.76, 16.59]	
Forestier 2013	3.1%	1.88 [0.81, 4.33]	
Gupta 2013	3.9%	2.06 [1.09, 3.91]	
Higuchi 2007	1.7%	9.75 [2.40, 39.68]	
Ho 2013	2.7%	6.70 [2.54, 17.68]	
Huang 2002	3.4%	2.87 [1.32, 6.23]	
Huang 2003	3.9%	2.30 [1.21, 4.39]	
Khalili 2011	1.6%	11.16 [2.63, 47.33]	
Lee 2010	3.4%	3.28 [1.53, 7.06]	
Leiro-Fernandez 2012	3.3%	1.34 [0.61, 2.98]	
Lv 2012	4.1%	0.97 [0.54, 1.72]	
Mishra 2013	3.3%	3.15 [1.41, 7.02]	
Ng 2014	2.3%	4.25 [1.36, 13.22]	
Ohno 2000	0.5%	127.00 [6.57, 2453.41]	· · · · · · · · · · · · · · · · · · ·
Possuelo 2008	2.3%	5.40 [1.74, 16.74]	
Rana 2013	3.7%	3.49 [1.75, 6.97]	
Rana 2014	3.9%	3.59 [1.87, 6.86]	
Santos 2013	2.7%	3.71 [1.38, 9.93]	
Shimizu 2006	0.8%	20.67 [1.95, 218.71]	· · · · · · · · · · · · · · · · · · ·
Singla 2014	1.6%	6.27 [1.41, 27.78]	
Sotsuka 2011	2.2%	3.16 [0.98, 10.24]	
Teixeira 2011	2.9%	2.71 [1.10, 6.63]	
Vuilleumier 2006	1.4%	4.13 [0.82, 20.68]	
Wattanapokayakit 2017	3.2%	11.82 [5.22, 26.77]	
Xiang 2014	4.6%	1.52 [0.96, 2.40]	
Yamada 2009	2.9%	2.02 [0.82, 4.96]	
Yimer 2011	3.3%	1.54 [0.70, 3.37]	+
Yuliwulandari 2016	3.8%	3.45 [1.80, 6.60]	
Zaverucha-do-valle 2014	3.5%	2.95 [1.40, 6.21]	· · ·
Total quanta	100.076	area [e.ea, 4.11]	
Hotorogonolty: Tous = 0.21	- Chil = 72	0E df = 24 /D < 0.00011: B = 549	w l
Test for everall effect: 7 = 1	, Onr = /3	30, 01 - 34 (P < 0.0001); P = 547	/10
rest for overall enect: Z =	10.00 (P <	0.00001)	

Risk of anti-tuberculosis drug-induced liver injury in patients with the NAT2 slow acetylator genotype compared to those with the intermediate/fast acetylator genotypes.

8	
9	

-			
1	0		

 (A) GSTM1 null genotype compared to the non-null genotype

(B) GSTT1 null genotype compared to the non-null genotype

(C) GSTM1/GSTT1 dual-null genotype compared to the one- and non-null genotypes

Risk of anti-tuberculosis drug-induced liver injury in patients with (A) the GSTM1 null genotype compared to the non-null genotype, (B) the GSTT1 null genotype compared to the non-null genotype, and (C) the GSTM1/GSTT1 dual-null genotype compared to the one- and non-null genotypes.

Supplementary data

S1 Table. Completed MOOSE (Meta-analysis Of Observational Studies in Epidemiology) checklist

Item No	Recommendation	Reported on Page No
Reporting	of background should include	
1	Problem definition	7
2	Hypothesis statement (Objectives)	7
3	Description of study outcome(s)	7
4	Type of exposure or intervention used	NA
5	Type of study designs used	7
6	Study population	8-9
Reporting	of search strategy should include	
7	Qualifications of searchers (eg, librarians and investigators)	NA
8	Search strategy, including time period included in the synthesis and key words	8 S2 Table
9	Effort to include all available studies, including contact with authors	8
10	Databases and registries searched	8
11	Search software used, name and version, including special features used (eg, explosion)	8
12	Use of hand searching (eg, reference lists of obtained articles)	8
13	List of citations located and those excluded, including justification	Fig 1
14	Method of addressing articles published in languages other than English	9
15	Method of handling abstracts and unpublished studies	9, Fig 1
16	Description of any contact with authors	-
Reporting	of methods should include	
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	NA
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	12
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	12
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	NA
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	Table 1, S3 Table
22	Assessment of heterogeneity	16
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	10-11
24	Provision of appropriate tables and graphics	Table 1-2, Fig 1-4

2	
3	R
4	
5	
6	
/	
8	
9 10	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
45 11	
44 15	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Reporting	of results should include	
25	Graphic summarizing individual study estimates and overall estimate	Fig 2-4
26	Table giving descriptive information for each study included	Table 1
27	Results of sensitivity testing (eg, subgroup analysis)	16, S9-11 Table
28	Indication of statistical uncertainty of findings	-

BMJ Open

S2 Table. Search strategies

Electronic database	Search strategies
PubMed	((((((((((((((((((((((((((((() Iutathione S transferase") OR GST)) OR ("glutathione S- transferase T1" [Supplementary Concept] OR "glutathione S-transferase M1" [Supplementary Concept])) AND Humans[Mesh] AND English[lang])) OR ((("SLCO1B1 protein, human" [Supplementary Concept]) OR "solute carrier organic anion transporter") AND Humans[Mesh] AND English[lang])) OR ("isoniazid acetyltransferase" [Supplementary Concept]]OR "ArylamineN- Acetyltransferase"[Mesh] OR "NAT2 protein, human" [Supplementary Concept])) OR "Cytochrome P-450 CYP2E1"[Mesh]) OR #51) OR "Genetic Predisposition to Disease"[Mesh]) AND (("Drug-Induced Liver Injury"[Mesh] OR "Drug-Induced Liver Injury, Chronic"[Mesh]))) AND ((("AntitubercularAgents"[Mesh]) OR tuberculosis OR antituberculo*)) Filters: Humans; English
EMBASE	'solute carrier organic anion transporter 1b1'/expOR 'solute carrier organic anion transporter 1b1' OR 'multidrug resistance protein 1'/expOR 'multidrug resistance protein 1' OR 'organic anion transporter'/expOR 'organic anion transporter' AND [humans]/limAND [english]/limOR slco1b1 OR 'drug transporter gene*' OR abcb1 AND ('hepatitis'/expOR hepatitis OR 'liver toxicity'/expOR ('drug induced' AND ('liver'/expOR liver) AND ('toxicity'/expOR toxicity)) OR 'toxic hepatitis'/expOR 'hepatotoxicity'/expOR hepatotoxicity) AND ('tuberculostaticagent'/expOR 'tuberculostaticagent' OR antituberculosisOR 'isoni*' OR 'rifampi*') AND [humans]/limAND [english]/lim
Web of Science	((((("Glutathione S transferase") OR GST) OR GSTT1) OR GSTM1) OR (((NAT2) OR "arylaminN acetyltransferase") OR N acetyltransferase*) OR ((drug metaboli?er*) OR (drug metabli?ingenzyme*)) OR (("Cytochrome 2E1") OR "CYP 2E1") OR (("The solute carrier organic anion transporter family member 1B1") OR SLCO1B1) OR (genotyp* OR acetylator*) OR (gene* susceptibilit*) OR (*polymorphism*)) AND ((drug NEAR/3 liver) OR (hepatotoxi*) OR (drug induced liver injury) OR (hepatitis)) AND ((rifampi*) OR (isoni*) OR (antituberculosis) OR ("antitubercul* agent* "))
Cochrane Reviews	[AntitubercularAgents] explode all trees AND [Drug-Induced Liver Injury] explode all trees AND ([Cytochrome P-450 CYP2E1] explode all trees OR nat2 OR "N acetyltrasferase" " glutathione S transferase" OR GST OR GSTM1 OR GSTT1 "Solute carrier organic anion transporter" OR SLCO1B1)(Limitation : Trials)

S3 Table. Study quality assessment

Studies	Scientific design	Definite inclusion of study population ^a	Explicit information on study population ^a	Explicit diagnostic criteria on ATDILI ^a	Genetic detection method ^a	Correct statistical analysis ^a	Logical discussion of study bias ^a
Feng, 2014 ¹	1	1	1	1	1	1	0
Kim, 2009 ²	1	1	1	1	1	1	1
Singh, 2014 ³	1	1	1	1	1	1	1
Tang, 2013 ⁴	1	1	1	1	1	1	1
Ben Mahmoud, 2012 ⁵	1	1	1	1	1	1	1
Bozok Cetintas, 2008 ⁶	1	1	1	1	1	0	1
Higuchi, 2007 7	1	1	1	1	1	1	1
Ho, 2013 ⁸	1	1	1	1	1	1	0
Huang, 20029	1	1	1	1	1	1	1
Khalili, 2011 ¹⁰	1	1	1	1	1	1	0
Leiro-Fernandez, 2011 ¹¹	1	1	1	1	1	1	1
Lv, 2012 ¹²	1	1	1	1	1	1	1
Ng, 2014 ¹³	1	1	1	1	1	1	1
Ohno, 2000 ¹⁴	1	1	1	1	1	1	1
Possuelo, 2008 ¹⁵	1	1	1	1	1	1	1
Rana, 2012 16	1	1	1	1	1	1	1
Shimizu, 2006 17	1	1	1	1	1	1	0
Yuliwulandari, 2016 ¹⁸	1	1	1	1	1	1	1
Wattanapokayakit, 2016 ¹⁹	1	1	1	1	1	1	1
Chatterjee, 2010 ²⁰	1	1	1	1	1	1	1
Gupta, 2013 ²¹	1	1	1	1	1	1	1
Huang, 2007 22	1	1	1	1	1	1	0
Kim, 2010 ²³	1	1	1	1 💊	1	1	1
Leiro, 2008 ²⁴	1	1	1	1	1	1	1
Liu, 2014 ²⁵	1	1	1	1	1	1	1
Monteiro, 2012 ²⁶	1	1	1	1	1	1	1
Rana, 2013 ²⁷	1	1	1	1	1	1	0
Roy, 2001 ²⁸	1	1	1	1	1	1	1
Chen, 2015 ²⁹	1	1	1	1	1	1	1
Kim, 2012 ³⁰	1	1	1	1	1	1	1
Li, 2012 ³¹	1	1	1	1	1	1	1
An, 2012 ³²	1	1	1	1	1	1	1
Bose, 2011 ³³	1	1	1	1	1	1	1

				1	-	4	
Chamorro, 2013 ³⁴	1	1	1	1	1	1	1
Cho, 2007 35	1	1	1	1	1	1	1
Gupta, 2013 36	1	1	1	1	1	1	1
Huang, 2003 37	1	1	1	1	1	1	1
Lee, 2010 ³⁸	1	1	1	1	1	1	1
Mishra, 2013 39	1	1	1	1	1	1	1
Santos, 2013 40	1	1	1	1	1	1	1
Vuilleumier, 2006	1	1	1	1	1	1	1
Yamada, 2009 42	1	1	1	1	1	1	1
Zaverucha-do- Valle, 2014 ⁴³	1	1	1	1	1	1	0
Sharma, 2014 44	1	1	1	1	1	1	1
Wang, 2010 45	1	1	1	1	1	1	1
Tang, 2012 46	1	1	1	1	1	1	1
Yimer, 2011 47	1	1	1	1	1	1	0
Brito, 2014 48	1	1	1	1	1	1	1
Forestiero, 2013 ⁴⁹	1	1	1	1	1	1	0
Rana, 2014 50	1	1	1	1	1	1	0
Singla, 2014 51	1	1	1	1	1	1	1
Sotsuka, 2011 52	1	1	1	1	1	1	1
Teixeira, 2011 53	1	1	1	1	1	1	1
Xiang, 2014 54	1	1	1	1	1	1	1

Abbreviation: ATDILI, anti-tuberculosis drug-induced liver injury

^a 0 indicates 'not mentioned' in the study; 1 indicates 'sufficient information provided' in the study

Page 49 of 69

 BMJ Open

		<i>Rsa</i> I/ <i>Pst</i> I ge	notype $(n = 24)$						
Study	Case (number	of individuals [)	Control (numbe [%	er of individuals [])	Case (n individu	umber of uals [%])	Control (r individu	number of als [%])	Genotyping
	C1/C1	C1/C2 + C2/C2	C1/C1	C1/C2 + C2/C2	D/D	D/C + C/C	D/D	D/C + C/C	method
An ³²	72 (71.3)	29 (28.7)	64 (59.8)	43 (40.2)	NA	NA	NA	NA	Sequencing
Bose ³³	NA	NA	NA	NA	4 (9.8)	37 (90.2)	32 (18.1)	145 (81.9)	PCR-RFLP
Brito ⁴⁸	13 (86.7)	2 (13.3)	195 (84.8)	35 (15.2)	12 (80.0)	3 (20.0)	179 (76.8)	54 (23.2)	PCR-RFLP
Chamorro ³⁴	30 (63.8)	17 (36.2)	83 (64.8)	45 (35.2)	NA	NA	NA	NA	PCR-RFLP
Cho ³⁵	10 (55.6)	8 (44.4)	65 (57.0)	49 (43.0)	NA	NA	NA	NA	Sequencing
Feng ¹	142 (82.1)	31 (17.9)	90 (52.0)	83 (48.0)	NA	NA	NA	NA	Sequencing
Forestiero ⁴⁹	53 (89.8)	6 (10.2)	30 (75.0)	10 (25.0)	NA	NA	NA	NA	PCR-RFLP
Gupta ³⁶	49 (98.0)	1 (2.0)	156 (94.5)	9 (5.5)	33 (66.0)	17 (34.0)	107 (64.9)	58 (35.1)	PCR-RFLP
Huang ³⁷	37 (75.5)	12 (24.5)	148 (55.0)	121 (45.0)	NA	NA	NA	NA	PCR-RFLP

Kim ²	54 (81.8)	12 (18.2)	97 (63.4)	56 (36.6)	NA	NA	NA	NA	SNP stream
Lee ⁵⁵	26 (57.8)	19 (42.2)	55 (57.9)	40 (42.1)	NA	NA	NA	NA	Taqman
Mishra ³⁹	31 (93.9)	2 (6.1)	168 (97.1)	5 (2.9)	NA	NA	NA	NA	PCR-RFLP
Rana ⁵⁶	28 (50.9)	27 (49.1)	150 (61.2)	95 (38.8)	NA	NA	NA	NA	PCR-RFLP
Santos ⁵⁷	15 (83.3)	3 (16.7)	173 (75.6)	56 (24.4)	15 (83.3)	3 (16.7)	166 (72.8)	62 (27.2)	Taqman
Sharma ⁴⁴	81 (77.1)	24 (22.9)	139 (75.1)	46 (24.9)	NA	NA	NA	NA	PCR-RFLP
Singh ³	42 (84.0)	8 (16.0)	77 (56.6)	59 (43.4)	NA	NA	NA	NA	PCR-RFLP
Singla ⁵¹	15 (88.0)	2 (12.0)	375 (96.0)	16 (4.0)	NA	NA	NA	NA	PCR-RFLP
Sotsuka ⁵²	11 (55.0)	9 (45.0)	60 (65.2)	32 (34.8)	9 (45.0)	11 (55.0)	45 (48.9)	47 (51.1)	PCR-RFLP
Tang ⁴⁶	NA	NA	NA	NA	47 (52.8)	42 (47.2)	204 (57.3)	152 (42.7)	PCR-RFLP
Tang ⁴	56 (62.9)	33 (37.1)	225 (63.2)	131 (36.8)	NA	NA	NA	NA	Taqman
Teixeira ⁵³	23 (88.5)	3 (11.5)	128 (90.8)	13 (9.2)	NA	NA	NA	NA	PCR-RFLP
Vuilleumier ⁴¹	7 (87.5)	1 (12.5)	58 (92.1)	5 (7.9)	NA	NA	NA	NA	PCR-RFLP

Page	51	of	69
------	----	----	----

BMJ (Open
-------	------

Wang ⁴⁵	82 (78.8)	22 (21.2)	71 (64.0)	40 (36.0)	NA	NA	NA	NA	PCR-RFLP
Xiang ⁵⁴	58 (82.9)	12 (17.1)	1264 (79.0)	336 (21.0)	NA	NA	NA	NA	PCR/ligase detection reaction assays
Yamada ⁴²	17 (73.9)	6 (26.1)	107 (72.8)	40 (27.2)	NA	NA	NA	NA	PCR-RFLP
Zaverucha-do-Valle ⁴³	48 (94.1)	3 (5.9)	74 (94.9)	4 (5.1)	NA	NA	NA	NA	PCR-RFLP

Abbreviations: *NA*, not available; *PCR*, polymerase chain reaction; *RFLP*, restriction fragment length polymorphism; *SNP*, single nucleotide polymorphism

S5 Table. Genotype distribution and the genotyping method used for the *NAT2* genetic polymorphism in the included studies (n = 35)

	Case (number o	of individuals [%])	Control (number	r of individuals [%])		
Study	Slow acetylator	Intermediate and fast acetylator	Slow acetylator	Intermediate and fast acetylator	Genotyping method	
An ³²	40 (39.6)	61 (60.4)	13 (12.1)	94 (87.9)	Sequencing	
Ben Mahmoud ⁵	11 (78.5)	3 (21.5)	22 (42.4)	30 (57.6)	PCR-RFLP	
Bose ³³	29 (70.7)	12 (29.3)	79 (44.6)	98 (55.4)	PCR-RFLP	
Bozok Cetintas ⁶	23 (76.7)	7 (23.3)	19 (27.1)	51 (72.9)	PCR	
Brito ⁴⁸	9 (60.0)	6 (40.0)	56 (24.3)	174 (75.7)	PCR-RFLP	
Chamorro ³⁴	28 (58.7)	19 (41.3)	48 (37.5)	80 (62.5)	PCR-RFLP	
Cho ³⁵	7 (38.9)	11 (61.1)	12 (10.5)	102 (89.5)	Sequencing	
Forestiero ⁴⁹	28 (47.4)	31 (52.6)	13 (32.5)	27 (67.5)	PCR-RFLP	
Gupta ³⁶	28 (56.0)	22 (44.0)	63 (38.2)	102 (61.8)	PCR-RFLP	
Higuchi ⁷	6 (33.3)	12 (66.7)	4 (4.9)	78 (95.1)	PCR-RFLP	
Ho ⁸	12 (63.2)	7 (36.8)	67 (20.4)	262 (79.6)	Sequenom MassARRAY	

Huang ⁹	14 (42.4)	19 (57.6)	39 (20.4)	152 (79.6)	PCR-RFLP	-
Huang 37	19 (38.8)	30 (61.2)	58 (21.6)	211 (78.4)	PCR-RFLP	
Khalili ¹⁰	9 (64.3)	5 (35.7)	5 (13.9)	31 (86.1)	PCR-RFLP	
Lee ³⁸	21 (46.7)	24 (53.3)	20 (21.1)	75 (78.9)	Taqman	
Leiro-Fernandez 11	36 (72.0)	14 (28.0)	44 (65.7)	23 (34.3)	PCR-RFLP	
Lv ⁵⁸	18 (20.2)	71 (79.8)	74 (20.8)	282 (79.2)	PCR-RFLP	
Mishra ³⁹	23 (70.0)	10 (30.0)	73 (42.0)	100 (58.0)	PCR-RFLP	
Ng ¹³	22 (84.6)	4 (15.4)	57 (56.4)	44 (43.6)	PCR-RFLP	
Ohno ¹⁴	7 (50.0)	7 (50.0)	0 (0.0)	63 (100.0)	PCR-RFLP	
Possuelo ¹⁵	9 (64.3)	5 (35.7)	60 (25.0)	180 (75.0)	Sequencing	
Rana ¹⁶	19 (38.0)	31 (62.0)	30 (14.9)	171 (85.1)	PCR-RFLP	
Rana 50	21 (38.2)	34 (61.8)	36 (14.7)	209 (85.3)	PCR-RFLP	
Santos 40	11 (61.1)	7 (38.9)	75 (29.8)	177 (70.2)	Sequencing	
Shimizu ¹⁷	4 (40.0)	6 (60.0)	1 (3.1)	31 (96.9)	PCR-RFLP	
Singla ⁵¹	15 (88.2)	2 (11.8)	213 (54.5)	178 (45.5)	PCR-RFLP	
						-

BMJ Open

Sotsuka 52	8 (15.4)	44 (84.6)	5 (5.4)	87 (94.6)	PCR-RFLP
Teixeira 53	18 (75.0)	6 (25.0)	64 (51.2)	61 (48.8)	Sequencing
Vuilleumier ⁴¹	3 (37.5)	5 (62.5)	8 (12.7)	55 (87.3)	PCR- RFLP
Wattanapokayakit 19	38 (71.7)	15 (28.3)	15 (17.7)	70 (82.3)	Sequencing
Xiang ⁵⁴	28 (31.5)	61 (68.5)	501 (23.2)	1654 (76.8)	PCR/ligase detection reaction assays
Yamada ⁴²	14 (60.9)	9 (39.1)	64 (43.5)	83 (56.5)	Sequencing
Yimer ⁴⁷	31 (75.6)	10 (24.4)	107 (66.9)	53 (33.1)	Taqman
Yuliwulandari 18	32 (64.0)	18 (36.0)	65 (34.0)	126 (66.0)	Sequencing
Zaverucha-do-Valle ⁴³	37 (71.2)	15 (28.8)	36 (45.6)	43 (54.4)	Sequencing

Abbreviations: *NA*, not available; *PCR*, polymerase chain reaction; *RFLP*, restriction fragment length polymorphism

Page 55 of 69

BMJ Open

S6 Table. Genotype distribution and the genotyping method used for the GS	ST genetic polymorphisms in the included studies (n = 19)
---	---

	GSTM1 genotype (n = 19)				GSTT1 genotype (n = 17)			G	GSTM1/GSTT1 genotype (n = 11)				
- Study _	Case (nu individu	Case (number of individuals [%])Control (number of individuals [%])		Case (1 individ	Case (number of individuals [%])Control (number of individuals [%])		(number of luals [%])	Case (number of individuals [%])		Control (number of individuals [%])		Genotyping	
-	Null	Non- null	Null	Non-null	Null	Non-null	Null	Non-null	Dual- null	One-/non- null	Dual- null	One-/non- null	metnod
Drite 48	6	9	99	131	2	13	28	202	1	14	12	218	DCD
BIIIO 10	(40.0)	(60.0)	(43.0)	(57.0)	(13.3)	(86.7)	(12.2)	(87.8)	(6.7)	(93.3)	(5.2)	(94.8)	PCK
Chatterjee	25	26	49	51	3	48	3	97	3	48	11	89	Multiplex
20	(49.0)	(51.0)	(49.0)	(51.0)	(5.9)	(94.1)	(3.0)	(97.0)	(5.9)	(94.1)	(11.0)	(89.0)	PCR
Forestiero	25	34	21	19	10	49	8	32	4	55	5	35	Multiplex
49	(42.4)	(57.6)	(52.5)	(47.5)	(17.0)	(83.0)	(20.0)	(80.0)	(6.8)	(93.2)	(12.5)	(87.5)	PCR
$C \rightarrow 21$	21	29	61	185	11	39	30	216	5	45	4	242	Multiplex
Gupta 21	(42.0)	(58.0)	(24.8)	(75.2)	(22.0)	(78.0)	(12.2)	(87.8)	(10.0)	(90.0)	(1.6)	(98.4)	PCR
TT 22	42	21	29	34	24	39	25	38					Multiplex
Huang 22	(66.7)	(33.3)	(46.0)	(54.0)	(38.1)	(61.9)	(39.7)	(60.3)	NA	NA	NA	NA	PCR
TZ: 22	26	31	104	86	34	23	103	87	17	40	56	133	DCD
Kim ²³	(45.6)	(54.4)	(54.7)	(45.3)	(59.6)	(40.4)	(54.2)	(45.8)	(29.8)	(70.2)	(29.6)	(70.4)	PCK
т: 24	12	23	25	35	17	18	16	44	7	28	6	54	DCD
Leiro ²⁴	(34.3)	(65.7)	(41.7)	(58.3)	(48.6)	(51.4)	(26.7)	(73.3)	(20.0)	(80.0)	(10.0)	(90.0)	PCR
т. 25	14	6	96	47	13	7	97	46	N T A				Multiplex
L1u ²³	(70.0)	(30.0)	(67.1)	(32.9)	(65.0)	(35.0)	(67.8)	(32.2)	NA	NA	NA	NA	PCR

Monteiro	21	38	34	84	11	48	28	90		NIA	NTA	NT A	DCD	
26	(35.6)	(64.4)	(28.8)	(71.2)	(18.7)	(81.3)	(23.8)	(76.2)	NA	NA	NA	NA	PCR	
D area 27	10	20	37	183	6	24	68	152	9	21	96	124	DCD	
Kana -	(41.6)	(58.4)	(18.5)	(81.5)	(25.0)	(75.0)	(33.8)	(66.2)	(37.5)	(62.5)	(47.7)	(52.3)	PCR	
Dana 16	19	36	42	203	14	41	81	164	22	33	122	123	DCD	
Kalla ¹⁰	(34.5)	(65.5)	(17.1)	(82.9)	(25.5)	(74.5)	(33.1)	(66.9)	(40.0)	(60.0)	(49.8)	(50.2)	PCK	
D ov ²⁸	17	15	8	25	5	28	1	32	ΝA	NI A	NA	NA	DCD	
KOy 20	(52.0)	(48.0)	(24.0)	(76.0)	(15.0)	(85.0)	(3.0)	(97.0)	INA	NA	NA	NA	PCK	
Sharma 44	42	63	68	117	NA	NIA	NA	NA	ΝA	NIA	NA	NA	DCD	
	(40.0)	(60.0)	(36.7)	(63.3)	INA	INA	INA	NA	INA	INA	INA	INA	FUK	
Single 51	10	7	165	226	8	9	102	289	5	12	32	359	Multiplex	
Singla	(59.0)	(41.0)	(42.0)	(58.0)	(47.0)	(53.0)	(26.0)	(74.0)	(29.0)	(71.0)	(8.0)	(92.0)	PCR	
Soteuka 52	12	8	50	42	7	13	40	52	ΝA	ΝA	ΝA	NΔ	PCR	
Solsuka	(60.0)	(40.0)	(54.3)	(45.7)	(35.0)	(65.0)	(43.5)	(56.5)	INA	INA	INA	INA	FCK	
Tang 46	55	34	203	153	40	49	164	192	22	67	94	262	Multiplex	
Tang "	(61.8)	(38.2)	(57.0)	(43.0)	(44.9)	(55.1)	(46.1)	(53.9)	(24.7)	(75.3)	(26.4)	(73.6)	PCR	
Tainaina 53	11	15	61	80	4	22	27	114	NA	NIA	NIA	NT A	Multiplex	
Telxella 55	(42.3)	(57.7)	(43.3)	(56.7)	(15.4)	(84.6)	(19.2)	(80.8)	INA	NA	INA	NA	PCR	
117 45	63	41	54	57	NIA	NIA	NIA	NIA	NA	NIA	NIA	NT A	DCD	
wang "	(60.6)	(39.4)	(48.6)	(51.4)	INA	ruk								
Viona 54	41	48	925	1230	18	71	477	1678	7	68	283	1427	DCD	
Xiang ³⁴	(46.1)	(53.9)	(42.9)	(57.1)	(20.2)	(79.8)	(22.1)	(77.9)	(9.3)	(90.7)	(16.5)	(83.5)	PUK	

Abbreviations: NA, not available; PCR, polymerase chain reaction

BMJ Open

2		
2		
ر ۸		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
20		
<u>/0</u>		
40 ⊿1		
41 ⊿⊃		
4∠ ⊿⊃		
43 44		
44 47		
45		
46		

S7 Table. Genotype distribution and the genotyping method used for the *SLCO1B1* genetic polymorphisms in the included studies (n = 4)

Abbreviations: PCR, polymerase chain reaction; SNP, single nucleotide polymorphism

		SI	LCO1B1 38	8A>G (rs2306	5283)		<i>SLCO1B1</i> 521T>C (rs4149056)						
Study	Case (number of individuals			Control (number of individuals [%])			Case (number of individuals [%])			Control (number of individuals [%])			- Genotyping method
-	AA	AG	GG	AA	AG	GG	TT	СТ	CC	TT	СТ	CC	
Chen ²⁹	8 (9.0)	34 (38.2)	47 (52.8)	33 (7.5)	164 (37.1)	245 (55.4)	72 (80.9)	15 (16.9)	2 (2.2)	351 (79.6)	87 (19.7)	3 (0.7)	Taqman
Kim ³⁰	6 (9.2)	26 (40.0)	33 (50.8)	11 (7.1)	60 (38.5)	85 (54.5)	46 (69.7)	20 (30.3)	0 (0.0)	113 (72.4)	40 (25.6)	3 (1.9)	SNPstream
Li ³¹	11 (9.3)	38 (32.2)	69 (58.5)	12 (7.7)	48 (31.0)	95 (61.3)	83 (70.3)	34 (28.8)	1 (0.8)	136 (87.7)	18 (11.6)	1 (0.7)	PCR direct sequencing
Yimer ⁴⁷	9 (22.0)	17 (41.5)	15 (36.6)	20 (12.5)	87 (54.4)	53 (33.1)	27 (65.9)	13 (31.7)	1 (2.4)	107 (66.9)	49 (30.6)	4 (2.5)	Taqman
	Ch ONL												

0.5

1.5-

2+

0.2

0.4

0.6-

0.8-

0.01

0.5

1.5

2+

0.1

(A) CYP2E1 RsaI/PstI polymorphism

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

OR 100

S8 Figure. Funnel plots to evaluate publication bias for the *CYP2E1, NAT2, GST,* and *SLCO1B1* polymorphisms associated with the risk of anti-tuberculosis drug-induced liver injury. (A) *CYP2E1 RsaI/Pst*I polymorphism, (B) *CYP2E1 Dra*I polymorphism, (C) *NAT2* polymorphism, (D) *GSTM1* polymorphism, (E) *GSTT1* polymorphism, (F) *GSTT1/M1* polymorphism, and (G) *SLCO1B1 388A>G* and *521T>C* polymorphism.

Page 61 of 69

 BMJ Open

S9 Table. Subgroup analysis for the association between *CYP2E1* polymorphisms and the risk of anti-tuberculosis drug-induced liver injury based on ethnicity, anti-tuberculosis drug regimen, and study design

	Subgroup		Number	Case/	Test of associa	ation	Model of	Test of h	eterogeneity
Polymorphic gene			of studies	control - (n)	OR [95% CI]	P value ^a	meta analysis	<i>I</i> ² ,%	P value ^b
CYP2E1 Rsal/PstI	Total		24	1293/5450	1.39 [1.06, 1.83]	0.02	Random	60	< 0.0001
(c1/c1 vs. c1/c2 + c2/c2)	Ethnicity	East Asian	10	736/3076	1.62 [1.12, 2.36]	0.01	Random	69	0.0006
		Indian	6	310/1295	1.08 [0.52, 2.25]	0.85	Random	70	0.005
		South American	6	216/869	1.30 [0.83, 2.03]	0.25	Fixed	0	0.49
		Others	2	31/210	0.98 [0.39, 2.45]	0.96	Fixed	0	0.66
	Anti-TB	INH alone	2	31/210	0.98 [0.39, 2.45]	0.96	Fixed	0	0.66
	drug regimen	Combination	21	1212/5104	1.35 [1.01, 1.79]	< 0.00001	Random	61	0.0002
	Study	Cohort	11	564/3120	1.32 [0.94, 1.87]	0.11	Random	50	0.03
	design	Case-control	12	729/2330	1.42 [0.93, 2.16]	0.10	Random	65	0.0006
CYP2E1 DraI ^c	Total		6	233/1272	0.93 [0.68, 1.27]	0.64	Fixed	0	0.51
(D/D vs. D/C + C/C)	Ethnicity	East Asian	2	109/448	0.84 [0.55, 1.28]	0.41	Fixed	0	0.96
		Indian	2	91/342	0.83 [0.48, 1.45]	0.51	Fixed	27	0.24
		South American	2	33/482	1.80 [0.73, 4.45]	0.20	Fixed	0	0.37
	Study	Cohort	2	56/407	0.68 [0.31,1.50]	0.33	Fixed	0	0.33
	design	Case-control	4	177/865	0.99 [0.70, 1.38]	0.94	Fixed	0	0.42

Abbreviations: CI, confidence interval; CYP2E1, cytochrome P450 2E1; INH, isoniazid; OR, odds ratio; TB, tuberculosis

^a P value from Z test

BMJ Open

^b P value from Cochran's Q test based on chi-square statistic

^c Subgroup analysis based on anti-TB drug regimen could not be performed due to insufficient information provided.

.emed due to insufficient informatic

 BMJ Open

S10 Table. Subgroup analysis for the association between *NAT2* polymorphism and the risk of anti-tuberculosis drug-induced liver injury based on ethnicity, anti-tuberculosis drug regimen, and study design

	Subgroup		Number	Case/	Test of associa	tion	Model of	Test of h	eterogeneity
Polymorphic gene			of studies	control (n)	OR [95% CI]	P value ^a	meta analysis	<i>I</i> ² ,%	P value ^b
NAT2	Total		35	1323/7319	3.30 [2.65, 4.11]	< 0.00001	Random	47	0.002
(Slow acetylator vs. fast and intermediate	Ethnicity	East Asian	13	590/3970	4.00 [2.42,6.60]	< 0.00001	Random	77	< 0.00001
acetylator)		Indian	6	246/1352	3.07 [2.26, 4.16]	< 0.00001	Fixed	0	0.74
		West Asian South American African	2	44/106	9.51 [4.19, 21.61]	< 0.00001	Fixed	0	0.79
			7	231/1110	2.94 [2.11, 4.08]	< 0.00001	Fixed	0	0.75
			2	55/212	2.08 [1.06, 4.10]	0.03	Fixed	52	0.15
		Others	5	157/569	2.56 [1.72, 3.79]	< 0.00001	Fixed	15	0.32
	Anti-TB	INH alone	2	31/210	2.32 [1.05, 5.13]	0.04	Fixed	0	0.45
	drug regimen	Combination	32	1256/6954	3.37 [2.67, 4.25]	< 0.00001	Random	56	< 0.0001
		Cohort	18	673/4850	2.82 [2.35, 3.40]	< 0.00001	Fixed	40	0.04
	Study design	Case-control	17	650/2469	3.53 [2.42, 5.16]	<0.00001	Random	65	0.0001

Abbreviations: *CI*, confidence interval; *INH*, isoniazid; *NAT2*, N-acetyltransferase 2; *OR*, odds ratio; *TB*, tuberculosis ^a P value from Z test

^b P value from Cochran's Q test based on chi-square statistic

BMJ Open

	Subgroup		N 7 N	Case/	Test of associa	tion	Model of	Test of heterogeneity	
Polymorphic gene			Number of studies	control (n)	OR [95% CI]	P value ^a	meta- analysis	<i>I</i> ² ,%	P value ^b
<i>GSTM1</i> °	Total		19	977/5119	1.30 [1.12, 1.52]	0.0007	Fixed	33	0.08
(null vs. non-null)	Ethnicity	East Asian	7	442/3110	1.23 [0.99, 1.54]	0.06	Fixed	23	0.25
		Indian	7	341/1420	1.68 [1.30, 2.19]	< 0.0001	Fixed	36	0.15
		Brazilian	4	159/529	0.98 [0.66, 1.47]	0.94	Fixed	0	0.60
	Study	Cohort	8	462/3439	1.41 [1.04, 1.93]	0.03	Random	44	0.08
	design	Case-control	11	515/1680	1.25 [1.01, 1.55]	0.20	Fixed	29	0.17
<i>GSTT1</i> °	Total		17	768/4823	1.03 [0.85, 1.25]	0.76	Fixed	16	0.26
(null vs. non-null)	Ethnicity	East Asian	6	338/2999	0.96 [0.74, 1.24]	0.75	Fixed	0	0.94
		Indian	6	236/1235	1.37 [0.72, 2.59]	0.33	Random	57	0.04
		Brazilian	4	159/529	0.80 [0.47, 1.33]	0.39	Fixed	0	0.97
	Study	Cohort	8	408/3354	0.89 [0.67, 1.19]	0.44	Fixed	3	0.41
	design	Case-control	9	360/1469	1.16 [0.90, 1.50]	0.26	Fixed	24	0.23
GSTM1/GSTT1°	Total		11	547/4233	1.05 [0.67, 1.62]	0.84	Random	59	0.006
lual-null vs. one-/non-	Ethnicity	East Asian	3	235/2701	0.83 [0.58, 1.20]	0.33	Fixed	0	0.49
nun)		Indian	5	203/1202	1.33 [0.50, 3.53]	0.56	Random	80	0.0005
		Brazilian	2	74/270	0.67 [0.20, 2.18]	0.50	Fixed	0	0.47
	Study	Cohort	6	298/3136	0.85 [0.45, 1.61]	0.62	Random	58	0.04
	design	Case-control	5	249/1097	1.31 [0.71, 2.43]	0.39	Random	59	0.04

S11 Table. Subgroup analysis for the association between GST polymorphisms and the risk of anti-tuberculosis drug-induced liver

Abbreviations: CI, confidence interval; GSTM1, glutathione S-transferase Mu 1; GSTT1, glutathione S-transferase Theta 1; OR, odds ratio

^a P value from Z test

BMJ Open

^b P value from Cochran's Q test based on chi-square statistic

^c Subgroup analysis based on anti-tuberculosis drug regimen could not be performed due to insufficient information provided

ud not be performed due to insufficie.

References

- 1.
 Feng FM, Guo M, Chen Y, et al. Genetic
 polymorphisms in metabolic enzymes and

 susceptibility to anti-tuberculosis drug induced hepatic injury. Genetics and Molecular

 Research 2014;13:9463-71.
 Research 2014;13:9463-71.
- 2. Kim SH, Kim SH, Bahn JW, *et al.* Genetic polymorphisms of drug-metabolizing enzymes and anti-TB drug-induced hepatitis. *Pharmacogenomics* 2009;10:1767-79.
- 3. Singh M, Gupta VH, Amarapurkar DN, *et al.* Association of genetic variants with anti-tuberculosis drug induced hepatotoxicity: A high resolution melting analysis. *Infection Genetics and Evolution* 2014;23:42-8.
- 4. Tang S, Lv X, Zhang Y, *et al.* Cytochrome P450 2E1 Gene Polymorphisms/Haplotypes and Anti-Tuberculosis Drug-Induced Hepatitis in a Chinese Cohort. *PLoS ONE* 2013;8:e57526.
- 5. Ben Mahmoud L, Ghozzi H, Kamoun A, *et al.* Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis. *Pathologie Biologie* 2012;60:324-30.
- Bozok Cetintas V, Erer OF, Kosova B, *et al.* Determining the relation between N-acetyltransferase-2 acetylator phenotype and antituberculosis drug induced hepatitis by molecular biologic tests. *Tuberk Toraks* 2008;56:81-6.
- Higuchi N, Tahara N, Yanagihara K, *et al.* NAT2 6A, a haplotype of the N-acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-induced hepatotoxicity in Japanese patients with tuberculosis. *World J Gastroenterol* 2007;13:6003-8.
- 8. Ho HT, Wang TH, Hsiong CH, *et al.* The NAT2 tag SNP rs1495741 correlates with the susceptibility of antituberculosis drug-induced hepatotoxicity. *Pharmacogenet Genomics* 2013;23:200-7.
- 9. Huang YS, Chern HD, Su WJ, *et al.* Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. *Hepatology* 2002;35:883-9.
- Khalili H, Fouladdel S, Sistanizad M, et al. Association of N-acetyltransferase-2 genotypes and antituberculosis induced liver injury: First case-controlled study from Iran. Current Drug Safety 2011;6:17-22.
- Leiro-Fernandez V, Valverde D, Vazquez-Gallardo R, *et al.* N-acetyltransferase 2 polymorphisms and risk of anti-tuberculosis drug-induced hepatotoxicity in Caucasians. *International Journal of Tuberculosis and Lung Disease* 2011;15:1403-8.
- 12. Lv X, Tang S, Xia Y, *et al.* NAT2 genetic polymorphisms and anti-tuberculosis drug-induced hepatotoxicity in Chinese community population. *Ann Hepatol* 2012;11:700-7.
- Ng CS, Hasnat A, Al Maruf A, *et al.* N-acetyltransferase 2 (NAT2) genotype as a risk factor for development of drug-induced liver injury relating to antituberculosis drug treatment in a mixedethnicity patient group. *European Journal of Clinical Pharmacology* 2014;70:1079-86.
- Ohno M, Yamaguchi I, Yamamoto I, *et al.* Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. *International Journal of Tuberculosis and Lung Disease* 2000;4:256-61.

BMJ Open

 Possuelo LG, Castelan JA, de Brito TC, <i>et al.</i> Association of slow N-acetyltransferase 2 profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil. <i>European Journal of Clinical Pharmacology</i> 2008;64:673-81. Rana SV, Ola RP, Sharma SK, <i>et al.</i> Comparison between acetylator phenotype and genotype polymorphism of n-acetyltransferase-2 in tuberculosis patients. <i>Hepatology International</i> 2012;6:397- 402. Shimizu Y, Dobashi K, Mita Y, <i>et al.</i> DNA microarray genotyping of N-acetyltransferase 2 polymorphism using carthodimide as the linker for assessment of isoniazid hepatotoxicity. <i>Tuberculosis</i> 2006;86:374-81. Yuliwulandari R, Susilowai RW, Wicaksono BD, <i>et al.</i> NAT2 variants are associated with drug- induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. <i>J Hum Gene</i> 2016; doi:10.1038/jhg.2016.10. Wattamapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated with anti- tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tubere Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, <i>et al.</i> GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicy caused by antilubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti- tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annaks of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide diamutase, NADJ(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GST11 and GST1M multi mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tubeloculosis</i> 2010;90:39-43. Leiro V, Fenandez-Vill	1 2		
 anti-TB drug-induced hepatotoxicity in patients from Southern Brazil. <i>European Journal of Clinical Pharmacology</i> 2005;64:673-81. Rana SV, Ola RP, Sharma SK, <i>et al.</i> Comparison between acetylator phenotype and genotype polymorphism of n-acetyltransferase-2 in tuberculosis patients. <i>Hepatology International</i> 2012;6:397-402. Shimizu Y, Dobashi K, Mita Y, <i>et al.</i> DNA microarray genotyping of N-acetyltransferase 2 polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity. <i>Tuberculosis</i> 2006;86:374-81. Yulivulandari R, Susilowai RW, Wicaksono BD, <i>et al.</i> NA12 variants are associated with drug-induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. <i>J Hum Genet</i> 2016; doi:10.1038/jhg.2016.10. Wattanapokayaki S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated with anti-tuberculosis drug-induced liver injury in 11hai patients. <i>Int J Tuberc Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, <i>et al.</i> GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupin VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti-tuberculosis drug-induced liver injury in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NADI/PH : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs intoreas. <i>Tuberculosis drug-induced Stransferase</i> M1 and T1 and the susceptibility to drug-induced liver injury. <i>Journal of Elepatology</i> 2007;47:128-34. Kim SH, Kim SH,	3	15.	Possuelo LG, Castelan JA, de Brito TC, et al. Association of slow N-acetyltransferase 2 profile and
 <i>Pharmacology</i> 2008;64:673-81. Rana SV, Ola RP, Sharma SK, <i>et al.</i> Comparison between acetylator phenotype and genotype polymorphism of n-acetyltransferase-2 in tuberculosis patients. <i>Hepatology International</i> 2012;6:397-402. Shimizu Y, Dobashi K, Mita Y, <i>et al.</i> DNA microarray genotyping of N-acetyltransferase 2 polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity. <i>Tuberculosis</i> 2006;86:374-81. Yuliwulandari R, Susilowati RW, Wicaksono BD, <i>et al.</i> NAT2 variants are associated with drug-induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. <i>J Hum Genet</i> 2016; doi:10.1038/jhg.2016.10. Wattanapokayaki S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated with anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, <i>et al.</i> (STITI and GSTM gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with antituberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H: quinone oxidoreductase, glutathione S-transferase M1 and T1 and the susceptibility to drug-induced liver injur. <i>Journal of Hepatology</i> 2013;12:959-65. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Lieiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> The roles of GSTM1 and GSTM1 and T1 homoxygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian popula	4 5		anti-TB drug-induced hepatotoxicity in patients from Southern Brazil. European Journal of Clinical
 Rana SV, Ola RP, Sharma SK, <i>et al.</i> Comparison between acetylator phenotype and genotype polymorphism of n-acetyltransferase-2 in tuberculosis patients. <i>Hepatology International</i> 2012;6:397-402. Shimizu Y, Dobashi K, Mita Y, <i>et al.</i> DNA microarray genotyping of N-acetyltransferase 2 polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity. <i>Tuberculosis</i> 2006;86:374-81. Yuliwulandari R, Susilowati RW, Wicaksono BD, <i>et al.</i> NAT2 variants are associated with drug-induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. <i>J Hum Genet</i> 2016, doi:10.1038/hg.2016.10. Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated with anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, <i>et al.</i> GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti-tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drug induced b. <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygeus null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:355-9. Liu F, Jiao AX, Wu XK, <i>et al.</i> Impact of Glutathione S-fransferase M1 and T1 on Anti-Tuberculo	6		Pharmacology 2008;64:673-81.
 polymorphism of n-acetyltransferase-2 in tuberculosis patients. <i>Hepatology International</i> 2012;6:397-402. Shimizu Y, Dobashi K, Mita Y, <i>et al.</i> DNA microarray genotyping of N-acetyltransferase 2 polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity. <i>Tuberculosis</i> 2006;86:374-81. Yuliwulandari R, Susilowati RW, Wicaksono BD, <i>et al.</i> NAT2 variants are associated with drug-induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. <i>J Hum Genet</i> 2016; doi:10.1038/jbg.2016.10. Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated with anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc-Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, <i>et al.</i> GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti-tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(PH)1: quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon IJJ, <i>et al.</i> GSTT1 and GSTM1 multiunions and adverse reactions induced by antituberculosis drug-induced set on <i>Liberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-transferase M1 and T1 homozygous and matet	/ 8	16.	Rana SV, Ola RP, Sharma SK, et al. Comparison between acetylator phenotype and genotype
 402. Shimizu Y, Dobashi K, Mita Y, <i>et al.</i> DNA microarray genotyping of N-acetyltransferase 2 polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity. <i>Tuberculosis</i> 2006;86:374-81. Yulivulandari R, Susilowati RW, Wicaksono BD, <i>et al.</i> NA12 variants are associated with drug- induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. <i>J Hum</i> <i>Genet</i> 2016; doi:10.1038/jhg.2016.10. Wattanapokayaki S, Mushiroda T, Yanai H, <i>et al.</i> NA12 slow acetylator associated with anti- tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, <i>et al.</i> GST11 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti- tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Lio F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-transferase M1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutites</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma	9		polymorphism of n-acetyltransferase-2 in tuberculosis patients. Hepatology International 2012;6:397-
 Shimizu Y, Dobashi K, Mita Y, <i>et al.</i> DNA microarray genotyping of N-acetyltransferase 2 polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity. <i>Tuberculosis</i> 2006;86:374-81. Yuliwulandari R, Susilowati RW, Wicaksono BD, <i>et al.</i> NAT2 variants are associated with drug- induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. <i>J Hum Genet</i> 2016; doi:10.1038/jhg.2016.10. Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated with anti- tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, <i>et al.</i> GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti- tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H: quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impeate of Glutathione S-transferase M1 and T1 and therapeutics 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GSTI and GSTT1 null genotypes	10 11		402.
 polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity. <i>Tuberculosis</i> 2006;86:374-81. Yuliwulandari R, Susilowati RW, Wicaksono BD, <i>et al.</i> NAT2 variants are associated with drug- induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. <i>J Hum</i> <i>Genet</i> 2016; doi:10.1038/jhg.2016.10. Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated with anti- tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, <i>et al.</i> CSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti- tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> G11 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-transferase M1 and T1 not Anti-Tuberculosis Drug-induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predic	12	17.	Shimizu Y, Dobashi K, Mita Y, et al. DNA microarray genotyping of N-acetyltransferase 2
 <i>Tuberculosis</i> 2006;86:374-81. Yuliwulandari R, Susilowati RW, Wicaksono BD. <i>et al.</i> NAT2 variants are associated with drug- induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. <i>J Hum</i> <i>Genet</i> 2016; doi:10.1038/jhg.2016.10. Wattanapokayaki S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated with anti- tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, <i>et al.</i> GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti- tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 mult mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepat</i>	13		polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity.
 Yuliwulandari R, Susilowati RW, Wicaksono BD, et al. NAT2 variants are associated with drug- induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. <i>J Hum</i> <i>Genet</i> 2016; doi:10.1038/jhg.2016.10. Wattanapokayakit S, Mushiroda T, Yanai H, et al. NAT2 slow acetylator associated with anti- tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, et al. GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, et al. Association of GST null genotypes with anti- tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, et al. Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, et al. GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, et al. Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, et al. Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, et al. The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sh	14 15		<i>Tuberculosis</i> 2006;86:374-81.
 induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. <i>J Hum Genet</i> 2016; doi:10.1036/jhg.2016.10. Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated with anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, <i>et al.</i> GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti-tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patien	16	18.	Yuliwulandari R, Susilowati RW, Wicaksono BD, et al. NAT2 variants are associated with drug-
 <i>Genet</i> 2016; doi:10.1038/jhg.2016.10. Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated with anti- tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, <i>et al.</i> GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti- tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol In</i> 2013;7:876-82. Roy B, Chowdhury A, Kund S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 mull mutation. <i>Journal of Clinical Pharmacy and Therapeutics</i>	17 18		induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. J Hum
 Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated with anti- tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, <i>et al.</i> GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti- tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol In</i> 2013;7:876-82. Roy B, Chowdhury A, Kund S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 mull mutation. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;16:1033-7. Chen R, Wang J, Tan	19		Genet 2016; doi:10.1038/jhg.2016.10.
 tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung Dis</i> 2016;20:1364-9. Chatterjee S, Lyle N, Mandal A, <i>et al.</i> GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti-tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. Rong B, Chowdhury A, Kundu S, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 sund II con3;7:876-82. Chen R, Wang J, Tang S, <i>et a</i>	20	19.	Wattanapokayakit S, Mushiroda T, Yanai H, et al. NAT2 slow acetylator associated with anti-
 Chatterjee S, Lyle N, Mandal A, <i>et al.</i> GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti- tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47: 128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter g	22		tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung Dis 2016;20:1364-9.
 hepatotoxicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2010;35:465-70. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti-tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 indI' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chi	23	20.	Chatterjee S, Lyle N, Mandal A, et al. GSTT1 and GSTM1 gene deletions are not associated with
 2010;35:465-70. 21. Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti- tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. 22. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. 23. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. 24. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. 25. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. 26. Monteiro TP, EI-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. 27. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. 28. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. 29. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tub</i>	24 25		hepatotoxicity caused by antitubercular drugs. Journal of Clinical Pharmacy and Therapeutics
 Gupta VH, Singh M, Amarapurkar DN, <i>et al.</i> Association of GST null genotypes with anti- tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 60 	26		2010;35:465-70.
 tuberculosis drug induced hepatotoxicity in Western Indian population. <i>Annals of Hepatology</i> 2013;12:959-65. 22. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. 23. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. 24. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. 25. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. 26. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. 27. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. 28. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. 29. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 6000000000000000000000000000000000000	27 28	21.	Gupta VH, Singh M, Amarapurkar DN, et al. Association of GST null genotypes with anti-
 2013;12:959-65. 22. Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. 23. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. 24. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. 25. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. 26. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. 27. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. 28. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. 29. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	29		tuberculosis drug induced hepatotoxicity in Western Indian population. Annals of Hepatology
 Huang YS, Su WJ, Huang YH, <i>et al.</i> Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	30 31		2013;12:959-65.
 NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	32	22.	Huang YS, Su WJ, Huang YH, et al. Genetic polymorphisms of manganese superoxide dismutase,
 drug-induced liver injury. <i>Journal of Hepatology</i> 2007;47:128-34. 23. Kim SH, Kim SH, Yoon HJ, <i>et al.</i> GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. 24. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. 25. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. 26. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. 27. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. 28. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. 29. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 60 	33		NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to
 Kim SH, Kim SH, Yoon HJ, et al. GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, et al. Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, et al. Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, et al. The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, et al. Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Roy B, Chowdhury A, Kundu S, et al. Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. Chen R, Wang J, Tang S, et al. Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	34 35		drug-induced liver injury. Journal of Hepatology 2007;47:128-34.
 by antituberculosis drugs in Koreans. <i>Tuberculosis</i> 2010;90:39-43. Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and</i> <i>Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and</i> <i>Hepatology</i> 2001;16:1033-7. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	36	23.	Kim SH, Kim SH, Yoon HJ, et al. GSTT1 and GSTM1 null mutations and adverse reactions induced
 Leiro V, Fernandez-Villar A, Valverde D, <i>et al.</i> Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	37 38		by antituberculosis drugs in Koreans. Tuberculosis 2010;90:39-43.
 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. <i>Liver International</i> 2008;28:835-9. 25. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. 26. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2012;37:712-8. 27. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. 28. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. 29. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 60 	39	24.	Leiro V, Fernandez-Villar A, Valverde D, et al. Influence of glutathione S-transferase M1 and T1
 population. <i>Liver International</i> 2008;28:835-9. 25. Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. 26. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and</i> <i>Therapeutics</i> 2012;37:712-8. 27. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. 28. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and</i> <i>Hepatology</i> 2001;16:1033-7. 29. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	40 41		homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian
 Liu F, Jiao AX, Wu XR, <i>et al.</i> Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and</i> <i>Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and</i> <i>Hepatology</i> 2001;16:1033-7. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	42		population. Liver International 2008;28:835-9.
 Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and</i> <i>Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and</i> <i>Hepatology</i> 2001;16:1033-7. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	43	25.	Liu F, Jiao AX, Wu XR, et al. Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis
 Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, <i>et al.</i> The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and</i> <i>Therapeutics</i> 2012;37:712-8. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and</i> <i>Hepatology</i> 2001;16:1033-7. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	44 45		Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. Plos One 2014;9.
 and other predictors in anti-tuberculosis drug-induced liver injury. <i>Journal of Clinical Pharmacy and</i> <i>Therapeutics</i> 2012;37:712-8. 27. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. 28. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and</i> <i>Hepatology</i> 2001;16:1033-7. 29. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	46	26.	Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, et al. The roles of GSTM1 and GSTT1 null genotypes
 <i>Therapeutics</i> 2012;37:712-8. 27. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. 28. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. 29. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	47 48		and other predictors in anti-tuberculosis drug-induced liver injury. Journal of Clinical Pharmacy and
 27. Rana SV, Kamboj JK, Sharma SK, <i>et al.</i> Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. 28. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. 29. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	49		<i>Therapeutics</i> 2012;37:712-8.
 antitubercular treatment-induced hepatotoxicity patients. <i>Hepatol Int</i> 2013;7:876-82. Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	50 51	27.	Rana SV, Kamboj JK, Sharma SK, et al. Antioxidant status and GST gene polymorphisms in
 Roy B, Chowdhury A, Kundu S, <i>et al.</i> Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and Hepatology</i> 2001;16:1033-7. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	52		antitubercular treatment-induced hepatotoxicity patients. Hepatol Int 2013;7:876-82.
 in individuals with glutathione S-transferase M1 'null' mutation. <i>Journal of Gastroenterology and</i> <i>Hepatology</i> 2001;16:1033-7. 29. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	53 54	28.	Roy B, Chowdhury A, Kundu S, et al. Increased risk of antituberculosis drug-induced hepatotoxicity
 <i>Hepatology</i> 2001;16:1033-7. 29. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	55		in individuals with glutathione S-transferase M1 'null' mutation. Journal of Gastroenterology and
 29. Chen R, Wang J, Tang S, <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	56		Hepatology 2001;16:1033-7.
 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i> 	57 58	29.	Chen R, Wang J, Tang S, et al. Association of polymorphisms in drug transporter genes (SLCO1B1
60	59		and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. <i>Tuberculosis</i>
	60		

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2015;95:68-74.

- 30. Kim SH, Kim SH, Lee JH, *et al.* Polymorphisms in drug transporter genes (ABCB1, SLCO1B1 and ABCC2) and hepatitis induced by antituberculosis drugs. *Tuberculosis* 2012;92:100-4.
- 31. Li LM, Chen L, Deng GH, *et al.* SLCO1B1*15 haplotype is associated with rifampin-induced liver injury. *Molecular Medicine Reports* 2012;6:75-82.
- 32. An HR, Wu XQ, Wang ZY, et al. NAT2 and CYP2E1 polymorphisms associated with antituberculosis drug-induced hepatotoxicity in Chinese patients. *Clinical and Experimental Pharmacology and Physiology* 2012;39:535-43.
 - Bose PD, Sarma MP, Medhi S, *et al.* Role of polymorphic N-acetyl transferase2 and cytochrome P4502E1 gene in antituberculosis treatment-induced hepatitis. *Journal of Gastroenterology and Hepatology* 2011;26:312-8.
- 34. Chamorro JG, Castagnino JP, Musella RM, *et al.* Sex, ethnicity, and slow acetylator profile are the major causes of hepatotoxicity induced by antituberculosis drugs. *Journal of Gastroenterology and Hepatology* 2013;28:323-8.
- 35. Cho HJ, Koh WJ, Ryu YJ, *et al.* Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. *Tuberculosis* 2007;87:551-6.
- Gupta VH, Amarapurkar DN, Singh M, et al. Association of N-acetyltransferase 2 and cytochrome P450 2E1 gene polymorphisms with antituberculosis drug-induced hepatotoxicity in Western India. Journal of Gastroenterology and Hepatology 2013;28:1368-74.
- 37. Huang YS, Chern HD, Su WJ, *et al.* Cytochrome p450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. *Hepatology* 2003;37:924-30.
- 38. Lee SW, Chung LS, Huang HH, *et al.* NAT2 and CYP2E1 polymorphisms and susceptibility to firstline anti-tuberculosis drug-induced hepatitis. *Int J Tuberc Lung Dis* 2010;14:622-6.
- 39. Mishra S, Daschakraborty S, Shukla P, *et al.* N-acetyltransferase and cytochrome P450 2E1 gene polymorphisms and susceptibility to antituberculosis drug hepatotoxicity in an Indian population. *National Medical Journal of India* 2013;26:260-5.
- Santos NP, Callegari-Jacques SM, Ribeiro Dos Santos AK, *et al.* N-acetyl transferase 2 and cytochrome P450 2E1 genes and isoniazid-induced hepatotoxicity in Brazilian patients. *Int J Tuberc Lung Dis* 2013;17:499-504.
- 41. Vuilleumier N, Rossier MF, Chiappe A, *et al.* CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. *Eur J Clin Pharmacol* 2006;62:423-9.
 - 42. Yamada S, Tang M, Richardson K, *et al.* Genetic variations of NAT2 and CYP2E1 and isoniazid hepatotoxicity in a diverse population. *Pharmacogenomics* 2009;10:1433-45.
 - 43. Zaverucha-do-Valle C, Monteiro SP, El-Jaick KB, *et al.* The role of cigarette smoking and liver enzymes polymorphisms in anti-tuberculosis drug-induced hepatotoxicity in Brazilian patients. *Tuberculosis (Edinb)* 2014;94:299-305.
- Sharma SK, Jha BK, Sharma A, *et al.* Genetic polymorphisms of CYP2E1 and GSTM1 loci and susceptibility to anti-tuberculosis drug-induced hepatotoxicity. *International Journal of Tuberculosis and Lung Disease* 2014;18:588-93.

Page 69 of 69

BMJ Open

1		
2 3	45	Wang T. Yu HT. Wang W. at al. Genetic Polymorphisms of Cytochrome P450 and Clutathione S
4	43.	wang 1, 1 u 111, wang w, <i>et al.</i> Genetic Forymorphisms of Cytoemonie 1450 and Gutaunone 3-
5		transferase Associated with Antituberculosis Drug-induced Hepatotoxicity in Chinese Tuberculosis
6 7		Patients. Journal of International Medical Research 2010;38:977-86.
8	46.	Tang SW, Lv XZ, Zhang Y, et al. CYP2E1, GSTM1 and GSTT1 genetic polymorphisms and
9		susceptibility to antituberculosis drug-induced hepatotoxicity: a nested case-control study. Journal of
10 11		Clinical Pharmacy and Therapeutics 2012;37:588-93.
12	47.	Yimer G, Ueda N, Habtewold A, et al. Pharmacogenetic & pharmacokinetic biomarker for efavirenz
13		based ARV and rifampicin based anti-TB drug induced liver injury in TB-HIV infected patients. PLoS
14 15		One 2011;6:e27810.
16	48.	Brito TC, Possuelo LG, Valim ARM, et al. Polymorphisms in CYP2E1, GSTM1 and GSTT1 and
17		anti-tuberculosis drug-induced henatotoxicity. Anais Da Academia Brasileira De Ciencias
18 10		2014-96-955 65
20	40	Exampliance EL Concernent L. Higgsto MIL at al Delationship of NAT2 CVD2E1 and CSTM1/CSTT1
21	49.	Forestiero FJ, Cecon L, Hirata MH, <i>et al.</i> Relationship of NAT2, CYP2E1 and GSTM1/GSTT1
22 23		polymorphisms with mild elevation of liver enzymes in Brazilian individuals under anti-tuberculosis
23 24		drug therapy. Clinica Chimica Acta 2013;415:215-9.
25	50.	Rana SV, Sharma SK, Ola RP, et al. N-acetyltransferase 2, cytochrome P4502E1 and glutathione S-
26 27		transferase genotypes in antitubercular treatment-induced hepatotoxicity in North Indians. J Clin
27		Pharm Ther 2014;39:91-6.
29	51.	Singla N, Gupta D, Birbian N, et al. Association of NAT2, GST and CYP2E1 polymorphisms and
30 21		anti-tuberculosis drug-induced hepatotoxicity. Tuberculosis 2014;94:293-8.
32	52.	Sotsuka T, Sasaki Y, Hirai S, et al. Association of Isoniazid-metabolizing Enzyme Genotypes and
33		Isoniazid-induced Hepatotoxicity in Tuberculosis Patients. In Vivo 2011;25:803-12.
34 35	53	Teixeira RL Morato RG Cabello PH. <i>et al.</i> Genetic polymorphisms of NAT2 CYP2E1 and GST
36		enzymes and the occurrence of antituberculosis drug-induced henatitis in Brazilian TB patients. <i>Mem</i>
37		Inst Oswaldo Cruz 2011:106:716-24
38 30	51	View V. Mo L. We WD. et al. The Incidence of Liver Leven in Lizzbur Detients Treated for TD in
40	54.	Xiang Y, Ma L, wu wD, et al. The incidence of Liver injury in Oygnur Patients Treated for TB in
41		Xinjiang Uyghur Autonomous Region, China, and Its Association with Hepatic Enzyme
42 43		Polymorphisms NAT2, CYP2E1, GSTM1 and GSTT1. <i>Plos One</i> 2014;9.
44		
45		
46 47		
48		
49		
50 51		
52		
53		
54 55		
56		
57		
58 50		
60		

BMJ Open

BMJ Open

Association of genetic polymorphisms of CYP2E1, NAT2, GST, and SLCO1B1 with the risk of anti-tuberculosis druginduced liver injury: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027940.R2
Article Type:	Research
Date Submitted by the Author:	11-Jun-2019
Complete List of Authors:	Yang , Seungwon ; Yonsei University, Department of Pharmacy and Yonsei Institute of Pharmaceutical Science Hwang, Se Jung ; Kyung Hee University, Department of Pharmacy Park, Jung Yun ; Seoul National University, Department of Pharmacy Chung, Eun Kyoung; Kyung Hee University, College of Pharmacy, Department of Pharmacy; Kyung Hee University Hospital at Gangdong, Department of Pharmacy Lee , Jangik I.; Seoul National University, College of Pharmacy; Seoul National University, College of Pharmacy and Research Institute of Pharmaceutical Sciences
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Genetics and genomics, Infectious diseases, Evidence based practice
Keywords:	Anti-tuberculosis drug-induced liver injury, genetic polymorphisms, meta-analysis, drug-metabolizing enzyme, drug transporter, Tuberculosis < INFECTIOUS DISEASES
	·

SCHOLARONE[™] Manuscripts

Original article

Association of genetic polymorphisms of *CYP2E1*, *NAT2*, *GST*, and *SLCO1B1* with the risk of anti-tuberculosis drug-induced liver injury: a systematic review and meta-analysis

Seungwon Yang¹, Se Jung Hwang², Jung Yun Park³, Eun Kyoung Chung^{2,4*}, Jangik Ike Lee^{3,5*}

¹Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy,

Yonsei University, Incheon 21983, Republic of Korea

² Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea

³ College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea

⁴ Department of Pharmacy, Kyung Hee University Hospital at Gangdong, Seoul, 05278,

Republic of Korea

⁵College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National

University, Seoul 08826, Republic of Korea

Word counts: 4453 words

*Corresponding authors

Prof., Eun Kyoung Chung, Pharm.D., Ph.D.

BMJ Open

Department of Pharmacy, College of Pharmacy, Kyung Hee University

26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447

South Korea

Tel: +82-2-962-2122

Fax: +82-2-961-9580

E-mail: cekchung@khu.ac.kr

Prof. Jangik I. Lee, Pharm.D., Ph.D.

Department of Pharmacy, College of Pharmacy, Seoul National University

103 Daehak-Ro, Jongno-Gu, Seoul 03080

South Korea

Tel: +82-2-3668-7474

Fax: +82-2-3668-7475

E-mail: jangik.lee@snu.ac.kr

*Jangik I. Lee and Eun Kyoung Chung have equally contributed to this study.

Running head

Genetics of anti-tuberculosis liver injury

terier

ABSTRACT

Objectives The objective of this study was to investigate the association between genetic polymorphisms of *NAT2*, *CYP2E1*, *GST*, and *SLCO1B1* and the risk of anti-tuberculosis drug-induced liver injury (ATDILI).

Design Systematic review and meta-analysis

Data Sources PubMed, EMBASE, Web of Science, and Cochrane Reviews databases were searched through April 2019.

Eligibility Criteria We included case-control or cohort studies investigating an association between *NAT2, CYP2E1, GST*, or *SLCO1B1* polymorphisms and the ATDILI risk in patients with tuberculosis.

Data extraction and synthesis Three authors screened articles, extracted data, and assessed study quality. The strength of association was evaluated for each gene using the pooled odds ratio (OR) with a 95% confidence interval (CI) based on the fixed- or random-effects model. Sensitivity analysis was performed to confirm the reliability and robustness of the results. **Results** Fifty-four studies were included in this analysis (n = 26 for *CYP2E1*, n = 35 for *NAT2*, n = 19 for *GST*, n = 4 for *SLCO1B1*). The risk of ATDILI was significantly increased with the following genotypes: *CYP2E1 Rsal/Pst*I c1/c1 (OR = 1.39; 95% CI 1.06–1.83), *NAT2* slow acetylator (OR = 3.30, 95% CI 2.65–4.11), and *GSTM1* null (OR = 1.30, 95% CI 1.12–1.52). No significant association with ATDILI was found for the genetic polymorphisms of *CYP2E1 Dra*I, *GSTT1*, *GSTM1/GSTT1*, *SLCO1B1* 388A>G, and *SLCO1B1* 521T>C (P > 0.05).

Conclusions

ATDILI is more likely to occur in patients with NAT2 slow acetylator genotype, CYP2E1

*RsaI/Pst*I c1/c1 genotype, and *GSTM1* null genotype. Close monitoring may be warranted for patients with these genotypes.

Strengths and limitations of this study

- This is the first meta-analysis to evaluate the association between the risk of ATDILI and *SLCO1B1* in patients with tuberculosis.
- We included most updated studies with the large sample sizes to better clarify the association of genetic polymorphisms with the risk of ATDILI.
- The effect of anti-tuberculosis drug dosages on the risk of ATDILI could not be accounted for in this study due to the lack of drug dosing information in the majority of the included studies.
Introduction

Tuberculosis is a rampant infectious disease caused by *Mycobacterium tuberculosis*. It poses a major public health threat globally with approximately 1.3 million deaths and 10 million new cases in 2017¹. The mainstay of first-line tuberculosis treatment is a 4-drug combination regimen of isoniazid (INH), rifampicin (RIF), pyrazinamide (PZA), and ethambutol (EMB) during the first 2 months, followed by INH and RIF for additional 4 months ²³. The currently recommended therapy for tuberculosis is highly effective, resulting in high cure rates if patients are adherent to therapy ⁴. However, treatment adherence is often suboptimal in patients receiving the combination anti-tuberculosis therapy due to many adverse drug reactions, some of which are considered detrimental ⁵. One of the common adverse drug reactions associated with anti-tuberculosis medications is anti-tuberculosis drug-induced liver injury (ATDILI) affecting 2–28% of patients with tuberculosis ⁶. ATDILI could be potentially serious and fatal, resulting in the treatment interruption and ultimately, treatment failure ⁷⁸.

Recently, increasing evidence suggests an association between the risk of ATDILI and genetic polymorphisms of drug-metabolizing enzymes (DMEs) and drug transporters ^{9 10}. Altered enzyme activity due to polymorphic genotypes of various DMEs including cytochrome P450 2E1 (CYP2E1), N-acetyltransferase 2 (NAT2), and glutathione S-transferase (GST) can result in the accumulation of toxic substances in the liver, leading to the development of ATDILI ¹¹. However, conflicting results have been reported regarding the association between the risk of ATDILI and genetic polymorphisms of various DMEs in patients with tuberculosis ^{9 12 13}. In addition to DMEs, drug transporters have been emerging as a key determinant of the pharmacokinetics and pharmacodynamics of a drug ¹⁴. Among various drug transporters, organic

anion transporting polypeptide 1B1 (OATP1B1), encoded by *SLCO1B1*, is the major influx transporter responsible for hepatic uptake of RIF ¹⁵. Although several studies have previously examined the association between *SLCO1B1* polymorphisms and the risk of ATDILI, conflicting results have been reported regarding the effect of *SLCO1B1* polymorphisms on ATDILI risk. Therefore, an updated meta-analysis has been warranted to confirm the association between the ATDILI risk and genetic polymorphisms of DMEs. In our preliminary literature search, several polymorphic genes, including many DMEs, transporters, and other genes such as those involved in the immune system, were identified to have an association with the risk of ATDILI. Among these, sufficient, published information was available to confirm the effect of *CYP2E1*, *NAT2*, *GST*, and *SLCO1B1* genetic polymorphisms on the ATDILI risk through meta-analysis.

Objectives

The objective of this meta-analysis was to evaluate the association between the risk of ATDILI and genetic polymorphisms of *CYP2E1*, *NAT2*, *GST*, and *SLCO1B1* in patients with tuberculosis.

Methods

This study was in compliance with the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) checklist for reporting the study design, search strategy, methods, results, and conclusions (S1 Table). Three authors (SY, JP, and SH) independently conducted a literature search, study selection, quality assessment, and data extraction. Any discrepancies were adjudicated by corresponding authors (JIL and EKC).

Search strategy

BMJ Open

Electronic databases of PubMed, EMBASE, Web of Science, and Cochrane Reviews were systematically searched from their inception to April 2019 to identify relevant studies evaluating the association of *NAT2*, *CYP2E1*, *GST*, and *SLCO1B1* polymorphisms with ATDILI risk. A comprehensive literature search was conducted using a combination of the following keywords and Medical Subject Heading (MeSH) terms: ("genetic polymorphism" or "*NAT2*" or "*CYP2E1*" or "*GST*" or "*SLCO1B1*" or "drug-metabolizing enzymes" or "drug transporter") AND ("antituberculosis agents drug-induced liver injuries" or "hepatotoxicity"). The detailed search strategies for each electronic database used in this analysis are presented in S2 Table. The reference lists in the selected reviews and meta-analyses were reviewed to ensure the inclusion of all relevant evidence in this analysis.

Study selection

Studies were considered eligible if they met all of the following inclusion criteria: (1) studies in patients with tuberculosis receiving anti-tuberculosis drug regimen; (2) studies with the control group of patients with tuberculosis, tolerant of anti-tuberculosis medications; (3) studies evaluating the association between the occurrence of ATDILI and genetic polymorphisms of *CYP2E1*, *NAT2*, *GST*, and *SLCO1B1* 388A>G and 521T>C; and (4) case-control or cohort observational studies. Excluded studies were as follows: (1) studies available only in the form of abstracts or meeting posters; (2) review or meta-analysis articles; (3) studies providing insufficient data necessary for the statistical data analysis; (4) studies in non-English language; (5) non-human studies including animal and *in vitro* studies; (6) studies with unpublished data; (7) studies providing insufficient information on genotyping methods; and (8) healthy controls.

Quality assessment and data extraction

The quality of included studies was assessed using the revised Little's recommendation based on the following criteria ^{16 17}: (1) scientific design; (2) definite inclusion of study population; (3) explicit information on study population; (4) explicit diagnostic criteria of ATDILI; (5) genetic detection method; (6) appropriate statistical analysis; and (7) logical discussion of study bias. Studies with an overall score of \geq 4 (range 0 to 7) were considered high quality and retained in the analysis.

The following data were extracted from each study using a standardized extraction form: (1) name of the first author; (2) year of publication; (3) the polymorphic gene(s) and genotype(s) under investigation; (4) ethnicity; (5) sample size; (6) mean or median age; (7) sex distribution; (8) anti-tuberculosis drug regimens; (9) diagnostic criteria of ATDILI; (10) genotyping methods; and (11) the number of cases and controls for each polymorphic genotype.

Statistical analysis

The genotypes were analyzed based on the following proposed genetic risk model: (1) *NAT2* (slow acetylator *vs.* intermediate and fast acetylator); (2) *CYP2E1* (c1/c1 *vs.* c1/c2 and c2/c2 for the *RsaI/PstI* polymorphism, D/D *vs.* D/C and C/C for the *DraI* polymorphism); (3) *GSTM1* (null *vs.* non-null); (4) *GSTT1* (null *vs.* non-null); (5) *GSTM1/GSTT1* (dual-null *vs.* one- or non-null); and (6) *SLCO1B1* 388A>G and 521T>C polymorphisms. The genetic risk models for *NAT2*, *CYP2E1, GSTM1, GSTT1*, and *GSTM1/GSTT1* have been studied in previous studies^{9 18 19}. Based on these previous studies, the most clinically significant and plausible model for each polymorphic gene was selected. Due to the relative paucity of data suggesting the most clinically

BMJ Open

relevant genetic model for *SLCO1B1* 388A>G and 521T>C polymorphisms, all three genomic models including dominant, recessive, and additive models were evaluated. The Mantel-Haenszel or DerSimonian-Laird method based on fixed- or random-effects models, respectively, were used depending on the presence of heterogeneity ²⁰ ²¹. The random-effects model was used in the presence of significant heterogeneity; otherwise, the fixed-effects model was used to estimate the total effect of a polymorphic gene genotype on the risk of ATDILI. Heterogeneity of study outcomes among included studies was evaluated using Cochran's Q test (*Q*) and quantified using Higgin's *I*² test. Significant heterogeneity was defined as the *I*² score of > 40% accompanied by P < 0.10 from the Cochran's Q test ²². The strength of the association between the genetic polymorphisms and the risk of ATDILI was estimated using pooled odds ratios (ORs) with the corresponding 95% confidence intervals (CIs). The statistical significance of an OR was defined as P < 0.05 from the Z test.

Subgroup analysis was performed based on ethnicity, anti-tuberculosis drug regimen used, and the type of study design. Sensitivity analysis was conducted to assess the robustness of the results and to identify the source of heterogeneity using the leave-one-out method. In each analysis, one study was deleted, and with the one study left out, the meta-analysis was performed; this process was repeated until every study had been deleted from our included study pool for each tested polymorphic gene. Publication bias was evaluated with a symmetrical funnel plot. Statistical analyses were performed using Review Manager Software version 5.3 (Cochrane Collaboration, London, UK).

Patient and public involvement

Patients and public were not involved in the design of this study.

Results

Study selection and characteristics

Overall, 388 articles were identified through electronic database search and 3 articles through manual search by reviewing the reference lists of retrieved articles. After removing 99 duplicates, 289 articles were screened for relevance based on the title and abstract. Among them, 72 relevant articles were assessed for eligibility through full-text evaluations. Finally, a total of 54 articles which met the inclusion criteria were included in our analysis (Figure 1). Among the 54 studies, 26 studies were included for *CYP2E1*, 35 studies for *NAT2*, 19 studies for *GST* (19 for *GSTM1*, 17 for *GSTT1*, and 11 for *GSTM1/GSTT1*), and 4 studies for *SLCO1B1* 388A>G and 521T>C.

Table 1 summarizes the characteristics of the included studies. Across the included studies, large variability in study population was observed in terms of ethnicity (Chinese, Japanese, Korean, Indian, Taiwanese, Brazilian, Caucasian, Iranian, Tunisian, and Turkish), age (mean or median age ranging from 27 to 70 years), and sex (the proportion of males ranging from 13% to 90%). Patients in our included studies received either monotherapy with INH or RIF or a combination therapy including a 4-drug regimen of INH, RIF, PZA, and EMB for the treatment of tuberculosis. ATDILI was defined as an elevated serum alanine aminotransferase (ALT) concentration by 1.5- to 5-fold or greater above the upper limit of normal (ULN) depending on the study. The quality score of the included studies was 6 or greater based on the revised Little's recommendation (Table 1, S3 Table) ^{16 17}. Genotype distribution and genotyping

BMJ Open

method used in the included studies are summarized for each polymorphic gene in S4 to S7 Tables. Funnel plots for *CYP2E1, NAT2, GST*, and *SLCO1B1* are provided in S8 Figure. None of the funnel plots showed an asymmetric inverted funnel shape, indicating the absence of potential publication bias.

CYP2E1

For the *CYP2E1 Rsal/Pst*I polymorphism, 24 studies with 1293 cases and 5450 controls were included in our primary analysis. Using the random-effects model, the pooled estimates of all included studies (n = 24) showed a significant association between the risk of ATDILI and the *CYP2E1 Rsal/Pst*I polymorphism (OR for the c1/c1 genotype = 1.39, 95% CI 1.06–1.83, P = 0.02; $l^2 = 60\%$, P_{heterogeneity} < 0.0001) (Figure 2A). In the subgroup analysis based on ethnicity, and anti-tuberculosis drug regimens, the risk of ATDILI was significantly increased for the *CYP2E1 Rsal/Pst*I c1/c1 genotype in East Asian patients (OR = 1.62, 95% CI 1.26–2.36, P = 0.01; $l^2 = 69\%$, P_{heterogeneity} = 0.0006) and in patients receiving a combination of anti-tuberculosis medications (OR = 1.35, 95% CI 1.01–1.79, P < 0.00001; $l^2 = 61\%$, P_{heterogeneity} = 0.0002) (S9 Table). No significant association was observed between the risk of ATDILI and the *CYP2E1 Rsal/Pst*I c1/c1 genotype when evaluating studies with the same study design only (i.e., either case-control studies or cohort studies) (S9 Table).

In our primary analysis for the *CYP2E1 Dra*I polymorphism with six studies including 233 cases and 1272 controls, no significant association was observed using the fixed-effects model between the risk of ATDILI and the *Dra*I polymorphism (OR for the D/D genotype = 0.93, 95% CI 0.68–1.27, P = 0.64; $l^2 = 0\%$, P_{heterogeneity} = 0.51) (Figure 2B).

NAT2

Overall, 35 studies with 1323 cases and 7319 controls were included in our primary analysis for the *NAT2* polymorphism. Using the random-effects model, the pooled estimates of all included studies (n = 35) showed a significant association between the risk of ATDILI and the *NAT2* polymorphism (OR for the slow acetylator genotype = 3.30, 95% CI 2.65– $4.11, P < 0.00001; I^2 = 54\%, P_{heterogeneity} < 0.0001$) (Figure 3). In the subgroup analysis based on ethnicity, anti-tuberculosis drug regimens used, and study design, the risk of ATDILI was significantly increased in slow acetylators compared to fast or intermediate acetylators in all subgroups (S10 Table).

GST

For the *GSTM1* polymorphism, a total of 19 studies with 977 cases and 5119 controls were included in our primary analysis. Using the fixed-effects model, the pooled estimates of all included studies (n = 19) showed a significant association between the risk of ATDILI and the *GSTM1* polymorphism (OR for the *GSTM1* null genotype = 1.30, 95% CI 1.12–1.52, P = 0.0007; $l^2 = 33\%$, P_{heterogeneity} = 0.08) (Figure 4A). When studies were stratified for ethnicity, the risk of ATDILI was significantly increased for the *GSTM1* null genotype in Indians (OR = 1.68, 95% CI 1.30–2.19, P < 0.0001; $l^2 = 36\%$, P_{heterogeneity} = 0.15) (S11 Table). In the subgroup analyses by study design, the estimated OR (95% CI, P-value; l^2 , P_{heterogeneity}) for the *GSTM1* null genotype relative to the non-null genotype was 1.41 (1.04-1.93, P = 0.03; $l^2 = 44\%$, P_{heterogeneity} = 0.08) in cohort studies and 1.25 (1.01-1.55, P = 0.20; $l^2 = 29\%$, P_{heterogeneity} = 0.17) in case-control studies, respectively (S11 Table).

For the *GSTT1* and *GSTM1/GSTT1* polymorphisms, 17 studies (768 cases, 4823 controls) and 11 studies (547 cases, 4233 controls) were included in our primary analyses, respectively.

BMJ Open

The risk of ATDILI was not significantly associated with the *GSTT1* polymorphism (OR for the null genotype = 1.03, 95% CI 0.85–1.25, P = 0.76; $I^2 = 16\%$, P_{heterogeneity} = 0.26) or the *GSTM1/GSTT1* polymorphism (OR for the dual-null genotype = 1.05, 95% CI 0.67–1.62, P = 0.84; $I^2 = 59\%$, P_{heterogeneity} = 0.006) (Figures 4B and 4C). When studies were stratified for ethnicity, anti-tuberculosis drug regimens used, and study design, no subgroups showed significant association between the risk of ATDILI and the *GSTT1* and the *GSTM1/GSTT1* polymorphisms (S11 Table).

SLC01B1

For the *SLCO1B1* 388A>G polymorphism, four studies with 302 cases and 913 controls were included in our primary analysis. Using the dominant, recessive, or additive genomic model, no significant association was observed between the risk of ATDILI and the *SLCO1B1* 388A>G polymorphism (Table 2). For the *SLCO1B1* 521T>C polymorphism, four studies with 314 cases and 912 controls were included in our primary analysis. No significant association was found between the ATDILI risk and the *SLCO1B1* 521T>C polymorphism under the dominant, recessive, or additive genetic model (Table 2). Due to the lack of significant association between the risk of ATDILI and the tested *SLCO1B1* genetic polymorphisms in our primary meta-analysis, subgroup analyses were not performed for these genetic polymorphisms.

Sensitivity analysis

Our primary analysis results showed significantly high heterogeneity between studies for *CYP2E1 RsaI/PstI* ($I^2 = 60\%$, P < 0.0001), *NAT2* ($I^2 = 54\%$, P < 0.0001), *GSTM1/GSTT1* ($I^2 = 59\%$, P = 0.006), and *SLCO1B1* 521T>C (dominant genetic model: $I^2 = 66\%$, P = 0.03) polymorphisms. This high heterogeneity between studies may be due to substantial differences in

ethnicity, anti-tuberculosis drug regimen, the genotyping method used, study design, and diagnostic criteria of ATDILI among the included studies (Table 1). Through the sensitivity analyses, outlier studies were identified as the major source of heterogeneity. After removing these outlier studies, heterogeneity was substantially reduced ($I^2 = 60\%$ to 42% for *CYP2E1 RsaI/PstI*²³, $I^2 = 54\%$ to 34% for *NAT2*²⁴²⁵, $I^2 = 59\%$ to 0% for *GSTM1/GSTT1*²⁶²⁷, and $I^2 = 66\%$ to 0% for *SLCO1B1* 521T>C dominant genetic model ²⁸). The overall results for the association between the risk of ATDILI and these genetic polymorphisms after excluding the outlier studies stayed the same as those from our primary analysis results.

Discussion

In this study, we conducted a large-scale meta-analysis evaluating the association between the risk of ATDILI and genetic polymorphisms of *SLCO1B1* as well as various DMEs including *CYP2E1*, *NAT2*, and *GST* to provide more updated, comprehensive, and compelling evidence. Compared with previous meta-analyses, our present study included a larger number of studies, which may sufficiently increase the statistical power compared to individual studies. However, a limited number of studies for the *SLCO1B1* genetic polymorphisms were included (n = 4). Consistently with previous studies, our current study suggested a significantly increased risk of ATDILI in patients with the *CYP2E1 Rsal/Pst*I c1/c1 genotype (OR = 1.39, 95% CI 1.06–1.83), the *NAT2* slow acetylator genotype (OR = 3.30, 95% CI 2.65–4.11), and the *GSTM1* null genotype (OR = 1.30, 95% CI 1.12–1.52) ^{9 12 29}. Among these genotypes, the largest increase in the risk of ATDILI was shown in patients with the *NAT2* slow acetylator genotype. In contrast, no significant association was observed between the risk of ATDILI and the genetic

polymorphisms of *CYP2E1 Dra*I, *GSTT1*, *GSTM1/GSTT1*, *SLCO1B1 388A*>*G*, and *SLCO1B1 521T*>*C*. Caution needs to be exercised when interpreting this study finding because the lack of significant association between these polymorphisms and the risk of ATDILI might be due to small sample sizes and the low frequency of ATDILI reported in patients with these genetic polymorphisms.

When evaluating the impact of the CYP2E1 RsaI/PstI and DraI genetic polymorphisms on the risk of ATDILI in our study, patients with the Rsal/PstI c1/c1 genotype were 1.39-times more likely to develop ATDILI. Similarly, in a previous meta-analysis by Deng and colleagues, the risk of ATDILI was 1.4-times higher in patients with the RsaI/PstI c1/c1 genotype compared to other genotypes ³⁰. In the liver, INH is metabolized by NAT2 to acetylisoniazid which is consequently oxidized by CYP2E1 to reactive hepatotoxic intermediates ^{31 32}. The increased inducibility or greater activity of CYP2E1 in patients with the CYP2E1 RsaI/PstI c1/c1 genotype may result in the production of more intermediate hepatotoxins, ultimately leading to the increased risk of ATDILI ^{31 32}. Our subgroup analysis showed a significantly increased risk of ATDILI in the CYP2E1 RsaI/PstI c1/c1 genotype carriers of East Asian ethnicity (S9 Table), suggesting a potential gene-ethnicity interaction ³³. A previous study identified age, female sex, white race, non-Hispanic ethnicity, lower body mass index, elevated plasma aspartate transaminase concentrations at baseline, and nine months of daily INH use as risk factors for ATDILI³⁴. Considering their race, ethnicity, and relatively lower body mass index compared to other ethnicities, East Asians may be at an increased risk of ATDILI. As the CYP2E1 RsaI/PstI c1 allele frequency is relatively low in this population (79.8% vs. 88.5% to 99.8% in other ethnicities), the ethnicity itself might play an important role in developing hepatotoxicity through gene-ethnicity interaction ³⁵. Furthermore, the relatively high frequency of c2 allele in this

population might serve as a good control to estimate the effect of c1 allele on the risk of ATDILI; the rarity of this minor allele in other ethnicities could make it difficult to evaluate the association between the ATDILI risk and this genetic polymorphism ³⁵. In addition to ethnicity, combination anti-tuberculosis therapy was shown to significantly increase the risk of ATDILI in patients with the *CYP2E1 RsaI/Pst*I c1/c1 genotype (S9 Table). This is consistent with previous study findings because hepatotoxicity commonly occurs with anti-tuberculosis drugs such as INH and RIF and thus, use of more than one hepatotoxic anti-tuberculosis medication increases the risk of ATDILI ⁷.

Similar to previous studies, our current study suggested a significantly increased risk of ATDILI in patients with the *NAT2* slow acetylator genotype compared to those with intermediate/fast acetylator genotypes ^{9 29}. The risk of ATDILI in slow acetylators remained significantly increased in all tested subgroups regardless of ethnicity and the anti-tuberculosis drug regimen used (S10 Table). The frequencies of *NAT2* slow acetylator alleles are highly variable between ethnic groups, ranging from 32% in Koreans to 76% in Caucasians ³⁶. Despite this large inter-ethnic variability in the NAT2 polymorphic allele frequency, the NAT2 slow acetylator genotype consistently and significantly increased the risk of ATDILI across all ethnicities, suggesting the critical role of NAT2 polymorphism in the development of ATDILI. In addition, the increased risk of ATDILI in slow acetylators receiving INH monotherapy or combination therapy further highlights the importance of the NAT2 polymorphism in the development of INH-induced hepatotoxicity. The clearance of INH is slower in slow acetylators compared to rapid or intermediate acetylators, resulting in the accumulation of INH in these patients ^{37 38}. This high level of INH may increase the risk of ATDILI in patients with tuberculosis carrying NAT2 slow acetylator genotype due to immune-mediated liver injury

BMJ Open

through the binding of INH to liver proteins ³⁹. Therefore, clinicians should closely monitor patients with tuberculosis carrying the *NAT2* slow acetylator genotype for hepatotoxicity when INH-based treatment is administered to these patients.

According to previous studies, GST enzymes, particularly those coded by GSTM1 and GSTT1 loci, are associated with the risk of drug-induced hepatotoxicity ⁹⁴⁰. Similar to previous studies, our current study demonstrated a significantly increased risk of ATDILI in individuals with the GSTM1 null genotype compared to those with the non-null genotype; however, the risk of ATDILI was not affected by the GSTT1 or GSTM1/GSTT1 genetic polymorphisms. GSTs are important enzymes to detoxify various xenobiotics and play an essential role in INH metabolism by eliminating acetyldiazene ketene acetylonium ion, which is a possibly hepatotoxic free radical metabolite of INH, from the body through GSTM1. This may account for the significant association of the ATDILI risk with the GSTM1 genotype, but not with the GSTT1 or GSTM1/GSTT1 genotypes ⁹⁴⁰. Our subgroup analysis showed a significantly increased risk of ATDILI in the *GSTM1* null genotype carriers of Indian ethnicity; although not statistically significant, the risk of ATDILI was relatively high in the East Asian population with the GSTM1 null genotype (S11 Table). Considering the substantial difference in the GSTM1 null allele frequency between Indians (29.6%) and East Asians (52.1%), a potential gene-ethnicity interaction may exist based on their race, ethnicity, and body size as aforementioned ^{34 41}. Other characteristics than the *GSTM1* polymorphism in these ethnicities may play a more important role in the development of ATDILI. In addition, when studies were stratified by study design, the risk of ATDILI was significantly increased in patients with the GSTM1 null genotype for cohort studies only, but not for case-control studies, probably due to a relatively larger sample size with cohort studies compared to case-control studies.

SLCO1B1 encodes organic anion transporting polypeptide 1B1 (OATP1B1) which is a major influx drug transporter responsible for the hepatic uptake of various endogenous and exogenous substances including RIF ⁴². Previous studies showed significantly altered systemic exposure of RIF in carriers of the *SLCO1B1* polymorphism ^{43 44}. To our knowledge, only four studies have been conducted to examine the association between the ATDILI risk and the *SLCO1B1* genetic polymorphisms ^{10 28 42 45}. Various single nucleotide polymorphisms (SNPs) of *SLCO1B1* were evaluated in these studies; however, *SLCO1B1* 388A>G (rs2306283) and 521T>C (rs4149056) were the only polymorphisms assessed in common ^{10 28 42 45}. Therefore, to maximize the sample size in our current meta-analysis, we examined the association between the risk of ATDILI and the polymorphic genotypes of *SLCO1B1* 388A>G and 521T>C. Similar to each of the included studies, we did not find significant difference in the risk of ATDILI among patients with different *SLCO1B1* 388A>G and 521T>C genotypes.

There are limitations to this study. First, due to the lack of information regarding other patient characteristics potentially associated with ATDILI, our estimated ORs were not adjusted based on the potential risk factors such as age, anti-tuberculosis drug dosages, alcohol consumption, cigarette smoking, and other lifestyle characteristics ⁷⁴⁶. Second, our literature search limited to the articles published in English may lead to language bias. Third, a specific causative agent of ATDILI could not be identified in our analysis because most patients in our included studies received a combination regimen of anti-tuberculosis drugs. Fourth, only the limited number of polymorphic genotypes were assessed for the association with the risk of ATDILI, particularly for *SLCO1B1*. In addition, only one genetic model was used for *CYP2E1*, *NAT2*, and *GST* when evaluating the association between genetic polymorphisms of these genes and the risk of ATDILI. Although we acknowledge dominant, recessive, and additive genomic

BMJ Open

models can be used for two alleles, it could not be applied to our meta-analysis because we compared patients with different genotype-based phenotype, i.e., slow acetylator *vs*. fast/intermediate acetylator and null vs. non-null *GST*s. Multiple allelic variants or allele subgroups may represent the same phenotype (e.g., *NAT2**5B, *6A, and *7B all represent slow acetylator genotypes), and the genetic model selection can be varied depending on the specific allelic variant ⁴⁷. Therefore, the genetic models used in previous original and meta-analysis studies were adopted for these polymorphic genes in our current study ⁹ ¹⁸ ¹⁹. Future studies are needed to comprehensively and adequately address the relationship between the ATDILI risk and various genetic polymorphisms by using different genetic risk models and including more polymorphic genotypes.

In conclusion, the risk of ATDILI during tuberculosis therapy was significantly increased in patients with tuberculosis carrying *NAT2* slow acetylator, *CYP2E1 RsaI/Pst*I c1/c1, or *GSTM1* null genotypes. Screening for these genetic polymorphisms, particularly for the *NAT2* slow acetylator genotype, may be of great clinical benefit to identify patients at high risk for ATDILI and minimize the risk of ATDILI. Future studies are pertinent to develop dose and/or treatment adjustment strategies, to evaluate the feasibility and cost-effectiveness of the genetic screening test, and to assess the effect of more genetic polymorphisms on the risk of ATDILI for optimal prevention and management of ATDILI.

Acknowledgments

This study was supported by Research Resettlement Fund for the new faculty of Seoul National University. The authors thank Ms. Kyeoul Jeong for her assistance in data management.

Contributors

S.Y. devised and designed the study. S.Y., J.Y.P., and S.J.H. conducted the literature search, performed data extraction and analysis, and. interpreted the data. S.Y., E.K.C., and J.I.L. prepared and reviewed the manuscript. All authors reviewed, amended and approved the submitted manuscript

Funding

Research Resettlement Fund for the new faculty of Seoul National University provided funding to Jangik I. Lee. The funder had no role in data collection, data analysis, translation, and drafting of the manuscript

Competing interests

None declared

Patient consent

Not required

Provenance and peer review

Not commissioned, externally peer reviewed

Data sharing statement

No additional unpublished data are available

<text>

References

- 1. WHO. Global tuberculosis report Geneva, Switzerland: WHO, 2014.
- 2. WHO. Treatment of tuberculosis guidelines, 4th edition. Geneva, Switzerland: WHO, 2010.
- Blumberg H, Burman W, Chaisson R, *et al.* American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. *Am J Respir Crit Care Med* 2003;167:603.
- 4. Zumla A, Raviglione M, Hafner R, et al. Tuberculosis. N Engl J Med 2013;368:745-55.
- Lange C, Abubakar I, Alffenaar J-WC, *et al.* Management of patients with multidrugresistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. *Eur Respir J* 2014;44:23-63.
- 6. Tostmann A, Boeree MJ, Aarnoutse RE, *et al.* Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. *J Gastroenterol Hepatol* 2008;23:192-202.
- 7. Saukkonen JJ, Cohn DL, Jasmer RM, *et al.* An official ATS statement: hepatotoxicity of antituberculosis therapy. *Am J Respir Crit Care Med* 2006;174:935-52.
- 8. Yee D, Valiquette C, Pelletier M, *et al.* Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. *Am J Respir Crit Care Med* 2003;167:1472-7.
- Cai Y, Yi J, Zhou C, *et al.* Pharmacogenetic Study of Drug-Metabolising Enzyme Polymorphisms on the Risk of Anti-Tuberculosis Drug-Induced Liver Injury: A Meta-Analysis. *PLoS ONE* 2012;7.
- Kim SH, Kim SH, Lee JH, et al. Polymorphisms in drug transporter genes (ABCB1, SLCO1B1 and ABCC2) and hepatitis induced by antituberculosis drugs. *Tuberculosis* 2012;92:100-4.
- 11. Roy PD, Majumder M, Roy B. Pharmacogenomics of anti-TB drugs-related hepatotoxicity. *Pharmacogenomics* 2008;9:311-21.
- 12. Sun F, Chen Y, Xiang Y, *et al.* Drug-metabolising enzyme polymorphisms and predisposition to anti-tuberculosis drug-induced liver injury: a meta-analysis. *Int J Tuberc Lung Dis* 2008;12:994-1002.
- 13. Chan SL, Chua APG, Aminkeng F, *et al.* Association and clinical utility of NAT2 in the prediction of isoniazid-induced liver injury in Singaporean patients. *PloS one*

BMJ Open

 2002;156:300-10. Tang N, Deng R, Wang Y, et al. GSTM1 and GSTT1 null polymorphisms susceptibility to anti-tuberculosis drug-induced liver injury: a meta-analysis. Int J Tu Lung Dis 2013;17:17-25. Wang F-J, Wang Y, Niu T, et al. Update meta-analysis of the CYP2E1 Rsal/Pst1 and polymorphisms and risk of antituberculosis drug-induced hepatotoxicity: evidence fro studies. Journal of Clinical Pharmacy and Therapeutics 2016;41:334-40. Li C, Long J, Hu X, et al. GSTM1 and GSTT1 genetic polymorphisms and risk of tuberculosis drug-induced hepatotoxicity: an updated meta-analysis. Eur J Clin Micr Infect Dis 2013;32:859-68. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective str of disease. Journal of the national cancer institute 1959;22:719-48. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical t 1986;7:177-88. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistic medicine 2002;21:1539-58. Feng FM, Guo M, Chen Y, et al. Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. Genetics and Molec Research 2014;13:9463-71. Lv X, Tang S, Xia Y, et al. NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. Ann Hepatol 2012;11:700 Wattanapokayakit S, Mushiroda T, Yanai H, et al. NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung 	17.	2002;156:300-10.
 Tang N, Deng R, Wang Y, et al. GSTM1 and GSTT1 null polymorphisms susceptibility to anti-tuberculosis drug-induced liver injury: a meta-analysis. Int J Tu Lung Dis 2013;17:17-25. Wang F-J, Wang Y, Niu T, et al. Update meta-analysis of the CYP2E1 Rsal/PstI and polymorphisms and risk of antituberculosis drug-induced hepatotoxicity: evidence fro studies. Journal of Clinical Pharmacy and Therapeutics 2016;41:334-40. Li C, Long J, Hu X, et al. GSTM1 and GSTT1 genetic polymorphisms and risk of tuberculosis drug-induced hepatotoxicity: an updated meta-analysis. Eur J Clin Micr Infect Dis 2013;32:859-68. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective stu of disease. Journal of the national cancer institute 1959;22:719-48. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical t 1986;7:177-88. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistic medicine 2002;21:1539-58. Feng FM, Guo M, Chen Y, et al. Genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. Ann Hepatol 2012;11:700 Wattanapokayakit S, Mushiroda T, Yanai H, et al. NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung 	17.	
 susceptibility to anti-tuberculosis drug-induced liver injury: a meta-analysis. <i>Int J Tu</i> <i>Lung Dis</i> 2013;17:17-25. 18. Wang F-J, Wang Y, Niu T, <i>et al.</i> Update meta-analysis of the CYP2E1 Rsal/PstI and polymorphisms and risk of antituberculosis drug-induced hepatotoxicity: evidence fro studies. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2016;41:334-40. 19. Li C, Long J, Hu X, <i>et al.</i> GSTM1 and GSTT1 genetic polymorphisms and risk of tuberculosis drug-induced hepatotoxicity: an updated meta-analysis. <i>Eur J Clin Micr Infect Dis</i> 2013;32:859-68. 20. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective stu of disease. <i>Journal of the national cancer institute</i> 1959;22:719-48. 21. DerSimonian R, Laird N. Meta-analysis in clinical trials. <i>Controlled clinical t</i> 1986;7:177-88. 22. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. <i>Statistic medicine</i> 2002;21:1539-58. 23. Feng FM, Guo M, Chen Y, <i>et al.</i> Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. <i>Genetics and Molec</i> <i>Research</i> 2014;13:9463-71. 24. Lv X, Tang S, Xia Y, <i>et al.</i> NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 25. Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 		Iang N, Deng R, Wang Y, et al. GSTMI and GSTTI null polymorphisms
 Lung Dis 2013;17:17-25. 18. Wang F-J, Wang Y, Niu T, et al. Update meta-analysis of the CYP2E1 Rsal/PstI and polymorphisms and risk of antituberculosis drug-induced hepatotoxicity: evidence fro studies. Journal of Clinical Pharmacy and Therapeutics 2016;41:334-40. 19. Li C, Long J, Hu X, et al. GSTM1 and GSTT1 genetic polymorphisms and risk of tuberculosis drug-induced hepatotoxicity: an updated meta-analysis. Eur J Clin Micr Infect Dis 2013;32:859-68. 20. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective str of disease. Journal of the national cancer institute 1959;22:719-48. 21. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical trials (1986;7:177-88). 22. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistic medicine 2002;21:1539-58. 23. Feng FM, Guo M, Chen Y, et al. Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. Genetics and Molece Research 2014;13:9463-71. 24. Lv X, Tang S, Xia Y, et al. NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. Ann Hepatol 2012;11:700 25. Wattanapokayakit S, Mushiroda T, Yanai H, et al. NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung 		susceptibility to anti-tuberculosis drug-induced liver injury: a meta-analysis. Int J Tub
 Wang F-J, Wang Y, Niu T, <i>et al.</i> Update meta-analysis of the CYP2E1 Rsal/PstI and polymorphisms and risk of antituberculosis drug-induced hepatotoxicity: evidence fro studies. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2016;41:334-40. Li C, Long J, Hu X, <i>et al.</i> GSTM1 and GSTT1 genetic polymorphisms and risk of tuberculosis drug-induced hepatotoxicity: an updated meta-analysis. <i>Eur J Clin Micr Infect Dis</i> 2013;32:859-68. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective stu of disease. <i>Journal of the national cancer institute</i> 1959;22:719-48. DerSimonian R, Laird N. Meta-analysis in clinical trials. <i>Controlled clinical t</i> 1986;7:177-88. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. <i>Statistic medicine</i> 2002;21:1539-58. Feng FM, Guo M, Chen Y, <i>et al.</i> Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. <i>Genetics and Molec</i> <i>Research</i> 2014;13:9463-71. Lv X, Tang S, Xia Y, <i>et al.</i> NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 		Lung Dis 2013;17:17-25.
 polymorphisms and risk of antituberculosis drug-induced hepatotoxicity: evidence frostudies. <i>Journal of Clinical Pharmacy and Therapeutics</i> 2016;41:334-40. Li C, Long J, Hu X, <i>et al.</i> GSTM1 and GSTT1 genetic polymorphisms and risk of tuberculosis drug-induced hepatotoxicity: an updated meta-analysis. <i>Eur J Clin Micr Infect Dis</i> 2013;32:859-68. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective sturo f disease. <i>Journal of the national cancer institute</i> 1959;22:719-48. DerSimonian R, Laird N. Meta-analysis in clinical trials. <i>Controlled clinical t</i> 1986;7:177-88. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. <i>Statistic medicine</i> 2002;21:1539-58. Feng FM, Guo M, Chen Y, <i>et al.</i> Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. <i>Genetics and Moleco Research</i> 2014;13:9463-71. Lv X, Tang S, Xia Y, <i>et al.</i> NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 	18.	Wang F-J, Wang Y, Niu T, et al. Update meta-analysis of the CYP2E1 RsaI/PstI and I
 studies. Journal of Clinical Pharmacy and Therapeutics 2016;41:334-40. 19. Li C, Long J, Hu X, et al. GSTM1 and GSTT1 genetic polymorphisms and risk of tuberculosis drug-induced hepatotoxicity: an updated meta-analysis. Eur J Clin Micr Infect Dis 2013;32:859-68. 20. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective stu of disease. Journal of the national cancer institute 1959;22:719-48. 21. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical ti 1986;7:177-88. 22. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistic medicine 2002;21:1539-58. 23. Feng FM, Guo M, Chen Y, et al. Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. Genetics and Molece Research 2014;13:9463-71. 24. Lv X, Tang S, Xia Y, et al. NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. Ann Hepatol 2012;11:700 25. Wattanapokayakit S, Mushiroda T, Yanai H, et al. NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung 		polymorphisms and risk of antituberculosis drug-induced hepatotoxicity: evidence from
 Li C, Long J, Hu X, et al. GSTM1 and GSTT1 genetic polymorphisms and risk of tuberculosis drug-induced hepatotoxicity: an updated meta-analysis. <i>Eur J Clin Micr</i> <i>Infect Dis</i> 2013;32:859-68. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective stu of disease. <i>Journal of the national cancer institute</i> 1959;22:719-48. DerSimonian R, Laird N. Meta-analysis in clinical trials. <i>Controlled clinical t</i> 1986;7:177-88. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. <i>Statistic medicine</i> 2002;21:1539-58. Feng FM, Guo M, Chen Y, et al. Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. <i>Genetics and Molec</i> <i>Research</i> 2014;13:9463-71. Lv X, Tang S, Xia Y, et al. NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 Wattanapokayakit S, Mushiroda T, Yanai H, et al. NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 		studies. Journal of Clinical Pharmacy and Therapeutics 2016;41:334-40.
 tuberculosis drug-induced hepatotoxicity: an updated meta-analysis. <i>Eur J Clin Micr</i> <i>Infect Dis</i> 2013;32:859-68. 20. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective stu of disease. <i>Journal of the national cancer institute</i> 1959;22:719-48. 21. DerSimonian R, Laird N. Meta-analysis in clinical trials. <i>Controlled clinical t</i> 1986;7:177-88. 22. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. <i>Statistic</i> <i>medicine</i> 2002;21:1539-58. 23. Feng FM, Guo M, Chen Y, <i>et al.</i> Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. <i>Genetics and Molec</i> <i>Research</i> 2014;13:9463-71. 24. Lv X, Tang S, Xia Y, <i>et al.</i> NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 25. Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 	19.	Li C, Long J, Hu X, et al. GSTM1 and GSTT1 genetic polymorphisms and risk of
 Infect Dis 2013;32:859-68. 20. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective strong of disease. Journal of the national cancer institute 1959;22:719-48. 21. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical trials. Controlled clinical trials. 1986;7:177-88. 22. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistic medicine 2002;21:1539-58. 23. Feng FM, Guo M, Chen Y, et al. Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. Genetics and Molece Research 2014;13:9463-71. 24. Lv X, Tang S, Xia Y, et al. NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. Ann Hepatol 2012;11:700 25. Wattanapokayakit S, Mushiroda T, Yanai H, et al. NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung 		tuberculosis drug-induced hepatotoxicity: an updated meta-analysis. Eur J Clin Micro
 Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective str of disease. <i>Journal of the national cancer institute</i> 1959;22:719-48. DerSimonian R, Laird N. Meta-analysis in clinical trials. <i>Controlled clinical t</i> 1986;7:177-88. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. <i>Statistic medicine</i> 2002;21:1539-58. Feng FM, Guo M, Chen Y, <i>et al.</i> Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. <i>Genetics and Molec</i> <i>Research</i> 2014;13:9463-71. Lv X, Tang S, Xia Y, <i>et al.</i> NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 		Infect Dis 2013;32:859-68.
 of disease. Journal of the national cancer institute 1959;22:719-48. 21. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical trials. 1986;7:177-88. 22. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistic medicine 2002;21:1539-58. 23. Feng FM, Guo M, Chen Y, et al. Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. Genetics and Molece Research 2014;13:9463-71. 24. Lv X, Tang S, Xia Y, et al. NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. Ann Hepatol 2012;11:700 25. Wattanapokayakit S, Mushiroda T, Yanai H, et al. NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung 	20.	Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective stu
 DerSimonian R, Laird N. Meta-analysis in clinical trials. <i>Controlled clinical i</i> 1986;7:177-88. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. <i>Statistic medicine</i> 2002;21:1539-58. Feng FM, Guo M, Chen Y, <i>et al.</i> Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. <i>Genetics and Molec Research</i> 2014;13:9463-71. Lv X, Tang S, Xia Y, <i>et al.</i> NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 		of disease. Journal of the national cancer institute 1959;22:719-48.
 1986;7:177-88. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. <i>Statistic medicine</i> 2002;21:1539-58. Feng FM, Guo M, Chen Y, <i>et al.</i> Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. <i>Genetics and Molec Research</i> 2014;13:9463-71. Lv X, Tang S, Xia Y, <i>et al.</i> NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 	21.	DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical tr
 Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. <i>Statistic medicine</i> 2002;21:1539-58. Feng FM, Guo M, Chen Y, <i>et al.</i> Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. <i>Genetics and Molec Research</i> 2014;13:9463-71. Lv X, Tang S, Xia Y, <i>et al.</i> NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 		1986;7:177-88.
 <i>medicine</i> 2002;21:1539-58. 23. Feng FM, Guo M, Chen Y, <i>et al.</i> Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. <i>Genetics and Molec Research</i> 2014;13:9463-71. 24. Lv X, Tang S, Xia Y, <i>et al.</i> NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 25. Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 	22.	Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. <i>Statistic</i>
 Feng FM, Guo M, Chen Y, <i>et al.</i> Genetic polymorphisms in metabolic enzymes susceptibility to anti-tuberculosis drug-induced hepatic injury. <i>Genetics and Molec Research</i> 2014;13:9463-71. Lv X, Tang S, Xia Y, <i>et al.</i> NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 	•••	medicine 2002;21:1539-58.
 susceptibility to anti-tuberculosis drug-induced hepatic injury. <i>Genetics and Molec</i> <i>Research</i> 2014;13:9463-71. Lv X, Tang S, Xia Y, <i>et al.</i> NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 	23.	Feng FM, Guo M, Chen Y, et al. Genetic polymorphisms in metabolic enzymes
 <i>Research</i> 2014;13:9463-71. Lv X, Tang S, Xia Y, <i>et al.</i> NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 		susceptibility to anti-tuberculosis drug-induced hepatic injury. Genetics and Molec
 Lv X, Tang S, Xia Y, <i>et al.</i> NAT2 genetic polymorphisms and anti-tuberculosis induced hepatotoxicity in Chinese community population. <i>Ann Hepatol</i> 2012;11:700 Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 	~ 4	Research 2014;13:9463-71.
 25. Wattanapokayakit S, Mushiroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i> 	24.	LV X, 1 ang S, Xia Y, et al. NA12 genetic polymorphisms and anti-tuberculosis c
25. wattanapokayakit S, Musniroda T, Yanai H, <i>et al.</i> NAT2 slow acetylator associated anti-tuberculosis drug-induced liver injury in Thai patients. <i>Int J Tuberc Lung</i>	25	induced hepatotoxicity in Chinese community population. Ann Hepatol 2012;11:700-
and-tuberculosis drug-induced liver injury in That patients. Int J Tuberc Lung	23.	wattanapokayakit S, Musniroda I, Yanai H, <i>et al.</i> NA12 slow acetylator associated v
		anti-tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung
		For neer review only - http://bmionen.hmi.com/site/about/quidelines.yhtml

2016;20:1364-9.

- 26. Singla N, Gupta D, Birbian N, *et al.* Association of NAT2, GST and CYP2E1 polymorphisms and anti-tuberculosis drug-induced hepatotoxicity. *Tuberculosis* 2014;94:293-8.
- 27. Gupta VH, Amarapurkar DN, Singh M, *et al.* Association of N-acetyltransferase 2 and cytochrome P450 2E1 gene polymorphisms with antituberculosis drug-induced hepatotoxicity in Western India. *Journal of Gastroenterology and Hepatology* 2013;28:1368-74.
- 28. Li LM, Chen L, Deng GH, *et al.* SLCO1B1*15 haplotype is associated with rifampininduced liver injury. *Mol Med Rep* 2012;6:75-82.
- 29. Wang PY, Xie SY, Hao Q, *et al.* NAT2 polymorphisms and susceptibility to antituberculosis drug-induced liver injury: a meta-analysis. *Int J Tuberc Lung Dis* 2012;16:589-95.
- 30. Deng R, Yang T, Wang Y, *et al.* CYP2E1 RsaI/PstI polymorphism and risk of antituberculosis drug-induced liver injury: a meta-analysis. *Int J Tuberc Lung Dis* 2012;16:1574-81.
- 31. Mitchell JR, Zimmerman HJ, Ishak KG, *et al.* Isoniazid liver injury: clinical spectrum, pathology, and probable pathogenesis. *Ann Intern Med* 1976;84:181-92.
- 32. Ryan D, Ramanathan L, Iida S, *et al.* Characterization of a major form of rat hepatic microsomal cytochrome P-450 induced by isoniazid. *Journal of Biological Chemistry* 1985;260:6385-93.
- 33. Ortega VE, Meyers DA. Pharmacogenetics: implications of race and ethnicity on defining genetic profiles for personalized medicine. *J Allergy Clin Immunol* 2014;133:16-26.
- 34. Bliven-Sizemore EE, Sterling TR, Shang N, et al. Three months of weekly rifapentine plus isoniazid is less hepatotoxic than nine months of daily isoniazid for LTBI. Int J Tuberc Lung Dis 2015;19:1039-44, i-v.
- Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. *Clinical Pharmacology & Therapeutics* 2017;102:688-700.
- 36. Lin HJ, Han C-Y, Lin BK, et al. Ethnic distribution of slow acetylator mutations in the

BMJ Open

2 3		
4		polymorphic N-acetyltransferase (NAT2) gene. <i>Pharmacogenetics</i> 1994;4:125-34.
6	37.	Seng KY, Hee KH, Soon GH, et al. Population Pharmacokinetic Analysis of Isoniazid,
7 8		Acetylisoniazid, and Isonicotinic Acid in Healthy Volunteers. Antimicrobial Agents and
9		Chemotherapy 2015;59:6791-9.
10	38.	Wang P, Pradhan K, Zhong XB, et al. Isoniazid metabolism and hepatotoxicity. Acta
12 13		Pharm Sin B 2016.6.384-92
14 15	39	Metushi IG Nakagawa T Uetrecht J Direct oxidation and covalent binding of isoniazid
16	03.	to rodent liver and human hepatic microsomes: humans are more like mice than rats. <i>Chem</i>
17 18		Res Toricol 2012.25.2567-76
19 20	40	Remachandran G Swaminathan S Role of pharmacogenomics in the treatment of
20	40.	tuberculosis: a ravious <i>Pharmachamias Bars Mod</i> 2012:5:80.08
22 23	4.1	tuberculosis: a review. Fnarmgenomics Fers Mea $2012, 5.89-96$.
24	41.	Kastnurinaidu SP, Ramasamy I, Ayyavoo J, <i>et al.</i> GST MIT-IT null allele frequency
25 26		patterns in geographically assorted human populations: a phylogenetic approach. <i>PLoS</i>
27		<i>One</i> 2015;10:e0118660.
28 29	42.	Chen R, Wang J, Tang S, et al. Association of polymorphisms in drug transporter genes
30 31		(SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese
32		cohort. Tuberculosis 2015;95:68-74.
33 34	43.	Weiner M, Peloquin C, Burman W, et al. Effects of tuberculosis, race, and human gene
35		SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother
36 37		2010;54:4192-200.
38 39	44.	Chigutsa E. Visser ME. Swart EC. <i>et al.</i> The SLCO1B1 rs4149032 polymorphism is highly
40		prevalent in South Africans and is associated with reduced rifampin concentrations: dosing
41 42		implications Antimicrob Agents Chemother 2011:55:4122-7
43	15	Nimer C. Llada N. Llaktawald A. et al. Dharmanaganatia & nharmanalrinatia hismarkar for
44	43.	Y Imer G, Oeda N, Hablewold A, <i>et al.</i> Pharmacogenetic & pharmacokinetic biomarker for
46 47		etavirenz based ARV and ritampicin based anti-IB drug induced liver injury in IB-HIV
48		infected patients. PLoS One 2011;6:e27810.
49 50	46.	Chen R, Wang J, Zhang Y, et al. Key factors of susceptibility to anti-tuberculosis drug-
51		induced hepatotoxicity. Arch Toxicol 2015;89:883-97.
52 53	47.	Khan S, Mandal RK, Elasbali AM, et al. Pharmacogenetic association between NAT2 gene
54 55		polymorphisms and isoniazid induced hepatotoxicity: trial sequence meta-analysis as
56 57		25
58		
59		

evidence. Bioscience reports 2019;39:BSR20180845.

- 48. Kim SH, Kim SH, Bahn JW, *et al.* Genetic polymorphisms of drug-metabolizing enzymes and anti-TB drug-induced hepatitis. *Pharmacogenomics* 2009;10:1767-79.
- 49. Singh M, Gupta VH, Amarapurkar DN, *et al.* Association of genetic variants with antituberculosis drug induced hepatotoxicity: A high resolution melting analysis. *Infection Genetics and Evolution* 2014;23:42-8.
- 50. Tang S, Lv X, Zhang Y, *et al.* Cytochrome P450 2E1 Gene Polymorphisms/Haplotypes and Anti-Tuberculosis Drug-Induced Hepatitis in a Chinese Cohort. *PLoS ONE* 2013;8:e57526.
- 51. Ben Mahmoud L, Ghozzi H, Kamoun A, *et al.* Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis. *Pathologie Biologie* 2012;60:324-30.
- 52. Bozok Cetintas V, Erer OF, Kosova B, *et al.* Determining the relation between N-acetyltransferase-2 acetylator phenotype and antituberculosis drug induced hepatitis by molecular biologic tests. *Tuberk Toraks* 2008;56:81-6.
- 53. Higuchi N, Tahara N, Yanagihara K, *et al.* NAT2 6A, a haplotype of the N-acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-induced hepatotoxicity in Japanese patients with tuberculosis. *World J Gastroenterol* 2007;13:6003-8.
- Ho HT, Wang TH, Hsiong CH, et al. The NAT2 tag SNP rs1495741 correlates with the susceptibility of antituberculosis drug-induced hepatotoxicity. *Pharmacogenet Genomics* 2013;23:200-7.
- 55. Huang YS, Chern HD, Su WJ, *et al.* Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. *Hepatology* 2002;35:883-9.
- 56. Khalili H, Fouladdel S, Sistanizad M, et al. Association of N-acetyltransferase-2 genotypes and anti-tuberculosis induced liver injury: First case-controlled study from Iran. Current Drug Safety 2011;6:17-22.
- 57. Leiro-Fernandez V, Valverde D, Vazquez-Gallardo R, *et al.* N-acetyltransferase 2 polymorphisms and risk of anti-tuberculosis drug-induced hepatotoxicity in Caucasians.

BMJ Open

1 2 3		
3 4 5		International Journal of Tuberculosis and Lung Disease 2011;15:1403-8.
6	58.	Ng CS, Hasnat A, Al Maruf A, et al. N-acetyltransferase 2 (NAT2) genotype as a risk
7 8		factor for development of drug-induced liver injury relating to antituberculosis drug
9		treatment in a mixed-ethnicity patient group European Journal of Clinical Pharmacology
10 11		2014·70·1079-86
12 13	50	Ohne M. Vemeguchi I. Vemeguchi I. <i>et al.</i> Slow N. sootultransferaçe 2 construct affects the
14	39.	insidence of isopiasid and efformisin indexed heretatorisite. Internetional Isopada C
15 16		Incluence of Isoniazid and Hampicin-Induced nepatotoxicity. International Journal of
17		Tuberculosis and Lung Disease 2000;4:256-61.
18 19	60.	Possuelo LG, Castelan JA, de Brito TC, et al. Association of slow N-acetyltransferase 2
20		profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil.
21 22		European Journal of Clinical Pharmacology 2008;64:673-81.
23 24	61.	Rana SV, Ola RP, Sharma SK, et al. Comparison between acetylator phenotype and
25		genotype polymorphism of n-acetyltransferase-2 in tuberculosis patients. Hepatology
26 27		International 2012;6:397-402.
28	62.	Shimizu Y, Dobashi K, Mita Y, et al. DNA microarray genotyping of N-acetyltransferase
29 30		2 polymorphism using carbodijmide as the linker for assessment of isoniazid hepatotoxicity
31 32		Tuberculosis 2006:86:374-81
33	62	Yuliyulandari P. Sucilowati P.W. Wiceksone P.D. at al. NAT2 variants are accopited with
34 35	05.	drug induced liver injury could by arti tabarabais drugs in Indensian patients with
36		drug-induced liver injury caused by anti-tuberculosis drugs in indonesian patients with
37 38		tuberculosis. J Hum Genet 2016; doi:10.1038/jhg.2016.10.
39 40	64.	Chatterjee S, Lyle N, Mandal A, et al. GSTT1 and GSTM1 gene deletions are not
41		associated with hepatotoxicity caused by antitubercular drugs. Journal of Clinical
42 43		Pharmacy and Therapeutics 2010;35:465-70.
44	65.	Gupta VH, Singh M, Amarapurkar DN, et al. Association of GST null genotypes with anti-
45 46		tuberculosis drug induced hepatotoxicity in Western Indian population. Annals of
47 48		Hepatology 2013;12:959-65.
49	66.	Huang YS, Su WJ, Huang YH, et al. Genetic polymorphisms of manganese superoxide
50 51		dismutase. NAD(P)H : quinone oxidoreductase. glutathione S-transferase M1 and T1, and
52		the susceptibility to drug-induced liver injury Journal of Henatology 2007:47:128-34
53 54	67	Kim SH Kim SH Voon HI <i>et al</i> GSTT1 and GSTM1 null mutations and adverse
55 56	07.	Kin 511, Kin 511, 1001 113, et al. 05111 and 051111 hun indiadons and adverse
57		27
58		

reactions induced by antituberculosis drugs in Koreans. *Tuberculosis* 2010;90:39-43.

- 68. Leiro V, Fernandez-Villar A, Valverde D, *et al.* Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. *Liver International* 2008;28:835-9.
- 69. Liu F, Jiao AX, Wu XR, *et al.* Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug-Induced Hepatotoxicity in Chinese Pediatric Patients. *Plos One* 2014;9.
- 70. Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, *et al.* The roles of GSTM1 and GSTT1 null genotypes and other predictors in anti-tuberculosis drug-induced liver injury. *Journal of Clinical Pharmacy and Therapeutics* 2012;37:712-8.
- 71. Rana SV, Kamboj JK, Sharma SK, *et al.* Antioxidant status and GST gene polymorphisms in antitubercular treatment-induced hepatotoxicity patients. *Hepatol Int* 2013;7:876-82.
- 72. Roy B, Chowdhury A, Kundu S, *et al.* Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. *Journal of Gastroenterology and Hepatology* 2001;16:1033-7.
- 73. An HR, Wu XQ, Wang ZY, *et al.* NAT2 and CYP2E1 polymorphisms associated with antituberculosis drug-induced hepatotoxicity in Chinese patients. *Clinical and Experimental Pharmacology and Physiology* 2012;39:535-43.
- 74. Bose PD, Sarma MP, Medhi S, *et al.* Role of polymorphic N-acetyl transferase2 and cytochrome P4502E1 gene in antituberculosis treatment-induced hepatitis. *Journal of Gastroenterology and Hepatology* 2011;26:312-8.
- 75. Chamorro JG, Castagnino JP, Musella RM, *et al.* Sex, ethnicity, and slow acetylator profile are the major causes of hepatotoxicity induced by antituberculosis drugs. *Journal of Gastroenterology and Hepatology* 2013;28:323-8.
- 76. Cho HJ, Koh WJ, Ryu YJ, et al. Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. *Tuberculosis* 2007;87:551-6.
- 77. Huang YS, Chern HD, Su WJ, *et al.* Cytochrome p450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. *Hepatology* 2003;37:924-30.
- 78. Lee SW, Chung LS, Huang HH, *et al.* NAT2 and CYP2E1 polymorphisms and susceptibility to first-line anti-tuberculosis drug-induced hepatitis. *Int J Tuberc Lung Dis*

BMJ Open

2	
3	
1	
-+ _	
2	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
23	
22	
27 25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
40	
41	
42	
43	
44	
7 7 /5	
40	
46	
47	
48	
49	
50	
51	
52	
53	
53	
54	
55	
56	
57	
58	
59	

60

2010;14:622-6.

- Mishra S, Daschakraborty S, Shukla P, *et al.* N-acetyltransferase and cytochrome P450
 2E1 gene polymorphisms and susceptibility to antituberculosis drug hepatotoxicity in an Indian population. *National Medical Journal of India* 2013;26:260-5.
- Santos NP, Callegari-Jacques SM, Ribeiro Dos Santos AK, *et al.* N-acetyl transferase 2 and cytochrome P450 2E1 genes and isoniazid-induced hepatotoxicity in Brazilian patients. *Int J Tuberc Lung Dis* 2013;17:499-504.
- 81. Vuilleumier N, Rossier MF, Chiappe A, *et al.* CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. *Eur J Clin Pharmacol* 2006;62:423-9.
- 82. Yamada S, Tang M, Richardson K, *et al.* Genetic variations of NAT2 and CYP2E1 and isoniazid hepatotoxicity in a diverse population. *Pharmacogenomics* 2009;10:1433-45.
- 83. Zaverucha-do-Valle C, Monteiro SP, El-Jaick KB, *et al.* The role of cigarette smoking and liver enzymes polymorphisms in anti-tuberculosis drug-induced hepatotoxicity in Brazilian patients. *Tuberculosis (Edinb)* 2014;94:299-305.
- 84. Sharma SK, Jha BK, Sharma A, *et al.* Genetic polymorphisms of CYP2E1 and GSTM1 loci and susceptibility to anti-tuberculosis drug-induced hepatotoxicity. *International Journal of Tuberculosis and Lung Disease* 2014;18:588-93.
- Wang T, Yu HT, Wang W, et al. Genetic Polymorphisms of Cytochrome P450 and Glutathione S-transferase Associated with Antituberculosis Drug-induced Hepatotoxicity in Chinese Tuberculosis Patients. *Journal of International Medical Research* 2010;38:977-86.
- 86. Tang SW, Lv XZ, Zhang Y, *et al.* CYP2E1, GSTM1 and GSTT1 genetic polymorphisms and susceptibility to antituberculosis drug-induced hepatotoxicity: a nested case-control study. *Journal of Clinical Pharmacy and Therapeutics* 2012;37:588-93.
- 87. Brito TC, Possuelo LG, Valim ARM, *et al.* Polymorphisms in CYP2E1, GSTM1 and GSTT1 and anti-tuberculosis drug-induced hepatotoxicity. *Anais Da Academia Brasileira De Ciencias* 2014;86:855-65.
- 88. Forestiero FJ, Cecon L, Hirata MH, et al. Relationship of NAT2, CYP2E1 and GSTM1/GSTT1 polymorphisms with mild elevation of liver enzymes in Brazilian

individuals under anti-tuberculosis drug therapy. Clinica Chimica Acta 2013;415:215-9.

- Rana SV, Sharma SK, Ola RP, *et al.* N-acetyltransferase 2, cytochrome P4502E1 and glutathione S-transferase genotypes in antitubercular treatment-induced hepatotoxicity in North Indians. *J Clin Pharm Ther* 2014;39:91-6.
- 90. Sotsuka T, Sasaki Y, Hirai S, *et al.* Association of Isoniazid-metabolizing Enzyme Genotypes and Isoniazid-induced Hepatotoxicity in Tuberculosis Patients. *In Vivo* 2011;25:803-12.
- 91. Teixeira RL, Morato RG, Cabello PH, *et al.* Genetic polymorphisms of NAT2, CYP2E1 and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in Brazilian TB patients. *Mem Inst Oswaldo Cruz* 2011;106:716-24.
- 92. Xiang Y, Ma L, Wu WD, et al. The Incidence of Liver Injury in Uyghur Patients Treated for TB in Xinjiang Uyghur Autonomous Region, China, and Its Association with Hepatic Enzyme Polymorphisms NAT2, CYP2E1, GSTM1 and GSTT1. *Plos One* 2014;9.

Supporting information

Additional supporting information can be found in the online version of this article:

S1 Table. Completed MOOSE (Meta-analysis Of Observational Studies in Epidemiology)

checklist

S2 Table. Search strategies

S3 Table. Study quality assessment

S4 Table. Genotype distribution and the genotyping method used for the *CYP2E1* genetic polymorphisms in the included studies (n = 26)

S5 Table. Genotype distribution and the genotyping method used for the *NAT2* genetic polymorphism in the included studies (n = 35)

S6 Table. Genotype distribution and the genotyping method used for the GST genetic polymorphisms in the included studies (n = 19)

S7 Table. Genotype distribution and the genotyping method used for the *SLCO1B1* genetic polymorphisms in the included studies (n = 4)

S8 Figure. Funnel plots to evaluate publication bias for the *CYP2E1*, *NAT2*, *GST*, and *SLCO1B1* polymorphisms associated with the risk of anti-tuberculosis drug-induced liver injury. (A) *CYP2E1 RsaI/Pst*I polymorphism, (B) *CYP2E1 Dra*I polymorphism, (C) *NAT2* polymorphism, (D) *GSTM1* polymorphism, (E) *GSTT1* polymorphism, (F) *GSTT1/M1* polymorphism, and (G) *SLCO1B1* 388A>G and 521T>C polymorphism.

S9 Table. Subgroup analysis for the association between *CYP2E1* polymorphisms and the risk of anti-tuberculosis drug-induced liver injury based on ethnicity, anti-tuberculosis drug regimen, and study design

S10 Table. Subgroup analysis for the association between *NAT2* polymorphism and the risk of anti-tuberculosis drug-induced liver injury based on ethnicity, anti-tuberculosis drug regimen, and study design

S11 Table. Subgroup analysis for the association between *GST* polymorphisms and the risk of anti-tuberculosis drug-induced liver injury based on ethnicity, anti-tuberculosis drug regimen, and study design

or perteries only

Figure legends

Figure 1. Study selection process flowchart.

Figure 2. Risk of anti-tuberculosis drug-induced liver injury in patients with the *CYP2E1* (A) *RsaI/PstI* c1/c1 genotype compared to c1/c2 + c2/c2 genotypes and (B) *DraI* D/D genotype compared to D/C + C/C genotypes.

Figure 3. Risk of anti-tuberculosis drug-induced liver injury in patients with the *NAT2* slow acetylator genotype compared to those with the intermediate/fast acetylator genotypes.

Figure 4. Risk of anti-tuberculosis drug-induced liver injury in patients with (A) the *GSTM1* null genotype compared to the non-null genotype, (B) the *GSTT1* null genotype compared to the non-null genotype, and (C) the *GSTM1/GSTT1* dual-null genotype compared to the one- and non-null genotypes.

Last name of the first author, year	Polymorphic gene	Study design	Ethnicity	Sample size (case/control)	Age (years) (case/ control) ^a	Male (%) (case/ control)	Anti-TB drug regimen administered	Diagnostic criteria of ATDILI	Quality score ^d
Feng, 2014 ²³	CYP2E1	Case- control	Chinese	173/173	48.8/48.6	68.0/68.0	INH, RIF, PZA	$ALT > 3 \times ULN$	6
Kim, 2009 ⁴⁸	CYP2E1	Case- control	Korean	67/159	42.1/42.8	65.7/65.4	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Singh, 2014 49	CYP2E1	Cohort	Indian	50/135	NA/NA	NA/NA	NA	$ALT > 2 \times ULN$	7
Tang, 2013 ⁵⁰	CYP2E1	Case- control	Chinese	89/356	43.7/43.6	73.0/73.0	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Ben Mahmoud, 2012 ⁵¹	NAT2	Cohort	Tunisian	14/52	42.4/42.1	42.8/48.1	INH, RIF containing regimen	$ALT > 2 \times ULN$	7
Bozok Cetintas, 2008 ⁵²	NAT2	Case- control	Turkish	30/70	39.8/37.3	50.0/72.8	INH, RIF, PZA, EMB	$ALT > 3 \times ULN$	6
Higuchi, 2007 ⁵³	NAT2	Cohort	Japanese	18/82	60.8/64.7	50.0/57.3	INH ,RIF containing regimen	$ALT > 2 \times ULN$	7
Ho, 2013 ⁵⁴	NAT2	Cohort	Taiwanese	20/328	NA/NA	NA/NA	INH, RIF, PZA, EMB	$ALT > 5 \times ULN$	6
Huang, 2002 55	NAT2	Cohort	Taiwanese	33/191	73.3/63.7	87.9/88.5	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Khalili, 2011 56	NAT2	Case- control	Iranian	14/36	NA/NA	NA/NA	INH, RIF, PZA, EMB	$ALT > 3 \times ULN$	6
Leiro-Fernandez, 2011 57	NAT2	Case- control	Caucasian	50/67	34.0/30.5 ^b	54.0/56.7	INH, RIF, PZA	$ALT > 3 \times ULN$	7
Lv, 2012 ²⁴	NAT2	Case-	Chinese	89/356	42.0/42.0 ^b	73.0/73.0	INH, RIF, PZA,	$ALT > 2 \times ULN$	7

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 35 of 69

 BMJ Open

		control					EMB		
Ng, 2014 ⁵⁸	NAT2	Case- control	Mixed	26/101	48.3/NA	38.5/NA	INH containing regimen	$ALT > 5 \times ULN$	7
Ohno, 2000 ⁵⁹	NAT2	Cohort	Japanese	14/63	NA/NA	NA/NA	INH, RIF	$ALT > 1.5 \times ULN$	7
Possuelo, 2008 60	NAT2	Cohort	Brazilian	14/240	38.9/36.5	50.0/66.9	INH, RIF, PZA	$ALT > 3 \times ULN$	7
Rana, 2012 61	NAT2	Cohort	Indian	50/201	45.3/43.8	76.0/57.2	INH, RIF, PZA, EMB	$ALT > 5 \times ULN$	7
Shimizu, 2006 62	NAT2	Case- control	Japanese	10/32	60.5/64.9	70.0/46.9	INH, RIF	$ALT > 2 \times ULN$	6
Yuliwulandari, 2016 ⁶³	NAT2	Case- control	Indonesian	50/191	NA/NA	NA/NA	NA	$ALT > 2 \times ULN$	7
Wattanapokayakit, 2016 ²⁵	NAT2	Case- control	Thai	53/85	51.4/50.2	58.5/60.0	INH containing regimen	$ALT > 2 \times ULN$	7
Chatterjee, 2010 ⁶⁴	GSTM1, GSTT1	Case- control	Indian	51/100	37.2/33.2	49.0/63.0	INH, RIF, PZA	$ALT > 3 \times ULN$	7
Gupta, 2013 65	GSTM1, GSTT1	Cohort	Indian	50/246	37.0/36.5 ^b	48.0/56.5	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Huang, 2007 66	GSTM1, GSTT1	Case- control	Taiwanese	63/63	62.0/NA	NA/NA	NA	$ALT > 5 \times ULN$	6
Kim, 2010 67	GSTM1, GSTT1	Case- control	Korean	57/190	47.3/42.4	59.6/67.9	INH, RIF, PZA, EMB	$ALT > 3 \times ULN$	7
Leiro, 2008 68	GSTM1, GSTT1	Case- control	Caucasian	35/60	34.0/31.0 ^b	40.0/41.7	INH, RIF, PZA	$ALT > 3 \times ULN$	7
Liu, 2014 ⁶⁹	GSTM1, GSTT1	Case- control	Chinese	20/143	35.9/61.2	60.0/59.4	INH containing regimen	$ALT > 2 \times ULN$	7
Monteiro, 2012 70	GSTM1, GSTT1	Cohort	Brazilian	59/118	37.0/38.0 ^b	76.0/61.0	NA	$ALT > 2 \times ULN$	7

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Rana, 2013 71	GSTM1, GSTT1	Cohort	Indian	30/220	43.6/42.3	60.0/64.5	INH, RIF	$ALT > 5 \times ULN$	6
Roy, 2001 ⁷²	GSTM1, GSTT1	Case- control	Indian	33/33	NA/NA	NA/NA	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Chen, 2015 42	SLCO1B1	Case- control	Chinese	89/356	43.7/43.6	73.0/73.0	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Kim, 2012 ¹⁰	SLCO1B1	Case- control	Korean	67/159	43.0/42.8	65.7/65.4	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Li, 2012 ²⁸	SLCO1B1	Case- control	Chinese	118/155	40.5/39.3	48.3/54.8	RIF	$ALT > 3 \times ULN$	7
An, 2012 ⁷³	NAT2, CYP2E1	Case- control	Chinese	101/107	36.0/33.4 ^b	55.0/70.0	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Bose, 2011 ⁷⁴	NAT2, CYP2E1	Cohort	Indian	41/177	38.0/36.0	43.9/47.4	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Chamorro, 2013 ⁷⁵	NAT2, CYP2E1	Cohort	Mixed (South American)	47/128	29.0/27.0	41.3/64.8	INH, RIF, PZA, EMB	ALT > 3 × ULN	7
Cho, 2007 ⁷⁶	NAT2, CYP2E1	Cohort	Korean	18/114	51.2/46.7	66.7/55.3	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Gupta, 2013 ²⁷	NAT2, CYP2E1	Case- control	Indian	50/165	37.0/38.0	48.0/60.0	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Huang, 2003 77	NAT2, CYP2E1	Cohort	Taiwanese	49/269	70.0/59.0 ^b	18.4/14.9	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Lee, 2010 ⁷⁸	NAT2, CYP2E1	Cohort	Taiwanese	45/95	58.4/54.9	60.0/66.3	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Mishra, 2013 79	NAT2, CYP2E1	Case- control	Indian	33/173	38.0/NA	52.0/NA	INH, RIF, PZA, EMB	$ALT > 3 \times ULN$	7
Santos, 2013 80	NAT2,	Case-	Brazilian	18/252	47.7/45.6	56.0/49.0	INH, RIF	$ALT > 3 \times ULN$	7

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 37 of 69

 BMJ Open

	CYP2E1	control							
Vuilleumier, 2006	NAT2, CYP2E1	Case- control	Mixed	8/63	27-35: 2/22° >36 : 5/18°	38.0/51.0	INH	AST or ALT > 4 × ULN	7
Yamada, 2009 82	NAT2, CYP2E1	Case- control	Mixed	23/147	NA/NA	13.0/42.9	INH	$ALT > 2 \times ULN$	7
Zaverucha-do- Valle, 2014 ⁸³	NAT2, CYP2E1	Cohort	Brazilian	50/79	< 40: 28/43° > 40: 20/36°	60.4/72.2	INH, RIF, PZA	$ALT > 2 \times ULN$	6
Sharma, 2014 ⁸⁴	CYP2E1, GSTM1	Cohort	Indian	105/185	35.2/27.6	55.7/72.1	INH, RIF, PZA, EMB	$ALT > 5 \times ULN$	7
Wang, 2010 ⁸⁵	CYP2E1, GSTM1	Case- control	Chinese	104/111	48.6/44.7	67.3/67.6	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Tang, 2012 ⁸⁶	CYP2E1, GSTM1, GSTT1	Case- control	Chinese	89/356	43.7/43.6	73.0/73.0	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	7
Yimer, 2011 45	NAT2, SLCO1B1	Cohort	Ethiopian	41/160	NA/NA	NA/NA	INH, RIF, PZA, EMB	$ALT > 2 \times ULN$	6
Brito, 2014 87	NAT2, CYP2E1, GSTM1, GSTT1	Cohort	Brazilian	15/230	38.1/36.8	46.7/NA	INH, RIF, PZA	$ALT > 3 \times ULN$	7
Forestiero, 2013 88	NAT2, CYP2E1, GSTM1, GSTT1	Cohort	Brazilian	59/40	NA/NA	49.2/60.0	INH, RIF, PZA	ALT > 2.5 × ULN	6
Rana, 2014 ⁸⁹	NAT2, CYP2E1, GSTM1, GSTT1	Cohort	Indian	55/245	43.6/42.3	60.0/62.0	INH, RIF, PZA, EMB	ALT > 5 × ULN	6
Singla, 2014 ²⁶	NAT2, CYP2E1, GSTM1,	Case- control	Indian	17/391	48.2/32.7	64.7/61.4	INH, RIF, PZA, EMB, STM	$ALT > 2 \times ULN$	7

	GSTT1								
Sotsuka, 2011 90	NAT2, CYP2E1, GSTM1, GSTT1	Case- control	Japanese	20/92	54.9/50.4	90.0/73.9	INH, RIF, PZA, EMB or STM	ALT > 3 × ULN	7
Teixeira, 2011 ⁹¹	NAT2, CYP2E1, GSTM1, GSTT1	Case- control	Brazilian	26/141	47.6/43.0	61.5/52.5	INH containing regimen	ALT > 3 × ULN	7
Xiang, 2014 92	NAT2, CYP2E1, GSTM1, GSTT1	Cohort	Chinese	89/2155	37.0/44.5	67.4/55.7	INH, RIF, PZA, EMB	ALT > 2 × ULN	7

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; ATDILI, anti-tuberculosis drug-induced liver injury; CYP2E1, cytochrome P450 2E1; EMB, ethambutol; GSTM1, glutathione S-transferase Mu 1; GSTT1, glutathione S-transferase Theta 1; INH, isoniazid; NA, not available; NAT2, N-acetyltransferase 2; PZA, pyrazinamide; RIF, rifampicin; SLCO1B1, solute carrier organic anion transporter family, member 1B1 (encoding organic anion transporting polypeptide 1B1 [OATP1B1]); STM, streptomycin; TB, tuberculosis; ULN, upper limit of normal

^a Mean unless otherwise stated

^b Median age

 ^c Number of individuals in the age ranges

^d Detailed scoring for each quality assessment criterion based on the revised Little's recommendation in supplementary data S2 Table.

Polymorphism	Genetic model		Numbe r of studies	OR (95% CI)	P value	<i>I</i> ² , %	Pheterogeneity	Model of meta-analysis
<i>SLCO1B1</i> <i>388A>G</i>	dominant model	AA + AG vs.GG	4	1.00 [0.76, 1.31]	1.00	0	0.73	Fixed
(rs2306283)	recessive model	AA vs. AG + GG	4	1.45 [0.93, 2.25]	0.10	0	0.84	Fixed
	additive model	AA vs. GG	4	1.36 [0.85, 2.15]	0.20	0	0.98	Fixed
SLCO1B1 521T>C	dominant model	CC + TC vs. TT	4	0.74 [0.43, 1.28]	0.28	66	0.03	Random
(rs4149056)	recessive model	CC vs. TC + TT	4	1.21 [0.40, 3.64]	0.73	0	0.57	Fixed
	additive model	CC vs. TT	4	1.27 [0.42, 3.84]	0.67	0	0.61	Fixed
bbreviations: O	R , odds ratio <i>; CI</i> , c	onfidence interval						

Table 2. Association between the SLCO1B1 polymorphisms and the risk of anti-tuberculosis drug-induced liver injury

58	
59	
60	

(A) CYP2E1 RsaL/PstI c1/c1 genotype compared to c1/c2 + c2/c2 genotypes

		Odds Ratio	Odds Ratio
Study or Subgroup	Weight	M-H. Random, 95% Cl	M-H. Random, 95% Cl
CYP2E1 Rsal/Pstl c	/c genotyp	0	a second a second s
An 2012	5.9%	1.67 [0.93, 2.98]	
Brito 2014	2.3%	1.17 [0.25, 5.40]	
Chamorro 2013	5.3%	0.96 [0.48, 1.92]	
Cho 2007	3.9%	0.94 [0.35, 2.56]	
eng 2014	6.4%	4.22 [2.59, 6.89]	
Forestier 2013	3.5%	2.94 [0.97, 8.91]	
Supla 2013	1.4%	2.83 [0.35, 22.87]	
luang 2003	5.3%	2.52 [1.26, 5.05]	
(im 2009	5.3%	2.66 [1.34, 5.26]	
.ee 2010	5.2%	1.00 [0.49, 2.04]	
Mishra 2013	2.0%	0.46 [0.09, 2.49]	
Rana 2014	5.9%	0.66 [0.36, 1.18]	
Santos 2013	3.0%	2.28 [0.64, 8.11]	
Sharma 2014	6.0%	1.12 [0.64, 1.96]	
Singh 2014	4.6%	4.02 [1.76, 9.21]	
Singla 2014	2.2%	0.32 [0.07, 1.52]	
Sotsuka 2011	4.0%	0.65 [0.24, 1.74]	
Tang 2013	6.4%	0.99 [0.61, 1.60]	
Teixeira 2011	2.8%	0.78 [0.21, 2.95]	
/uilleumier 2006	1.2%	0.60 [0.06, 5.93]	
Vang 2010	5.7%	2.10 [1.14, 3.86]	
Kiang 2014	5.6%	1.28 [0.68, 2.42]	
Yamada 2009	3.9%	1.06 [0.39, 2.88]	
Zaverucha-do-valle 2014	2.3%	0.86 [0.19, 4.04]	
Subtotal (95% CI)	100.0%	1.39 [1.06, 1.83]	•
Fotal events			
leterogeneity: Tau ² = 0.24	; Chi ² = 57	.52, df = 23 (P < 0.0001); P = 609	6
Test for overall effect: Z =	2.35 (P = 0	.02)	G
			0.01 0.1 1 10

(B) CYP2E1 DraI D/D genotype compared to D/C + C/C genotypes.

Risk of anti-tuberculosis drug-induced liver injury in patients with the CYP2E1 (A) RsaI/PstI c1/c1 genotype compared to c1/c2 + c2/c2 genotypes and (B) DraI D/D genotype compared to D/C + C/C genotypes.

.

2	
3	
4	
5	
6	
7	
8	
g	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
27	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
/1	
יד ⊿2	
42	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	

60

		Odds Ratio	Odds Ratio
Study or Subgroup NAT2	Weight	M-H. Random. 95% Cl	M-H. Random, 95% Cl
An 2012	3.6%	4.74 [2.35, 9.58]	
Ben Mohmoud 2012	1.7%	5.00 [1.25, 20.08]	
Bose 2011	3.5%	3.00 [1.44, 6.25]	
Bozok 2008	2.6%	8.82 [3.26, 23.89]	
Brito 2014	2.4%	4.66 [1.59, 13.67]	
Chamorro 2013	3.7%	2.46 [1.24, 4.87]	
Cho 2007	2.3%	5.41 [1.76, 16.59]	
Forestier 2013	3.1%	1.88 [0.81, 4.33]	
Gupta 2013	3.9%	2.06 [1.09, 3.91]	
Higuchi 2007	1.7%	9.75 [2.40, 39.68]	
Ho 2013	2.7%	6.70 [2.54, 17.68]	
Huang 2002	3.4%	2.87 [1.32, 6.23]	
Huang 2003	3.9%	2.30 [1.21, 4.39]	
Khalili 2011	1.6%	11.16 [2.63, 47.33]	
Lee 2010	3.4%	3.28 [1.53, 7.06]	
Leiro-Fernandez 2012	3.3%	1.34 [0.61, 2.98]	
Lv 2012	4.1%	0.97 [0.54, 1.72]	
Mishra 2013	3.3%	3.15 [1.41, 7.02]	
Ng 2014	2.3%	4.25 [1.36, 13.22]	
Ohno 2000	0.5%	127.00 [6.57, 2453.41]	· · · · · · · · · · · · · · · · · · ·
Possuelo 2008	2.3%	5.40 [1.74, 16.74]	
Rana 2013	3.7%	3.49 [1.75, 6.97]	
Rana 2014	3.9%	3.59 [1.87, 6.86]	
Santos 2013	2.7%	3.71 [1.38, 9.93]	
Shimizu 2006	0.8%	20.67 [1.95, 218.71]	· · · · · · · · · · · · · · · · · · ·
Singla 2014	1.6%	6.27 [1.41, 27.78]	
Sotsuka 2011	2.2%	3.16 [0.98, 10.24]	
Teixeira 2011	2.9%	2.71 [1.10, 6.63]	
Vuilleumier 2006	1.4%	4.13 [0.82, 20.68]	
Wattanapokayakit 2017	3.2%	11.82 [5.22, 26.77]	
Xiang 2014	4.6%	1.52 [0.96, 2.40]	
Yamada 2009	2.9%	2.02 [0.82, 4.96]	
Yimer 2011	3.3%	1.54 [0.70, 3.37]	+
Yuliwulandari 2016	3.8%	3.45 [1.80, 6.60]	
Zaverucha-do-valle 2014	3.5%	2.95 [1.40, 6.21]	· · ·
Total quanta	100.076	area [e.ea, 4.11]	
Hotorogonolty: Tous = 0.21	- Chil = 72	0E df = 24 /D < 0.00011: B = 549	w l
Test for everall effect: 7 = 1	, Onr = /3	30, 01 - 34 (P < 0.0001); P = 547	/10
rest for overall enect: Z =	10.00 (P <	0.00001)	

Risk of anti-tuberculosis drug-induced liver injury in patients with the NAT2 slow acetylator genotype compared to those with the intermediate/fast acetylator genotypes.

8	
9	

-			
1	0		

 (A) GSTM1 null genotype compared to the non-null genotype

(B) GSTT1 null genotype compared to the non-null genotype

(C) GSTM1/GSTT1 dual-null genotype compared to the one- and non-null genotypes

Risk of anti-tuberculosis drug-induced liver injury in patients with (A) the GSTM1 null genotype compared to the non-null genotype, (B) the GSTT1 null genotype compared to the non-null genotype, and (C) the GSTM1/GSTT1 dual-null genotype compared to the one- and non-null genotypes.

Supplementary data

S1 Table. Completed MOOSE (Meta-analysis Of Observational Studies in Epidemiology) checklist

Item No	Recommendation	Reported on Page No					
Reporting	Reporting of background should include						
1	Problem definition	5-6					
2	Hypothesis statement (Objectives)	6					
3	Description of study outcome(s)	6					
4	Type of exposure or intervention used	NA					
5	Type of study designs used	7					
6	Study population	7					
Reporting	of search strategy should include						
7	Qualifications of searchers (eg, librarians and investigators)	NA					
8	Search strategy, including time period included in the synthesis and key words	7 S2 Table					
9	Effort to include all available studies, including contact with authors	7					
10	Databases and registries searched	7					
11	Search software used, name and version, including special features used (eg, explosion)						
12	Use of hand searching (eg, reference lists of obtained articles)	7					
13	List of citations located and those excluded, including justification	Fig 1					
14	Method of addressing articles published in languages other than English	7					
15	Method of handling abstracts and unpublished studies	7, Fig 1					
16	Description of any contact with authors	-					
Reporting	of methods should include						
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	NA					
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	7					
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	6					
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	NA					
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	Table 1, S3 Table					
22	Assessment of heterogeneity	9					
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	8-9					
24	Provision of appropriate tables and graphics	Table 1-2, Fig 1-4					

2	
3	
4	
5	
6	
7	
, Q	
Ö	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
24	
24	
35	
36	
37	
38	
39	
40	
41	
10	
+∠ ⊿⊃	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

60

Reporting	of results should include	
25	Graphic summarizing individual study estimates and overall estimate	Fig 2-4
26	Table giving descriptive information for each study included	Table 1
27	Results of sensitivity testing (eg, subgroup analysis)	13-14, S9-11 Table
28	Indication of statistical uncertainty of findings	-

BMJ Open

S2 Table. Search strategies

Electronic database	Search strategies
PubMed	 (((((((((((("glutathione S transferase") OR GST)) OR ("glutathione S transferase T1" [Supplementary Concept] OR "glutathione S-transferase M1" [Supplementary Concept])) AND Humans[Mesh] AND English[lang])) OR ((("SLCO1B1 protein, human" [Supplementary Concept]) OR "solute carrier organic anion transporter") AND Humans[Mesh] AND English[lang])) OF ("isoniazid acetyltransferase" [Supplementary Concept]OR "ArylamineN Acetyltransferase"[Mesh] OR "NAT2 protein, human" [Supplementary Concept])) OR "Cytochrome P-450 CYP2E1"[Mesh]) OR drug metaboli#er* OR "Genetic Predisposition to Disease"[Mesh]) AND (("Drug-Induced Liver Injury"[Mesh] OR "Drug-Induced Liver Injury, Chronic"[Mesh]))) AND ((("AntitubercularAgents"[Mesh]) OR tuberculosis OR antituberculo*)) Filters: Humans; English
EMBASE	'solute carrier organic anion transporter 1b1/expOR 'solute carrier organic anion transporter 1b1' OR 'multidrug resistance protein 1/expOR 'multidrug resistance protein 1' OR 'organic anion transporter'/expOR 'organic anion transporter' AND [humans]/limAND [english]/limOR slco1b1 OR 'drug transporter gene*' OR abcb1 AND ('hepatitis'/expOR hepatitis OR 'liver toxicity'/expOR ('drug induced' AND ('liver'/expOR liver) AND ('toxicity'/expOR toxicity)) OR 'toxic hepatitis'/expOR 'hepatotoxicity'/expOR hepatotoxicity) AND ('tuberculostaticagent'/expOR 'tuberculostaticagent' OR antituberculosisOR 'isoni*' OR 'rifampi*') AND [humans]/limAND [english]/lim
Web of Science	 ((((("Glutathione S transferase") OR GST) OR GSTT1) OR GSTM1) OF (((NAT2) OR "arylaminN acetyltransferase") OR N acetyltransferase*) OF ((drug metaboli?er*) OR (drug metabli?ingenzyme*)) OR (("Cytochrome 2E1") OR "CYP 2E1") OR (("The solute carrier organic anion transporter family member 1B1") OR SLCO1B1) OR (genotyp* OR acetylator*) OF (gene* susceptibilit*) OR (*polymorphism*)) AND ((drug NEAR/3 liver OR (hepatotoxi*) OR (drug induced liver injury) OR (hepatitis)) AND ((rifampi*) OR (isoni*) OR (antituberculosis) OR ("antitubercul* agent*"))
Cochrane Reviews	[AntitubercularAgents] explode all trees AND [Drug-Induced Liver Injury explode all trees AND ([Cytochrome P-450 CYP2E1] explode all trees OF nat2 OR "N acetyltrasferase" "glutathione S transferase" OR GST OF GSTM1 OR GSTT1 "Solute carrier organic anion transporter" OF SLCO1B1)(Limitation : Trials)
	2

S3 Table. Study quality assessment

Studies	Scientific design	Definite inclusion of study population ^a	Explicit information on study population ^a	Explicit diagnostic criteria on ATDILI ^a	Genetic detection method ^a	Correct statistical analysis ^a	Logical discussion of study bias ^a
Feng, 2014 ¹	1	1	1	1	1	1	0
Kim, 2009 ²	1	1	1	1	1	1	1
Singh, 2014 ³	1	1	1	1	1	1	1
Tang, 2013 ⁴	1	1	1	1	1	1	1
Ben Mahmoud, 2012 ⁵	1	1	1	1	1	1	1
Bozok Cetintas, 2008 ⁶	1	1	1	1	1	0	1
Higuchi, 2007 ⁷	1	1	1	1	1	1	1
Ho, 2013 8	1	1	1	1	1	1	0
Huang, 2002 ⁹	1	1	1	1	1	1	1
Khalili, 2011 ¹⁰	1	1	1	1	1	1	0
Leiro-Fernandez, 2011 ¹¹	1		1	1	1	1	1
Lv, 2012 ¹²	1	1	1	1	1	1	1
Ng, 2014 ¹³	1	1	1	1	1	1	1
Ohno, 2000 ¹⁴	1	1	1	1	1	1	1
Possuelo, 2008 ¹⁵	1	1	1	1	1	1	1
Rana, 2012 ¹⁶	1	1	1	1	1	1	1
Shimizu, 2006 17	1	1	1	1	1	1	0
Yuliwulandari, 2016 ¹⁸	1	1	1	1	1	1	1
Wattanapokayakit, 2016 ¹⁹	1	1	1	1	1	1	1
Chatterjee, 2010	1	1	1	1	1	1	1
Gupta, 2013 ²¹	1	1	1	1	1	1	1
Huang, 2007 22	1	1	1	1	1	1	0
Kim, 2010 ²³	1	1	1	1	1	1	1
Leiro, 2008 ²⁴	1	1	1	1	1	1	1
Liu, 2014 ²⁵	1	1	1	1	1	1	1
Monteiro, 2012 ²⁶	1	1	1	1	1	1	1
Rana, 2013 27	1	1	1	1	1	1	0
Roy, 2001 ²⁸	1	1	1	1	1	1	1
Chen, 2015 ²⁹	1	1	1	1	1	1	1
Kim, 2012 ³⁰	1	1	1	1	1	1	1
Li, 2012 ³¹	1	1	1	1	1	1	1
An, 2012 ³²	1	1	1	1	1	1	1
Bose, 2011 ³³	1	1	1	1	1	1	1

Chamorro, 2013	1	1	1	1	1	1	1
Cho 2007 ³⁵	1	1	1	1	1	1	1
Gupta, 2013 ³⁶	1	1	1	1	1	1	1
Huang, 2003 ³⁷	1	1	1	1	1	1	1
Lee, 2010 ³⁸	1	1	1	1	1	1	1
Mishra, 2013 39	1	1	1	1	1	1	1
Santos, 2013 40	1	1	1	1	1	1	1
Vuilleumier, 2006	1	1	1	1	1	1	1
Yamada, 2009 42	1	1	1	1	1	1	1
Zaverucha-do- Valle, 2014 ⁴³	1	1	1	1	1	1	0
Sharma, 2014 44	1	1	1	1	1	1	1
Wang, 2010 45	1	1	1	1	1	1	1
Tang, 2012 46	1	1	1	1	1	1	1
Yimer, 2011 47	1	1	1	1	1	1	0
Brito, 2014 48	1	1	1	1	1	1	1
Forestiero, 2013	1	1	1	1	1	1	0
Rana, 2014 50	1	1	1	1	1	1	0
Singla, 2014 51	1	1	1	1	1	1	1
Sotsuka, 2011 52	1	1	1	1	1	1	1
Teixeira, 2011 53	1	1	1	1	1	1	1
Xiang, 2014 54	1	1	1	1	1	1	1

Abbreviation: ATDILI, anti-tuberculosis drug-induced liver injury

^a 0 indicates 'not mentioned' in the study; 1 indicates 'sufficient information provided' in the study

Page 49 of 69

BMJ Open

		<i>RsaI/Pst</i> I ge	notype $(n = 24)$			DraI geno	type $(n = 6)$		
Study	Case (number	r of individuals [6])	Control (numb [%	er of individuals %])	Case (n individ	umber of uals [%])	Control (1 individu	Control (number of individuals [%])	
	C1/C1	C1/C2 + C2/C2	C1/C1	C1/C2 + C2/C2	D/D	D/C + C/C	D/D	D/C + C/C	inctiou
An ³²	72 (71.3)	29 (28.7)	64 (59.8)	43 (40.2)	NA	NA	NA	NA	Sequencing
Bose ³³	NA	NA	NA	NA	4 (9.8)	37 (90.2)	32 (18.1)	145 (81.9)	PCR-RFLP
Brito ⁴⁸	13 (86.7)	2 (13.3)	195 (84.8)	35 (15.2)	12 (80.0)	3 (20.0)	179 (76.8)	54 (23.2)	PCR-RFLP
Chamorro ³⁴	30 (63.8)	17 (36.2)	83 (64.8)	45 (35.2)	NA	NA	NA	NA	PCR-RFLP
Cho ³⁵	10 (55.6)	8 (44.4)	65 (57.0)	49 (43.0)	NA	NA	NA	NA	Sequencing
Feng ¹	142 (82.1)	31 (17.9)	90 (52.0)	83 (48.0)	NA	NA	NA	NA	Sequencing
Forestiero 49	53 (89.8)	6 (10.2)	30 (75.0)	10 (25.0)	NA	NA	NA	NA	PCR-RFLP
Gupta ³⁶	49 (98.0)	1 (2.0)	156 (94.5)	9 (5.5)	33 (66.0)	17 (34.0)	107 (64.9)	58 (35.1)	PCR-RFLP
Huang ³⁷	37 (75.5)	12 (24.5)	148 (55.0)	121 (45.0)	NA	NA	NA	NA	PCR-RFLP

S4 Table. Genotype distribution and the genotyping method used for the *CYP2E1* genetic polymorphisms in the included studies (n = 26)

Kim ²	54 (81.8)	12 (18.2)	97 (63.4)	56 (36.6)	NA	NA	NA	NA	SNP stream
Lee ⁵⁵	26 (57.8)	19 (42.2)	55 (57.9)	40 (42.1)	NA	NA	NA	NA	Taqman
Mishra ³⁹	31 (93.9)	2 (6.1)	168 (97.1)	5 (2.9)	NA	NA	NA	NA	PCR-RFLP
Rana 56	28 (50.9)	27 (49.1)	150 (61.2)	95 (38.8)	NA	NA	NA	NA	PCR-RFLP
Santos 57	15 (83.3)	3 (16.7)	173 (75.6)	56 (24.4)	15 (83.3)	3 (16.7)	166 (72.8)	62 (27.2)	Taqman
Sharma ⁴⁴	81 (77.1)	24 (22.9)	139 (75.1)	46 (24.9)	NA	NA	NA	NA	PCR-RFLP
Singh ³	42 (84.0)	8 (16.0)	77 (56.6)	59 (43.4)	NA	NA	NA	NA	PCR-RFLP
Singla ⁵¹	15 (88.0)	2 (12.0)	375 (96.0)	16 (4.0)	NA	NA	NA	NA	PCR-RFLP
Sotsuka 52	11 (55.0)	9 (45.0)	60 (65.2)	32 (34.8)	9 (45.0)	11 (55.0)	45 (48.9)	47 (51.1)	PCR-RFLP
Tang ⁴⁶	NA	NA	NA	NA	47 (52.8)	42 (47.2)	204 (57.3)	152 (42.7)	PCR-RFLP
Tang ⁴	56 (62.9)	33 (37.1)	225 (63.2)	131 (36.8)	NA	NA	NA	NA	Taqman
Teixeira 53	23 (88.5)	3 (11.5)	128 (90.8)	13 (9.2)	NA	NA	NA	NA	PCR-RFLP
Vuilleumier ⁴¹	7 (87.5)	1 (12.5)	58 (92.1)	5 (7.9)	NA	NA	NA	NA	PCR-RFLP

 BMJ Open

Wang ⁴⁵	82 (78.8)	22 (21.2)	71 (64.0)	40 (36.0)	NA	NA	NA	NA	PCR-RFLP
Xiang ⁵⁴	58 (82.9)	12 (17.1)	1264 (79.0)	336 (21.0)	NA	NA	NA	NA	PCR/ligase detection reaction assays
Yamada 42	17 (73.9)	6 (26.1)	107 (72.8)	40 (27.2)	NA	NA	NA	NA	PCR-RFLP
Zaverucha-do-Valle 43	48 (94.1)	3 (5.9)	74 (94.9)	4 (5.1)	NA	NA	NA	NA	PCR-RFLP

Abbreviations: *NA*, not available; *PCR*, polymerase chain reaction; *RFLP*, restriction fragment length polymorphism; *SNP*, single nucleotide polymorphism

	Case (number o	f individuals [%])	Control (number		
Study	Slow acetylator	Intermediate and fast acetylator	Slow acetylator	Intermediate and fast acetylator	Genotyping method
An ³²	40 (39.6)	61 (60.4)	13 (12.1)	94 (87.9)	Sequencing
Ben Mahmoud ⁵	11 (78.5)	3 (21.5)	22 (42.4)	30 (57.6)	PCR-RFLP
Bose ³³	29 (70.7)	12 (29.3)	79 (44.6)	98 (55.4)	PCR-RFLP
Bozok Cetintas ⁶	23 (76.7)	7 (23.3)	19 (27.1)	51 (72.9)	PCR
Brito ⁴⁸	9 (60.0)	6 (40.0)	56 (24.3)	174 (75.7)	PCR-RFLP
Chamorro ³⁴	28 (58.7)	19 (41.3)	48 (37.5)	80 (62.5)	PCR-RFLP
Cho ³⁵	7 (38.9)	11 (61.1)	12 (10.5)	102 (89.5)	Sequencing
Forestiero 49	28 (47.4)	31 (52.6)	13 (32.5)	27 (67.5)	PCR-RFLP
Gupta ³⁶	28 (56.0)	22 (44.0)	63 (38.2)	102 (61.8)	PCR-RFLP
Higuchi ⁷	6 (33.3)	12 (66.7)	4 (4.9)	78 (95.1)	PCR-RFLP
Ho ⁸	12 (63.2)	7 (36.8)	67 (20.4)	262 (79.6)	Sequenom MassARRAY

Page 53 of 69

Huang ⁹	14 (42.4)	19 (57.6)	39 (20.4)

Huang ³⁷	19 (38.8)	30 (61.2)	58 (21.6)	211 (78.4)	PCR-RFLP
Khalili ¹⁰	9 (64.3)	5 (35.7)	5 (13.9)	31 (86.1)	PCR-RFLP
Lee ³⁸	21 (46.7)	24 (53.3)	20 (21.1)	75 (78.9)	Taqman
Leiro-Fernandez ¹¹	36 (72.0)	14 (28.0)	44 (65.7)	23 (34.3)	PCR-RFLP
Lv ⁵⁸	18 (20.2)	71 (79.8)	74 (20.8)	282 (79.2)	PCR-RFLP
Mishra ³⁹	23 (70.0)	10 (30.0)	73 (42.0)	100 (58.0)	PCR-RFLP
Ng ¹³	22 (84.6)	4 (15.4)	57 (56.4)	44 (43.6)	PCR-RFLP
Ohno ¹⁴	7 (50.0)	7 (50.0)	0 (0.0)	63 (100.0)	PCR-RFLP
Possuelo ¹⁵	9 (64.3)	5 (35.7)	60 (25.0)	180 (75.0)	Sequencing
Rana ¹⁶	19 (38.0)	31 (62.0)	30 (14.9)	171 (85.1)	PCR-RFLP
Rana ⁵⁰	21 (38.2)	34 (61.8)	36 (14.7)	209 (85.3)	PCR-RFLP
Santos 40	11 (61.1)	7 (38.9)	75 (29.8)	177 (70.2)	Sequencing
Shimizu ¹⁷	4 (40.0)	6 (60.0)	1 (3.1)	31 (96.9)	PCR-RFLP
Singla ⁵¹	15 (88.2)	2 (11.8)	213 (54.5)	178 (45.5)	PCR-RFLP

BMJ Open

152 (79.6)

PCR-RFLP

Sotsuka 52	8 (15.4)	44 (84.6)	5 (5.4)	87 (94.6)	PCR-RFLP
Teixeira ⁵³	18 (75.0)	6 (25.0)	64 (51.2)	61 (48.8)	Sequencing
Vuilleumier ⁴¹	3 (37.5)	5 (62.5)	8 (12.7)	55 (87.3)	PCR-RFLP
Wattanapokayakit 19	38 (71.7)	15 (28.3)	15 (17.7)	70 (82.3)	Sequencing
Xiang ⁵⁴	28 (31.5)	61 (68.5)	501 (23.2)	1654 (76.8)	PCR/ligase detection reaction assays
Yamada ⁴²	14 (60.9)	9 (39.1)	64 (43.5)	83 (56.5)	Sequencing
Yimer ⁴⁷	31 (75.6)	10 (24.4)	107 (66.9)	53 (33.1)	Taqman
Yuliwulandari 18	32 (64.0)	18 (36.0)	65 (34.0)	126 (66.0)	Sequencing
Zaverucha-do-Valle ⁴³	37 (71.2)	15 (28.8)	36 (45.6)	43 (54.4)	Sequencing

Abbreviations: *NA*, not available; *PCR*, polymerase chain reaction; *RFLP*, restriction fragment length polymorphism

Page 55 of 69

BMJ Open

	G	GSTM1 geno	otype (n =	19)	GSTT1 genotype (n = 17)				G	GSTM1/GSTT1 genotype (n = 11)				
- Study	Case (number of individuals [%])Control (number of individuals [%])Control (number of individuals [%])		Case (1 individ	ase (number of dividuals [%])Control (number of individuals [%])			Case (indivi	Case (number of individuals [%])		l (number of duals [%])	Genotyping			
·	Null	Non- null	Null	Non-null	Null	Non-null	Null	Non-null	Dual- null	One-/non- null	Dual- null	One-/non- null	metnod	
Drita 48	6	9	99	131	2	13	28	202	1	1 14	12	218	DCD	
BLIO 10	(40.0)	(60.0)	(43.0)	(57.0)	(13.3)	(86.7)	(12.2)	(87.8)	(6.7)	(93.3)	(5.2)	(94.8)	PCK	
Chatterjee	25	26	49	51	3	48	3	97	3	48	11	89	Multiplex	
20	(49.0)	(51.0)	(49.0)	(51.0)	(5.9)	(94.1)	(3.0)	(97.0)	(5.9)	(94.1)	(11.0)	(89.0)	PCR	
Forestiero	25	34	21	19	10	49	8	32	4	55	5	35	Multiplex	
49	(42.4)	(57.6)	(52.5)	(47.5)	(17.0)	(83.0)	(20.0)	(80.0)	(6.8)	(93.2)	(12.5)	(87.5)	PCR	
$C \rightarrow 21$	21	29	61	185	11	39	30	216	5	45	4	242	Multiplex	
Gupta 21	(42.0)	(58.0)	(24.8)	(75.2)	(22.0)	(78.0)	(12.2)	(87.8)	(10.0)	(90.0)	(1.6)	(98.4)	PCR	
TT 22	42	21	29	34	24	39	25	38			274	274	Multiplex	
Huang 22	(66.7)	(33.3)	(46.0)	(54.0)	(38.1)	(61.9)	(39.7)	(60.3)	NA	NA	NA	NA	PCR	
T <i>z</i> : 23	26	31	104	86	34	23	103	87	17	40	56	133	DCD	
Kim ²³	(45.6)	(54.4)	(54.7)	(45.3)	(59.6)	(40.4)	(54.2)	(45.8)	(29.8)	(70.2)	(29.6)	(70.4)	PCR	
т : 24	12	23	25	35	17	18	16	44	7	28	6	54	DCD	
Leiro 27	(34.3)	(65.7)	(41.7)	(58.3)	(48.6)	(51.4)	(26.7)	(73.3)	(20.0)	(80.0)	(10.0)	(90.0)	PCK	
т: 25	14	6	96	47	13	7	97	46		N TA			Multiplex	
Liu 25	(70.0)	(30.0)	(67.1)	(32.9)	(65.0)	(35.0)	(67.8)	(32.2)	NA	NA	NA	NA	PCR	

S6 Table. Genotype distribution and the genotyping method used for the *GST* genetic polymorphisms in the included studies (n = 19)

|--|

Monteiro	21	38	34	84	11	48	28	90	NA	NIA	NIA	NIA	DCD
26	(35.6)	(64.4)	(28.8)	(71.2)	(18.7)	(81.3)	(23.8)	(76.2)	NA	NA	INA	NA	PCK
D ama ²⁷	10	20	37	183	6	24	68	152	9	21	96	124	DCD
Kana -	(41.6)	(58.4)	(18.5)	(81.5)	(25.0)	(75.0)	(33.8)	(66.2)	(37.5)	(62.5)	(47.7)	(52.3)	PCK
Dana 16	19	36	42	203	14	41	81	164	22	33	122	123	DCD
Kalla	(34.5)	(65.5)	(17.1)	(82.9)	(25.5)	(74.5)	(33.1)	(66.9)	(40.0)	(60.0)	(49.8)	(50.2)	TCK
Roy ²⁸	17	15	8	25	5	28	1	32	NΔ	NΔ	NΔ	NΔ	PCP
Кбу	(52.0)	(48.0)	(24.0)	(76.0)	(15.0)	(85.0)	(3.0)	(97.0)	11/1		11/1	1174	I CK
Sharma ⁴⁴	42	63	68	117	-NA	NA	NA	NA	NA	ΝA	NA	NA	PCR
Sharma	(40.0)	(60.0)	(36.7)	(63.3)		147 1	1 12 1	1471	1471	1474	1474	1171	I CK
Singla ⁵¹	10	7	165	226	8	9	102	289	5	12	32	359	Multiplex
Singlu	(59.0)	(41.0)	(42.0)	(58.0)	(47.0)	(53.0)	(26.0)	(74.0)	(29.0)	(71.0)	(8.0)	(92.0)	PCR
Sotsuka ⁵²	12	8	50	42	7	13	40	52	NA	NA	NA	NA	PCR
Sotsuku	(60.0)	(40.0)	(54.3)	(45.7)	(35.0)	(65.0)	(43.5)	(56.5)	1111	1111	1111	1111	1 CK
Tang ⁴⁶	55	34	203	153	40	49	164	192	22	67	94	262	Multiplex
Tung	(61.8)	(38.2)	(57.0)	(43.0)	(44.9)	(55.1)	(46.1)	(53.9)	(24.7)	(75.3)	(26.4)	(73.6)	PCR
Teixeira ⁵³	11	15	61	80	4	22	27	114	NA	NΔ	NA	NA	Multiplex
Terxenta	(42.3)	(57.7)	(43.3)	(56.7)	(15.4)	(84.6)	(19.2)	(80.8)			1474	1171	PCR
Wang ⁴⁵	63	41	54	57	NA	PCR							
Wung	(60.6)	(39.4)	(48.6)	(51.4)	1 17 1	1 17 1	1 17 1	1 12 1	1111	141	1111	1111	1 CR
Xiang ⁵⁴	41	48	925	1230	18	71	477	1678	7	68	283	1427	PCR
2 114115	(46.1)	(53.9)	(42.9)	(57.1)	(20.2)	(79.8)	(22.1)	(77.9)	(9.3)	(90.7)	(16.5)	(83.5)	i civ

Abbreviations: NA, not available; PCR, polymerase chain reaction

Page 57 of 69

BMJ Open

1	
2	
3	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
17	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
27	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
27 40	
40	
41	
42	
43	
44	
45	
46	

		SI	<i>LCO1B1</i> 38	8A>G (rs2306	5283)		SLCO1B1 521T>C (rs4149056)						
Study	Case (number of individuals [%])			Control (number of individuals [%])			Case (number of individuals [%])			Control (number of individuals [%])			Genotyping method
	AA	AG	GG	AA	AG	GG	TT	СТ	CC	TT	CT	CC	
Chen ²⁹	8 (9.0)	34 (38.2)	47 (52.8)	33 (7.5)	164 (37.1)	245 (55.4)	72 (80.9)	15 (16.9)	2 (2.2)	351 (79.6)	87 (19.7)	3 (0.7)	Taqman
Kim ³⁰	6 (9.2)	26 (40.0)	33 (50.8)	11 (7.1)	60 (38.5)	85 (54.5)	46 (69.7)	20 (30.3)	0 (0.0)	113 (72.4)	40 (25.6)	3 (1.9)	SNPstream
Li ³¹	11 (9.3)	38 (32.2)	69 (58.5)	12 (7.7)	48 (31.0)	95 (61.3)	83 (70.3)	34 (28.8)	1 (0.8)	136 (87.7)	18 (11.6)	1 (0.7)	PCR direct sequencing
Yimer ⁴⁷	9 (22.0)	17 (41.5)	15 (36.6)	20 (12.5)	87 (54.4)	53 (33.1)	27 (65.9)	13 (31.7)	1 (2.4)	107 (66.9)	49 (30.6)	4 (2.5)	Taqman
Abbreviation	ns: <i>PCR</i> , po	lymerase ch	ain reaction	; <i>SNP</i> , single :	nucleotide pol	ymorphism	6	4					

(A) CYP2E1 RsaI/PstI polymorphism

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

S8 Figure. Funnel plots to evaluate publication bias for the *CYP2E1, NAT2, GST,* and *SLCO1B1* polymorphisms associated with the risk of anti-tuberculosis drug-induced liver injury. (A) *CYP2E1 RsaI/PstI* polymorphism, (B) *CYP2E1 DraI* polymorphism, (C) *NAT2* polymorphism, (D) *GSTM1* polymorphism, (E) *GSTT1* polymorphism, (F) *GSTT1/M1* polymorphism, and (G) *SLCO1B1* 388A>G and 521T>C polymorphism.

 BMJ Open

S9 Table. Subgroup analysis for the association between *CYP2E1* polymorphisms and the risk of anti-tuberculosis drug-induced liver injury based on ethnicity, anti-tuberculosis drug regimen, and study design

	Subgroup		Number	Case/	Test of associa	Model of	Test of heterogeneity		
Polymorphic gene			of studies	control - (n)	OR [95% CI]	P value ^a	meta- analysis	<i>I</i> ² ,%	P value ^b
CYP2E1 RsaI/PstI	Total		24	1293/5450	1.39 [1.06, 1.83]	0.02	Random	60	< 0.0001
(c1/c1 vs. c1/c2 + c2/c2)	Ethnicity	East Asian	10	736/3076	1.62 [1.12, 2.36]	0.01	Random	69	0.0006
		Indian	6	310/1295	1.08 [0.52, 2.25]	0.85	Random	70	0.005
		South American	6	216/869	1.30 [0.83, 2.03]	0.25	Fixed	0	0.49
		Others	2	31/210	0.98 [0.39, 2.45]	0.96	Fixed	0	0.66
	Anti-TB	INH alone	2	31/210	0.98 [0.39, 2.45]	0.96	Fixed	0	0.66
	drug regimen	Combination	21	1212/5104	1.35 [1.01, 1.79]	< 0.00001	Random	61	0.0002
	Study design	Cohort	11	564/3120	1.32 [0.94, 1.87]	0.11	Random	50	0.03
		Case-control	12	729/2330	1.42 [0.93, 2.16]	0.10	Random	65	0.0006
$CYP2E1 Dral^{\circ}$	Total		6	233/1272	0.93 [0.68, 1.27]	0.64	Fixed	0	0.51
(D/D vs. D/C + C/C)	Ethnicity	East Asian	2	109/448	0.84 [0.55, 1.28]	0.41	Fixed	0	0.96
		Indian	2	91/342	0.83 [0.48, 1.45]	0.51	Fixed	27	0.24
		South American	2	33/482	1.80 [0.73, 4.45]	0.20	Fixed	0	0.37
	Study	Cohort	2	56/407	0.68 [0.31, 1.50]	0.33	Fixed	0	0.33
	uesign	Case-control	4	177/865	0.99 [0.70, 1.38]	0.94	Fixed	0	0.42

Abbreviations: CI, confidence interval; CYP2E1, cytochrome P450 2E1; INH, isoniazid; OR, odds ratio; TB, tuberculosis

^a P value from Z test

BMJ Open

^b P value from Cochran's Q test based on chi-square statistic

 ^c Subgroup analysis based on anti-TB drug regimen could not be performed due to insufficient information provided.

For peer review only

 BMJ Open

S10 Table. Subgroup analysis for the association between *NAT2* polymorphism and the risk of anti-tuberculosis drug-induced liver injury based on ethnicity, anti-tuberculosis drug regimen, and study design

	~		Number	Case/	Test of associa	Test of association			eterogeneity
Polymorphic gene	S	ubgroup	of studies	control (n)	OR [95% CI]	P value ^a	meta- – analysis	$I^2,\%$	P value ^b
NAT2	Total		35	1323/7319	3.30 [2.65, 4.11]	< 0.00001	Random	47	0.002
(Slow acetylator vs. fast and intermediate	Ethnicity	East Asian	13	590/3970	4.00 [2.42, 6.60]	< 0.00001	Random	77	< 0.00001
acetylator)		Indian	6	246/1352	3.07 [2.26, 4.16]	< 0.00001	Fixed	0	0.74
		West Asian	2	44/106	9.51 [4.19, 21.61]	< 0.00001	Fixed	0	0.79
		South American	7	231/1110	2.94 [2.11, 4.08]	< 0.00001	Fixed	0	0.75
		African	2	55/212	2.08 [1.06, 4.10]	0.03	Fixed	52	0.15
		Others	5	157/569	2.56 [1.72, 3.79]	< 0.00001	Fixed	15	0.32
	Anti-TB	INH alone	2	31/210	2.32 [1.05, 5.13]	0.04	Fixed	0	0.45
	drug regimen	Combination	32	1256/6954	3.37 [2.67, 4.25]	< 0.00001	Random	56	< 0.0001
		Cohort	18	673/4850	2.82 [2.35, 3.40]	< 0.00001	Fixed	40	0.04
	Study design	Case-control	17	650/2469	3.53 [2.42, 5.16]	<0.00001	Random	65	0.0001

Abbreviations: *CI*, confidence interval; *INH*, isoniazid; *NAT2*, N-acetyltransferase 2; *OR*, odds ratio; *TB*, tuberculosis ^a P value from Z test

^b P value from Cochran's Q test based on chi-square statistic

BMJ Open

	Subgroup		Number of studies	Case/	Test of associa	Test of association			Test of heterogeneity	
Polymorphic gene				control (n)	OR [95% CI]	P value ^a	meta- analysis	<i>I</i> ² ,%	P value ^b	
GSTM1°	Total		19	977/5119	1.30 [1.12, 1.52]	0.0007	Fixed	33	0.08	
(null vs. non-null)	Ethnicity	East Asian	7	442/3110	1.23 [0.99, 1.54]	0.06	Fixed	23	0.25	
		Indian	7	341/1420	1.68 [1.30, 2.19]	< 0.0001	Fixed	36	0.15	
		Brazilian	4	159/529	0.98 [0.66, 1.47]	0.94	Fixed	0	0.60	
	Study design	Cohort	8	462/3439	1.41 [1.04, 1.93]	0.03	Random	44	0.08	
		Case-control	11	515/1680	1.25 [1.01, 1.55]	0.20	Fixed	29	0.17	
GSTT1°	Total		17	768/4823	1.03 [0.85, 1.25]	0.76	Fixed	16	0.26	
(null vs. non-null)	Ethnicity	East Asian	6	338/2999	0.96 [0.74, 1.24]	0.75	Fixed	0	0.94	
		Indian	6	236/1235	1.37 [0.72, 2.59]	0.33	Random	57	0.04	
		Brazilian	4	159/529	0.80 [0.47, 1.33]	0.39	Fixed	0	0.97	
	Study	Cohort	8	408/3354	0.89 [0.67, 1.19]	0.44	Fixed	3	0.41	
	design	Case-control	9	360/1469	1.16 [0.90, 1.50]	0.26	Fixed	24	0.23	
GSTM1/GSTT1°	Total		11	547/4233	1.05 [0.67, 1.62]	0.84	Random	59	0.006	
lual-null vs. one-/non-	Ethnicity	East Asian	3	235/2701	0.83 [0.58, 1.20]	0.33	Fixed	0	0.49	
nun)		Indian	5	203/1202	1.33 [0.50, 3.53]	0.56	Random	80	0.0005	
		Brazilian	2	74/270	0.67 [0.20, 2.18]	0.50	Fixed	0	0.47	
	Study	Cohort	6	298/3136	0.85 [0.45, 1.61]	0.62	Random	58	0.04	
	design	Case-control	5	249/1097	1.31 [0.71, 2.43]	0.39	Random	59	0.04	

S11 Table. Subgroup analysis for the association between GST polymorphisms and the risk of anti-tuberculosis drug-induced liver injury

Abbreviations: CI, confidence interval; GSTM1, glutathione S-transferase Mu 1; GSTT1, glutathione S-transferase Theta 1; OR, odds ratio

^a P value from Z test

 BMJ Open

^b P value from Cochran's Q test based on chi-square statistic

^c Subgroup analysis based on anti-tuberculosis drug regimen could not be performed due to insufficient information provided

For peer review only

References

1.Feng FM, Guo M, Chen Y, et al. Geneticpolymsusceptibility to anti-tuberculosis drug-
Research 2014;13:9463-71.induce

polymorphisms in metabolic enzymes and induced hepatic injury. *Genetics and Molecular*

- 2. Kim SH, Kim SH, Bahn JW, *et al.* Genetic polymorphisms of drug-metabolizing enzymes and anti-TB drug-induced hepatitis. *Pharmacogenomics* 2009;10:1767-79.
- 3. Singh M, Gupta VH, Amarapurkar DN, *et al.* Association of genetic variants with anti-tuberculosis drug induced hepatotoxicity: A high resolution melting analysis. *Infection Genetics and Evolution* 2014;23:42-8.
- 4. Tang S, Lv X, Zhang Y, *et al.* Cytochrome P450 2E1 Gene Polymorphisms/Haplotypes and Anti-Tuberculosis Drug-Induced Hepatitis in a Chinese Cohort. *PLoS ONE* 2013;8:e57526.
- 5. Ben Mahmoud L, Ghozzi H, Kamoun A, *et al.* Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis. *Pathologie Biologie* 2012;60:324-30.
- 6. Bozok Cetintas V, Erer OF, Kosova B, *et al.* Determining the relation between N-acetyltransferase-2 acetylator phenotype and antituberculosis drug induced hepatitis by molecular biologic tests. *Tuberk Toraks* 2008;56:81-6.
- 7. Higuchi N, Tahara N, Yanagihara K, *et al.* NAT2 6A, a haplotype of the N-acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-induced hepatotoxicity in Japanese patients with tuberculosis. *World J Gastroenterol* 2007;13:6003-8.
- 8. Ho HT, Wang TH, Hsiong CH, *et al.* The NAT2 tag SNP rs1495741 correlates with the susceptibility of antituberculosis drug-induced hepatotoxicity. *Pharmacogenet Genomics* 2013;23:200-7.
- Huang YS, Chern HD, Su WJ, *et al.* Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. *Hepatology* 2002;35:883-9.
- Khalili H, Fouladdel S, Sistanizad M, et al. Association of N-acetyltransferase-2 genotypes and antituberculosis induced liver injury: First case-controlled study from Iran. *Current Drug Safety* 2011;6:17-22.
- Leiro-Fernandez V, Valverde D, Vazquez-Gallardo R, *et al.* N-acetyltransferase 2 polymorphisms and risk of anti-tuberculosis drug-induced hepatotoxicity in Caucasians. *International Journal of Tuberculosis and Lung Disease* 2011;15:1403-8.
- 12. Lv X, Tang S, Xia Y, *et al.* NAT2 genetic polymorphisms and anti-tuberculosis drug-induced hepatotoxicity in Chinese community population. *Ann Hepatol* 2012;11:700-7.
- Ng CS, Hasnat A, Al Maruf A, *et al.* N-acetyltransferase 2 (NAT2) genotype as a risk factor for development of drug-induced liver injury relating to antituberculosis drug treatment in a mixedethnicity patient group. *European Journal of Clinical Pharmacology* 2014;70:1079-86.
- Ohno M, Yamaguchi I, Yamamoto I, *et al.* Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. *International Journal of Tuberculosis and Lung Disease* 2000;4:256-61.

BMJ Open

1		
2 3	15.	Possuelo LG. Castelan JA. de Brito TC. et al. Association of slow N-acetyltransferase 2 profile and
4		anti-TB drug-induced hepatotoxicity in patients from Southern Brazil <i>European Journal of Clinical</i>
5		Pharmacology 2008:64:673-81
7	16	Rana SV Ola RP Sharma SK $at al$ Comparison between acetulator phenotype and genotype
8	10.	Rata SV, Ota KI, Sharma SK, <i>et al.</i> Comparison between acceptator phenotype and genotype
9 10		polymorphism of n-acetyltransferase-2 in tuberculosis patients. <i>Hepatology International</i> 2012;6:397-
11	. –	
12	17.	Shimizu Y, Dobashi K, Mita Y, et al. DNA microarray genotyping of N-acetyltransferase 2
13 14		polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity.
15		<i>Tuberculosis</i> 2006;86:374-81.
16 17	18.	Yuliwulandari R, Susilowati RW, Wicaksono BD, et al. NAT2 variants are associated with drug-
17 18		induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. J Hum
19		Genet 2016; doi:10.1038/jhg.2016.10.
20	19.	Wattanapokayakit S, Mushiroda T, Yanai H, et al. NAT2 slow acetylator associated with anti-
21 22		tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung Dis 2016:20:1364-9.
23	20	Chatteriee S Lyle N Mandal A <i>et al</i> GSTT1 and GSTM1 gene deletions are not associated with
24	20.	henatotovicity caused by antitubercular drugs. <i>Journal of Clinical Pharmacy and Therangutics</i>
25 26		2010-25-465 70
27	01	
28	21.	Gupta VH, Singh M, Amarapurkar DN, et al. Association of GST null genotypes with anti-
29 30		tuberculosis drug induced hepatotoxicity in Western Indian population. Annals of Hepatology
31		2013;12:959-65.
32	22.	Huang YS, Su WJ, Huang YH, et al. Genetic polymorphisms of manganese superoxide dismutase,
33 34		NAD(P)H : quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to
35		drug-induced liver injury. Journal of Hepatology 2007;47:128-34.
36	23.	Kim SH, Kim SH, Yoon HJ, et al. GSTT1 and GSTM1 null mutations and adverse reactions induced
37		by antituberculosis drugs in Koreans. Tuberculosis 2010;90:39-43.
39	24.	Leiro V. Fernandez-Villar A. Valverde D. <i>et al.</i> Influence of glutathione S-transferase M1 and T1
40		homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian
41 42		nonulation Liver International 2008:22:835-9
43	25	Live Lies AV We VD at al Impact of Clutothions & Transformed M1 and T1 on Anti Tuberculosis
44	23.	Due Indexed Heartstraisite in Chinese Bedictais Betiente Bl. O. 2014.0
45 46	•	Drug-induced Hepatotoxicity in Chinese Pediatric Patients. <i>Plos One</i> 2014;9.
47	26.	Monteiro TP, El-Jaick KB, Jeovanio-Silva AL, et al. The roles of GSTM1 and GSTT1 null genotypes
48		and other predictors in anti-tuberculosis drug-induced liver injury. Journal of Clinical Pharmacy and
49 50		<i>Therapeutics</i> 2012;37:712-8.
51	27.	Rana SV, Kamboj JK, Sharma SK, et al. Antioxidant status and GST gene polymorphisms in
52		antitubercular treatment-induced hepatotoxicity patients. Hepatol Int 2013;7:876-82.
53 54	28.	Roy B, Chowdhury A, Kundu S, et al. Increased risk of antituberculosis drug-induced hepatotoxicity
55		in individuals with glutathione S-transferase M1 'null' mutation. Journal of Gastroenterology and
56		Hepatology 2001;16:1033-7.
57 58	29	Chen R. Wang J. Tang S. <i>et al.</i> Association of polymorphisms in drug transporter genes (SLCO1B)
59	<u> </u>	and SI C10A1) and anti-tuberculosis drug-induced henatotoxicity in a Chinese cohort. Tuberculosis
60		and offerently and and tuberculosis drug-induced nepatotoxicity in a clinicse conort. Tuberculosis

2015;95:68-74.

- 30. Kim SH, Kim SH, Lee JH, *et al.* Polymorphisms in drug transporter genes (ABCB1, SLCO1B1 and ABCC2) and hepatitis induced by antituberculosis drugs. *Tuberculosis* 2012;92:100-4.
- 31. Li LM, Chen L, Deng GH, *et al.* SLCO1B1*15 haplotype is associated with rifampin-induced liver injury. *Molecular Medicine Reports* 2012;6:75-82.
- 32. An HR, Wu XQ, Wang ZY, et al. NAT2 and CYP2E1 polymorphisms associated with antituberculosis drug-induced hepatotoxicity in Chinese patients. *Clinical and Experimental Pharmacology and Physiology* 2012;39:535-43.
- Bose PD, Sarma MP, Medhi S, *et al.* Role of polymorphic N-acetyl transferase2 and cytochrome P4502E1 gene in antituberculosis treatment-induced hepatitis. *Journal of Gastroenterology and Hepatology* 2011;26:312-8.
- 34. Chamorro JG, Castagnino JP, Musella RM, *et al.* Sex, ethnicity, and slow acetylator profile are the major causes of hepatotoxicity induced by antituberculosis drugs. *Journal of Gastroenterology and Hepatology* 2013;28:323-8.
- 35. Cho HJ, Koh WJ, Ryu YJ, *et al.* Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. *Tuberculosis* 2007;87:551-6.
- Gupta VH, Amarapurkar DN, Singh M, et al. Association of N-acetyltransferase 2 and cytochrome P450 2E1 gene polymorphisms with antituberculosis drug-induced hepatotoxicity in Western India. Journal of Gastroenterology and Hepatology 2013;28:1368-74.
- 37. Huang YS, Chern HD, Su WJ, *et al.* Cytochrome p450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. *Hepatology* 2003;37:924-30.
- 38. Lee SW, Chung LS, Huang HH, *et al.* NAT2 and CYP2E1 polymorphisms and susceptibility to firstline anti-tuberculosis drug-induced hepatitis. *Int J Tuberc Lung Dis* 2010;14:622-6.
- Mishra S, Daschakraborty S, Shukla P, *et al.* N-acetyltransferase and cytochrome P450 2E1 gene polymorphisms and susceptibility to antituberculosis drug hepatotoxicity in an Indian population. *National Medical Journal of India* 2013;26:260-5.
- Santos NP, Callegari-Jacques SM, Ribeiro Dos Santos AK, et al. N-acetyl transferase 2 and cytochrome P450 2E1 genes and isoniazid-induced hepatotoxicity in Brazilian patients. Int J Tuberc Lung Dis 2013;17:499-504.
- 41. Vuilleumier N, Rossier MF, Chiappe A, *et al.* CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. *Eur J Clin Pharmacol* 2006;62:423-9.
- 42. Yamada S, Tang M, Richardson K, *et al.* Genetic variations of NAT2 and CYP2E1 and isoniazid hepatotoxicity in a diverse population. *Pharmacogenomics* 2009;10:1433-45.
- 43. Zaverucha-do-Valle C, Monteiro SP, El-Jaick KB, *et al.* The role of cigarette smoking and liver enzymes polymorphisms in anti-tuberculosis drug-induced hepatotoxicity in Brazilian patients. *Tuberculosis (Edinb)* 2014;94:299-305.
- 44. Sharma SK, Jha BK, Sharma A, *et al.* Genetic polymorphisms of CYP2E1 and GSTM1 loci and susceptibility to anti-tuberculosis drug-induced hepatotoxicity. *International Journal of Tuberculosis and Lung Disease* 2014;18:588-93.

Page 69 of 69

BMJ Open

1		
2	15	Wang T. V., HT. Wang W., at al. Constin Polymorphisms of Cytochrome P450 and Chytothions S
4	43.	wang 1, 10 H1, wang w, <i>et al.</i> Genetic Polymorphisms of Cytochronie P450 and Oratatione S-
5		transferase Associated with Antituberculosis Drug-induced Hepatotoxicity in Chinese Tuberculosis
6 7		Patients. Journal of International Medical Research 2010;38:977-86.
7 8	46.	Tang SW, Lv XZ, Zhang Y, et al. CYP2E1, GSTM1 and GSTT1 genetic polymorphisms and
9		susceptibility to antituberculosis drug-induced hepatotoxicity: a nested case-control study. Journal of
10		Clinical Pharmacy and Therapeutics 2012;37:588-93.
11 12	47.	Yimer G. Ueda N. Habtewold A. <i>et al.</i> Pharmacogenetic & pharmacokinetic biomarker for efavirenz
13		based ARV and rifempicin based anti TR drug induced liver injury in TR HIV infected nations. PLas
14		Our 2011: (co27810
15	10	
16	48.	Brito TC, Possuelo LG, Valim ARM, et al. Polymorphisms in CYP2E1, GSTM1 and GSTT1 and anti-
18		tuberculosis drug-induced hepatotoxicity. Anais Da Academia Brasileira De Ciencias 2014;86:855-
19		65.
20	49.	Forestiero FJ, Cecon L, Hirata MH, et al. Relationship of NAT2, CYP2E1 and GSTM1/GSTT1
21		polymorphisms with mild elevation of liver enzymes in Brazilian individuals under anti-tuberculosis
23		drug therapy. <i>Clinica Chimica Acta</i> 2013:415:215-9.
24	50	Rana SV Sharma SK Ola RP <i>et al</i> N-acetyltransferase 2 cytochrome P4502E1 and glutathione S-
25 26	50.	transformed construction of the state of the
27		transferase genotypes in antitudercular treatment-induced nepatotoxicity in North Indians. J Clin
28		<i>Pharm Ther</i> 2014;39:91-6.
29	51.	Singla N, Gupta D, Birbian N, et al. Association of NAT2, GST and CYP2E1 polymorphisms and
30 31		anti-tuberculosis drug-induced hepatotoxicity. <i>Tuberculosis</i> 2014;94:293-8.
32	52.	Sotsuka T, Sasaki Y, Hirai S, et al. Association of Isoniazid-metabolizing Enzyme Genotypes and
33		Isoniazid-induced Hepatotoxicity in Tuberculosis Patients. In Vivo 2011;25:803-12.
34 35	53.	Teixeira RL. Morato RG. Cabello PH. et al. Genetic polymorphisms of NAT2. CYP2E1 and GST
36		enzymes and the occurrence of antituberculosis drug-induced henatitis in Brazilian TB natients. Mem
37		Inst Oswaldo Cruz 2011:106:716.24
38	5 4	
39 40	54.	Xiang Y, Ma L, Wu WD, et al. The Incidence of Liver Injury in Uyghur Patients Treated for TB in
41		Xinjiang Uyghur Autonomous Region, China, and Its Association with Hepatic Enzyme
42		Polymorphisms NAT2, CYP2E1, GSTM1 and GSTT1. <i>Plos One</i> 2014;9.
43 44		
45		
46		
47		
48 49		
50		
51		
52 53		
54		
55		
56 57		
57 58		
59		
60		