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SI Materials and Method11

Subjects and Image Acquisition. This study was approved by the Institutional Review Board at the University of North12

Carolina (UNC) at Chapel Hill, School of Medicine. Pregnant mothers were recruited during the second trimester of pregnancy13

from the UNC hospitals and informed consents were obtained from all the parents. Exclusion criteria include abnormalities on14

fetal ultrasound and major medical or psychotic illness of the mother. All infants in the study cohort were free of congenital15

anomalies, metabolic diseases, and focal lesions. All infants were scanned without sedation, and fitted with ear protection, with16

their heads secured in a vacuum-fixation device. All images in this study were visually checked and rated for motion artifacts17

using a 4-point visual scale [none (1), mild (2), moderate (3), severe (4)] based on (1, 2). No scan with moderate or severe18

motion artifact was included in this study. According to the blinded subjective motion artifact rating, the resulted average19

motion artifact rating for each age group is 1.39 for 1 month, 1.35 for 3 months, 1.38 for 6 months, 1.37 for 9 months, 1.36 for20

12 months, 1.39 for 18 months, and 1.35 for 24 months. No strong age-correlation motion has been observed, likely due to the21

exclusion of scans with moderate or severe motion prior to image analysis. More information about subjects and experiments22

can be found in (3).23

As shown in Fig. S1 and Table S1, totally 210 longitudinal brain MRI scans at around 1, 3, 6, 9, 12, 18, and 24 months of24

age were acquired from 43 term-born infants (with gestational ages 261~294 days), including 21 males and 22 females. Similar25

numbers of subjects were acquired at each time point, except that the last time point (24 months) has relatively fewer scans.26

Of them, 36 subjects have no less than 4 longitudinal scans. Infants were scanned using a Siemens head-only 3T MRI scanner27

(Allegra, Siemens Medical System, Erlangen, Germany) with a circular polarized head coil. T1-weighted MR images (14428

sagittal slices) were obtained by using the three-dimensional magnetization-prepared rapid gradient echo (MPRAGE) sequence:29

TR (repetition time)/TE (echo time)/TI (inversion time) = 1900/4.38/1100 ms, FA (flip angle) = 7o, and resolution = 1× 1× 130

mm3. T2-weighted MR images (64 transverse slices) were acquired with turbo spin-echo sequences: TR/TE = 7380/119 ms,31

FA = 150o, and resolution = 1.25× 1.25× 1.95 mm3. All images were reviewed by neuroradiologists to ensure sufficient quality.32

Image Processing and Cortical Surface Mapping. All T1w and T2w MR images were processed using an infant-specific pipeline33

detailed in (3), which have been extensively validated in many infant studies (1, 4–10). The preprocessing procedure includes34

several main steps: 1) Rigid alignment of each T2w image onto its corresponding T1w image and further resampling it to be35

of 1× 1× 1 mm3 using FLIRT in FSL (11); 2) Skull stripping by a learning-based method (12), followed by manual edit to36

ensure the clean skull and dura removal; 3) Removal of both cerebellum and brain stem by registration with an atlas (13); 4)37

Correction of intensity inhomogeneity using the N3 method (14); 5) Longitudinally-consistent segmentation of brain images38

as white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) using a dedicated machine learning-based method39

(15–18); 6) Separation of each brain into left and right hemispheres and filling non-cortical structures.40

Inner and outer cortical surfaces of each hemisphere of each MRI scan were then reconstructed and represented by triangular41

meshes with correct topology and accurate geometry, by using a topology-preserving deformable surface method (19, 20). The42

inner cortical surface, which has vertex-to-vertex correspondences with the outer cortical surface, was further smoothed, inflated,43

and mapped onto a sphere (21). Cortical thickness (CT) of each vertex was measured as the minimum distance between the44

inner surface and the outer surface (19). Longitudinally-consistent inter-subject and intra-subject cortical correspondences45

were established using a two-stage group-wise spherical surface registration method (3). Accordingly, all cortical surfaces46

(as well as the attached cortical attributes) were warped into a common space and further resampled to be a standard-mesh47

tessellation with 163,842 vertices and also smoothed, thus allowing inter-subject and intra-subject vertex-to-vertex comparisons.48

Considering the computational cost, each cortical surface was further resampled to be 2,562 vertices for discovering the cortical49

developmental regionalization. Cortical surface reconstruction and registration results have been visually inspected to ensure50

sufficient quality for subsequent analysis.51

Non-negative Matrix Factorization. To reveal the spatiotemporal heterogeneity of CT development of the infant brain, instead52

of using cortical parcellations predefined according to prior knowledge based on the adult brains, we proposed to discover the53

infant-specific cortical topography of developmental regionalization of CT by grouping co-developing cortical vertices into the54

same region. To this end, we adopted the non-negative matrix factorization (NMF) method (22). The main motivation is that55

NMF can naturally produce a part-based representation of the CT maps of all subjects’ scans at all age groups by grouping the56

cortical vertices changing in a similar manner, thus facilitating the interpretation of the cortical developmental regionalization.57

Specifically, in NMF, a large non-negative data matrix X is represented by a linear combination of the columns from a58

non-negative base/component matrix W weighted by the rows from a non-negative coefficient matrix H . Mathematically, NMF59

can be formulated as minW,H≥0||X-WH ||2F . The non-negative nature of W is attractive due to its high interpretability, and60

its columns are usually regarded as components, parts, regions, or clusters, depending on different purposes of studies. In our61

application, X ∈ RM×N is a large nonnegative data matrix consisting of CT values from all longitudinal scans of all subjects,62

where M and N are the numbers of vertices and scans, respectively. By using NMF, X is decomposed into the base/component63

matrix W ∈ RM×K and the coefficient matrix H ∈ RK×N . The scalar K is the number of components/regions, which is64

typically small enough, i.e., K �M and K � N .65

It is worth noting that, since the large data matrix X in our study included the whole longitudinal course of all subjects, the66

resulting non-negative elements in each column of the base matrix W naturally point out a group of cortical vertices jointly67

developing across subjects and ages, thus indicating a distinct region during the developmental regionalization. Specifically,68

the dimensionality of the data matrix X is 210× 4674, which contains totally 210 scans from 43 subjects, and each scan is69
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represented by the respective CT values at 4674 vertices (after excluding non-cortical vertices). The main motivation of using70

NMF is that it can naturally identify vertices developing in a similar manner across both subjects and ages, thus uncovering71

highly interpretable region-based cortical representations. Meanwhile, the NMF method is purely data-driven, without any72

ad-hoc assumption on the CT changing patterns of vertices. In other words, we included all longitudinal data of all subjects in73

a large data matrix in NMF to discover groups of vertices that change in similar manners not only across different subjects, but74

also across different time points (i.e., along development), thereby leading to our desired cortical developmental regionalization.75

The solution of W is found following an iterative updating rule (23). Of note, the matrix W signifies a soft vertex-to-region76

membership, where vertices, especially those on the region boundaries, probably belong to multiple regions. Correspondingly, a77

hard regionalization can be obtained by assigning each vertex to only one region, which is determined by the maximum weight.78

Determination of Region Numbers. To find the appropriate region number K for the NMF method, we jointly considered three79

widely-adopted criteria, i.e., reconstruction error, instability, and silhouette coefficient.80

Reconstruction Error. Intuitively, an appropriate region number should result in a relatively small reconstruction error. Thus, the81

Frobenious norm of the difference between the original matrix and the data matrix reconstructed by identified components and82

coefficients was used to quantify the reconstruction error.83

Instability. Another view to evaluate the effectiveness of a region number is to consider the stability of the corresponding matrix84

factorization result (24), as the appropriate region number should be robust to the data. That means, even when only a part of85

the data is presented, the result should still be relatively consistent with that obtained by using the complete data. To this end,86

we randomly extracted half of the columns in the data matrix X to form X1, and then extracted the remaining columns in X87

to form X2. Accordingly, given a region number K, two independent base/component matrices, denoted as W K
1 and W K

2 ,88

were generated. The instability between W K
p (p=1,2) and W K (derived from the complete data matrix X) was sequentially89

evaluated as in (23) and further averaged. This process was repeated multiple times (10 times in this study) by randomly90

splitting the data samples at each time.91

Silhouette Coefficient. We also adopted the silhouette coefficient to measure the quality of the regionalization results with respect92

to each specified region number, as this metric is widely adopted for clustering quality evaluation (25, 26). For each vertex v,93

silhouette coefficient was measured based on its intra-region dissimilarity a(v) and its dissimilarity with other regions b(v),94

computed as (min(b(v)− a(v))/max[min(b(v), a(v))]). A high silhouette coefficient means that the vertex is assigned to an95

appropriate region. Herein, the dissimilarity between two vertices was computed as one minus their Pearson’s correlation96

between the vectors of their CT values of all scans. The dissimilarity between a vertex and a region was computed as the mean97

dissimilarity of each vertex with all vertices of that region. The final silhouette coefficient was computed as the average of the98

silhouette coefficients of all vertices.99

Charting Longitudinal Developmental Trajectories. We adopted three parametric models, i.e., the linear, quadratic and sigmoid100

models, and one non-parametric model, i.e., the generalized additive mixed models (GAMM) (27), to fit the development101

trajectory of CT in each discovered region. Our motivation to comprehensively test both parametric and non-parametric102

models is that, CT increases dynamically in the first year and then exhibits region-specific increase or decrease in the second103

year (4). Therefore, the three parametric models were used to model three different cases, i.e., whether (in the first two years)104

CT shows 1) a continuous increase (the linear case), 2) an increase first followed by a decrease after attaining a peak (the105

quadratic case), or 3) an increase first followed by a relative plateau (the sigmoid case). In addition, the non-parametric106

GAMM was used to handle complex situations more generally in a data-driven way.107

Let yi(t) be the CT for the i-th subject at time t, we fitted yi(t) in the following four different models: (i) the linear random108

intercept model yi(t) = t+si+t∗si+αi+ei(t); (ii) the quadratic random intercept model yi(t) = t2+t+t2∗si+t∗si+si+αi+ei(t);109

(iii) the sigmoid random intercept model: yi(t) = 1/(1 + exp(−t − t ∗ si)) + si + αi + ei(t); and (iv) the GAMM model110

yi(t) = f(t) + ∆(t) ∗ si + αi + ei(t). Herein, si denotes the sex information (1 for males and 0 for females) of the i-th subject;111

αi represents the random intercept effect for the i-th subject; f(t) and ∆(t) are two nonparametric functions (27) which were112

fitted with the cubic splines; and ei(t) denotes the random Gaussian noise for the i-th subject at time t, which are assumed to113

be independent and identically distributed for i = 1, 2, · · · , n and t > 0. The statistical significances of the fixed effect for all114

models were assessed through the analysis of variance (ANOVA), and the p-values of the F-statistics are reported in Table S2.115

To determine the best-fitted model on our data, the general cross validation (GCV) error (28, 29) was estimated following116

the way in (30), considering that it is commonly used as a metric for the comparison between nonparametric and parametric117

models (30). The resulting GCV values of all four models are reported in Table S2, based on which GAMM was selected as118

the best model for all of the regions due to the smallest GCV. After that, the first derivative of the best-fitted model was119

computed to represent the CT development rate. A peak age was estimated by setting the first derivative of the fitted curve to120

be zero. If CT in a region shows continuous increase without attaining the peak during the first 2 years, we report that no121

peak has been found in this region. The detailed peak ages are reported in Table S2. The p-values of the ANOVA F-test to122

evaluate the significances of the sex difference (summarized in Table S2) were calculated by comparing the full model to the123

reduced model (i.e., ignoring the sex-related covariates) in the GAMM.124

Statistical Analysis.125
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Peak age confidence interval. We analyzed the confidence intervals of the estimated peak ages (when exist) for all cortical regions.126

To this end, the longitudinal bootstrap sampling (31) on all subjects was repeated 500 times. Based on the resulting 500127

estimations of the peak age for each region, the 0.95 confidence intervals of all peak ages were computed and reported in Table128

S2.129

Significance testing of CT changes between ages. We tested the significance of CT decrease from 18 to 24 months, 14 to 18 months130

and 14 to 24 months for regions that reach the peak during first two years. Between 18 and 24 months, we selected all subjects131

with MRI scans at both time points and then used the paired Wilcoxon test to check if the CT changes are significant. For 14132

months, which was not included as a scan time point in the data acquisition protocols, we estimated CT values at this age for133

all subjects based on GAMM. The estimated CT values at 14 months were then compared with CT values at 18 and 24 months134

using the paired Wilcoxon test. All the resulting p-values are FDR corrected and summarized in Table S3 of the revised paper.135

Sample bias testing. It is worth noting that our data had fewer samples at 24 months compared with other time points, which136

might influence the estimation of CT developmental trajectory. We have investigated this problem in two complementary137

aspects: First, we have created another data group, by removing those subjects having any missing scan(s) at 12, 18 or 24138

months. In this way, only 80 scans from 13 subjects are available (i.e., small-sample data). Similar to the peak ages estimated139

using all data, this small-sample peak ages were also estimated 500 times through longitudinal bootstrap sampling (31).140

Unpaired Wilcoxon test was performed to evaluate the differences between the estimated peak ages using all the data and that141

of using the small-sample data, with results (FDR corrected) reported in Table S4. Second, considering that only a small142

number of subjects has all scans at both 12, 18 and 24 months, we have also tested that, for each time point, whether infants143

with follow-up scans at 24 months and infants without follow-up data at 24 months show a distinct group difference of CT.144

Specifically, we divided all subjects into two groups: 1) those subjects with scans at 24 months and 2) those subjects without145

scans at 24 months, and applied the unpaired Wilcoxon test to check if there is significant difference between these two groups.146

The corresponding p-values after FDR correction are reported in Table S5.147

SI Results.148

Significance testing of CT changes between ages. With the significance level of p < 0.05, neither the whole-brain nor any region149

shows significant decrease of CT from 18 to 24 months, as shown in Table S3. Comparing the CT values at 14 months with CT150

values at 18 and 24 months, at the whole-brain level, no significant decrease in CT is shown from 14 to 18 months. From 14 to151

24 months, the right hemisphere shows significant decrease in CT. At the region level, regions 4, 7, 12, 14, 16 and 17 do not152

show any peak age during the first two years. Remaining regions have estimated peak age between 350 to 457 days (~11.5 to153

15 months). For these regions, from 14 to 18 months, regions 3 and 9 show significant decreases in the left hemisphere, and154

regions 1, 3 and 9 show significant decreases in the right hemisphere. From 14 to 24 months, regions 1, 3, 6, 9, 10 and 15 show155

significant decreases in the left hemisphere, and regions 1, 3, 9, 10, 15 show significant decreases in the right hemisphere.156

Sample bias testing. With the significance level of p < 0.05, according to Table S4, the whole-brain peak age does not show157

significant difference between using all the data and using only the small-sample data. At the region level, most regions do not158

show significant differences between these two groups as well. According to the significance reported in Table S5, no significant159

difference in cortical thickness has been found between infants with follow-up scans at 24 month and infants without follow-up160

scans at 24 months. This indicates that our estimated peak ages are not biased by the smaller sample size at 24 months.161
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Fig. S1. Distribution of longitudinal scans. Each point represents a scan at its scanned age (in days) shown in the x-axis. Each horizontal line represents one subject, with
males in blue and females in red.
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Fig. S2. Developmental cortical regionalization with K=6. (A) Each component is shown in both the lateral view and medial view, with warmer color corresponding to higher
values. (B) Hard regionalization map obtained by assigning each vertex to only one region according to the maximum weight. These regions approximately correspond to:
1) perisylvian areas, inferior parietal lobules, and posterior cingulate cortex; 2) medial occipital and dorsal sensorimotor areas; 3) insula and orbitofrontal areas; 4) medial
prefrontal and superior parietal lobules; 5) middle, inferior, medial temporal cortices and fusiform; and 6) dorsal frontal cortex and temporal pole.
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Fig. S3. Developmental cortical regionalization with K=17. (A) Each component is shown in both the lateral view and medial view, with warmer color corresponding to higher
values. (B) Hard regionalization map obtained by assigning each vertex to only one region according to the maximum weight. These regions approximately correspond to: 1)
perisylvian areas; 2) medial occipital cortex; 3) medial orbitofrontal cortex; 4) medial prefrontal cortex; 5) medial temporal areas and fusiform; 6) temporal pole; 7) precuneus; 8)
inferior parietal lobules; 9) middle insula and anterior superior temporal lobe; 10) lateral orbitofrontal and anterior insula; 11) middle and posterior cingulate cortices; 12) dorsal
somatosensory area; 13) inferior frontal, triangularis and opercularis; 14) superior parietal lobule; 15) posterior temporal and lateral occipital cortices; 16) sensorimotor areas;
and 17) paracentral and superior frontal areas.
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Fig. S4. Developmental trajectories of the average cortical thickness of each discovered region in the right hemisphere. The y-axis stands for CT and the x-axis represents the
age in days. Red lines and blue lines represent females and males, respectively. The dashed green curve illustrates the fitted model of the population’s trajectory of each region.
The peak point of each fitted curve is signified using a yellow hexagon and an arrow (if exists).
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Fig. S5. Developmental trajectories of the average cortical thickness of each discovered region at K=2 in the (a) left and (c) right hemispheres, and K=6 in the (b) left and (d)
right hemispheres. The y-axis stands for CT and the x-axis represents the age in days. Red lines and blue lines represent females and males, respectively. The dashed green
curve illustrates the fitted model of the population’s trajectory of each region. The peak point of each fitted curve is signified using a yellow hexagon and an arrow (if exists).
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Table S1. Demographic information of each scanned age group of our longitudinal dataset.

Age group (Months) Subject number Gender (M/F) Age range (Months)

1 33 19/14 0.47~1.60
3 31 19/12 2.73~3.87
6 32 19/13 5.73~7.50
9 30 18/12 8.73~10.13
12 31 17/14 11.73~13.93
18 33 17/16 16.90~20.43
24 20 7/13 22.20~26.57
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Table S2. Comparison of the fitted generalized additive mixed models (GAMM, non-parametric), linear, quadratic and sigmoid (parametric)
models in terms of the general cross validation (GCV) error. The significance of the fixed effect (p-value) is shown. The cortical thickness
peak age (in days) with its 0.95 confidence interval estimated by the GAMM model is also shown (if exists).

GAMM Quadratic Sigmoid Linear Sex difference
Model Peak Model Model Model

GCV p-value age GCV p-value GCV p-value GCV p-value p-value
Left hemisphere 0.004158 8.01E-95 428±7.41 0.006543 3.11E-88 0.005424 5.42E-92 0.020241 1.49E-41 0.9080

Right hemisphere 0.004068 2.29E-95 426±7.7 0.006462 4.50E-88 0.005349 5.05E-92 0.020125 2.00E-41 0.7615
K=2 regions

Left-1 0.005108 1.87E-97 402±3.51 0.008687 6.27E-90 0.007071 2.81E-94 0.028658 1.36E-40 0.9087
Left-2 0.003586 6.13E-86 - 0.004925 5.43E-82 0.004302 2.18E-84 0.012845 2.92E-42 0.9012

Right-1 0.005013 3.00E-98 403±3.34 0.008580 8.17E-91 0.007059 8.62E-95 0.028897 8.40E-41 0.8132
Right-2 0.003652 8.65E-84 - 0.005012 4.17E-79 0.004317 2.22E-82 0.012622 3.11E-41 0.6956

K=6 regions
Left-1 0.005369 2.53E-93 371±1.82 0.009511 3.93E-83 0.006666 1.48E-89 0.029263 1.12E-36 0.9060
Left-2 0.003303 4.28E-75 - 0.003989 5.08E-74 0.003410 7.67E-76 0.008447 1.04E-42 0.8449
Left-3 0.007089 1.86E-86 368±1.63 0.011234 1.58E-76 0.009472 5.00E-79 0.034211 1.59E-32 0.8890
Left-4 0.005580 1.40E-90 - 0.008175 1.35E-86 0.005653 2.06E-90 0.023517 5.07E-43 0.9244
Left-5 0.004255 1.78E-96 387±2.14 0.007146 3.55E-88 0.005464 3.96E-88 0.024104 3.50E-39 0.8707
Left-6 0.006002 1.64E-84 - 0.007717 1.33E-85 0.005916 2.16E-83 0.018078 7.27E-49 0.7922

Right-1 0.006026 2.93E-90 378±1.88 0.010015 2.32E-82 0.007557 2.80E-87 0.030862 9.93E-36 0.6724
Right-2 0.003609 9.67E-71 - 0.004284 4.00E-70 0.003568 2.74E-71 0.008160 4.61E-42 0.5139
Right-3 0.008622 4.41E-76 355±1.63 0.012653 2.89E-66 0.011350 7.44E-70 0.035423 1.57E-27 0.8331
Right-4 0.005122 9.72E-94 - 0.007761 2.58E-89 0.005493 3.45E-92 0.023799 1.59E-43 0.7835
Right-5 0.003702 7.33E-101 391±2.24 0.006448 1.30E-91 0.004867 3.05E-90 0.023080 2.81E-41 0.7261
Right-6 0.005652 9.82E-87 - 0.007568 2.68E-86 0.006548 2.77E-85 0.017822 2.04E-49 0.7186

k=17 regions
Left-1 0.006083 8.30E-91 359±2.69 0.011097 1.12E-78 0.008730 9.56E-85 0.033376 1.97E-33 0.8384
Left-2 0.004223 1.36E-47 457±5.03 0.004587 3.05E-48 0.004198 3.98E-50 0.008284 3.53E-24 0.7041
Left-3 0.010805 2.17E-70 374±3.44 0.013974 3.95E-65 0.012745 6.86E-68 0.038889 3.36E-26 0.7647
Left-4 0.008850 4.64E-88 - 0.012181 2.38E-86 0.011023 6.73E-88 0.033531 1.33E-44 0.8495
Left-5 0.004122 4.19E-91 392±4.35 0.006383 1.86E-86 0.005819 3.96E-87 0.020826 5.61E-39 0.6229
Left-6 0.005911 1.89E-88 401±4.45 0.008542 9.53E-82 0.009180 2.36E-77 0.025289 4.76E-39 0.6136
Left-7 0.004738 4.45E-77 - 0.006027 5.68E-75 0.005195 2.50E-78 0.013580 6.03E-41 0.9170
Left-8 0.006144 2.93E-87 420±8.58 0.009323 1.66E-82 0.007283 8.89E-89 0.025949 1.20E-39 0.9665
Left-9 0.007439 2.81E-81 360±2.89 0.011476 2.67E-70 0.010217 9.40E-74 0.030997 2.85E-32 0.8689

Left-10 0.006737 2.69E-91 383±3.46 0.010811 7.94E-83 0.009147 4.09E-86 0.034671 1.40E-35 0.9392
Left-11 0.006095 1.63E-90 406±6.34 0.009293 6.48E-86 0.008155 1.19E-88 0.028529 1.50E-40 0.9331
Left-12 0.004576 3.08E-66 - 0.005026 6.26E-66 0.005939 1.47E-60 0.007224 5.14E-50 0.8956
Left-13 0.006496 1.30E-87 447±10.65 0.009523 1.82E-84 0.008151 2.40E-87 0.025937 1.02E-41 0.8935
Left-14 0.006730 2.70E-80 - 0.009407 1.43E-79 0.007587 1.89E-85 0.023043 1.14E-41 0.9777
Left-15 0.006324 2.75E-88 373±3.62 0.010384 4.22E-81 0.008701 1.02E-84 0.030342 4.84E-37 0.5817
Left-16 0.005751 9.39E-63 - 0.006193 2.47E-63 0.006953 1.66E-59 0.008807 6.19E-47 0.7568
Left-17 0.007285 2.23E-77 - 0.008256 7.12E-80 0.009762 2.94E-73 0.016142 4.96E-51 0.6254
Right-1 0.007744 6.82E-82 370±3.18 0.012089 1.59E-75 0.009864 5.94E-80 0.034595 1.30E-31 0.8072
Right-2 0.004318 2.97E-41 445±7.65 0.004700 9.59E-42 0.004328 2.70E-43 0.007035 3.42E-24 0.2655
Right-3 0.009475 1.56E-66 350±2.6 0.013034 2.68E-58 0.012115 6.49E-61 0.033255 4.02E-23 0.9427
Right-4 0.008189 1.61E-88 - 0.011310 8.81E-88 0.010773 1.65E-87 0.031570 5.33E-45 0.9130
Right-5 0.003348 9.05E-97 397±5.25 0.005317 1.03E-89 0.005357 2.76E-87 0.018010 6.65E-42 0.4315
Right-6 0.007172 5.66E-79 414±7.27 0.009413 2.37E-75 0.010486 9.77E-71 0.023703 7.39E-40 0.8044
Right-7 0.004427 1.84E-80 - 0.005631 1.58E-78 0.005049 4.87E-81 0.013431 2.16E-43 0.6332
Right-8 0.006783 4.15E-85 418±6.42 0.009949 8.44E-81 0.008193 4.01E-85 0.026695 1.16E-39 0.5287
Right-9 0.009080 4.45E-78 368±3.29 0.012762 1.66E-70 0.011504 1.20E-73 0.037106 1.07E-29 0.8991
Right-10 0.006890 6.14E-88 366±3.31 0.011145 1.63E-76 0.009109 9.28E-83 0.033289 4.57E-34 0.8343
Right-11 0.007257 9.10E-85 439±7.73 0.009901 1.49E-85 0.009792 2.34E-83 0.027646 5.10E-42 0.7803
Right-12 0.005066 4.85E-61 - 0.005484 2.25E-60 0.006268 2.59E-56 0.007347 1.14E-46 0.6622
Right-13 0.005840 8.79E-92 441±10.32 0.009198 1.06E-86 0.007224 2.37E-92 0.026964 3.30E-41 0.8499
Right-14 0.005978 4.05E-88 - 0.009121 3.15E-84 0.007255 1.95E-90 0.026056 5.05E-42 0.5543
Right-15 0.005279 5.48E-99 368±3.04 0.010127 6.31E-87 0.008520 1.64E-90 0.034961 3.53E-37 0.5717
Right-16 0.006181 2.82E-59 - 0.006763 1.25E-58 0.007025 1.23E-57 0.009222 8.41E-44 0.6973
Right-17 0.006814 4.14E-78 - 0.007668 1.49E-80 0.009297 2.80E-73 0.014460 9.23E-53 0.6444
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Table S3. Significance of CT decrease from 18 to 24 months and 14 to 18 and 24 months for the whole brain, as well as the 17-regions in the
left and right hemispheres (when peak age exists). Significant differences with p < 0.05 are marked in bold.

Left hemisphere Right hemisphere
18M-24M 14M-18M 14M-24M 18M-24M 14M-18M 14M-24M

Whole brain 3.58E-01 2.32E-01 5.99E-02 6.26E-01 2.79E-01 4.35E-02
Region 1 8.12E-01 1.08E-01 2.78E-03 8.62E-01 3.09E-02 4.90E-03
Region 2 7.63E-01 1.24E-01 3.37E-01 9.52E-01 9.70E-01 7.05E-02
Region 3 7.63E-01 1.42E-03 2.85E-03 7.22E-01 1.72E-02 2.85E-03
Region 4 - - - - - -
Region 5 9.52E-01 2.67E-01 7.05E-02 8.38E-01 8.43E-01 7.05E-02
Region 6 8.38E-01 3.81E-01 2.24E-02 8.38E-01 8.78E-01 7.05E-02
Region 7 - - - - - -
Region 8 7.22E-01 2.27E-01 7.05E-02 8.38E-01 3.73E-01 7.05E-02
Region 9 8.38E-01 4.78E-02 4.42E-03 8.38E-01 1.66E-03 1.02E-02
Region 10 8.38E-01 1.66E-01 1.15E-02 9.38E-01 2.27E-01 1.62E-02
Region 11 7.22E-01 5.88E-01 7.05E-02 8.38E-01 8.39E-01 7.05E-02
Region 12 - - - - - -
Region 13 7.22E-01 1.95E-01 7.05E-02 7.22E-01 2.00E-01 8.47E-02
Region 14 - - - - - -
Region 15 7.22E-01 7.41E-01 1.62E-02 9.52E-01 1.11E-01 2.85E-03
Region 16 - - - - - -
Region 17 - - - - - -
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Table S4. Comparison of the peak ages (in days) estimated using all data and those only using small-sample data. Note that the small-sample
data only include scans from subjects without any missing scan(s) at 12, 18 and 24 months. Significant differences are marked in bold with
p < 0.05.

Left hemisphere Right hemisphere
All data Small data Significance All data Small data Significance

Whole brain 428±7.41 417±9.87 5.60E-01 426±7.7 418±11.93 8.67E-01
Region 1 359±2.68 361±3.37 6.86E-01 370±3.16 370±3.27 1.21E+00
Region 2 457±4.94 440±7.9 2.53E-03 445±6.66 462±6.62 3.91E-01
Region 3 374±3.42 370.±3.16 2.00E-01 350±2.58 367±3.18 5.34E-03
Region 4 - - - - - -
Region 5 392±4.16 407±5.15 1.24E-04 397±3.86 415±5.31 1.95E-05
Region 6 401±4.21 394±2.63 2.29E-02 414±4.91 404±3.94 3.64E-01
Region 7 - - - - - -
Region 8 420±5.26 392±5.2 9.54E-09 418±4.63 423±3.12 3.20E-01
Region 9 360±2.87 360±3.13 1.13E+00 368±3.27 373±4.13 2.22E-01
Region 10 383±3.43 369±3.22 1.00E-07 366±3.26 379±3.79 1.22E-05
Region 11 406±4 412±4.11 2.00E-01 439±4.71 458±5.17 1.31E-01
Region 12 - - - - - -
Region 13 447±5.83 440±3.6 2.00E-01 441±5.16 439±3.96 1.04E+00
Region 14 - - - - - -
Region 15 373±3.46 375±4.02 7.99E-01 368±2.99 378±3.52 3.91E-01
Region 16 - - - - - -
Region 17 - - - - - -
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Table S5. Significance testing between scans with and without follow-up scans at 24 months. Specifically, we grouped scans at each time
point based on their existence of 24 months follow-up scans. The Wilcoxon test was performed to test significant differences of CT between
these two groups. No significant effect was found at the significance level of p < 0.05.

Birth 3M 6M 9M 12M 18M
Left hemisphere 6.75E-02 1.46E-01 3.38E-01 1.59E-01 2.10E-01 7.03E-01

Right hemisphere 6.75E-02 1.46E-01 3.71E-01 1.59E-01 2.11E-01 7.03E-01
Left-1 6.75E-02 1.37E-01 3.71E-01 1.60E-01 2.10E-01 7.03E-01
Left-2 3.96E-01 7.05E-01 6.91E-01 1.60E-01 3.43E-01 7.30E-01
Left-3 1.28E-01 4.28E-01 3.71E-01 1.59E-01 2.11E-01 7.03E-01
Left-4 6.75E-02 1.37E-01 3.22E-01 1.59E-01 2.10E-01 7.03E-01
Left-5 1.52E-01 1.54E-01 3.22E-01 1.59E-01 2.10E-01 7.03E-01
Left-6 6.75E-02 1.37E-01 3.22E-01 1.67E-01 2.10E-01 7.03E-01
Left-7 8.21E-02 1.37E-01 3.30E-01 3.41E-01 2.20E-01 7.03E-01
Left-8 6.75E-02 2.04E-01 5.34E-01 3.13E-01 2.54E-01 7.15E-01
Left-9 6.75E-02 1.37E-01 3.59E-01 2.24E-01 2.77E-01 7.03E-01
Left-10 6.75E-02 1.46E-01 3.22E-01 2.24E-01 2.10E-01 7.03E-01
Left-11 7.32E-02 1.37E-01 3.22E-01 1.59E-01 2.10E-01 7.03E-01
Left-12 7.32E-02 8.13E-01 9.13E-01 4.10E-01 6.64E-01 8.45E-01
Left-13 6.75E-02 1.46E-01 3.22E-01 1.60E-01 2.22E-01 7.53E-01
Left-14 1.59E-01 1.37E-01 3.22E-01 2.54E-01 3.76E-01 7.53E-01
Left-15 7.32E-02 1.37E-01 3.22E-01 1.63E-01 2.11E-01 7.03E-01
Left-16 7.32E-02 2.82E-01 3.72E-01 1.59E-01 2.10E-01 7.53E-01
Left-17 7.32E-02 1.46E-01 3.71E-01 1.67E-01 2.22E-01 7.53E-01
Right-1 6.75E-02 1.37E-01 4.13E-01 1.63E-01 2.10E-01 7.43E-01
Right-2 7.32E-02 9.84E-01 9.55E-01 4.26E-01 4.78E-01 7.50E-01
Right-3 9.71E-02 1.46E-01 5.91E-01 1.59E-01 3.62E-01 7.50E-01
Right-4 6.75E-02 1.37E-01 3.22E-01 1.59E-01 2.49E-01 7.03E-01
Right-5 7.32E-02 1.46E-01 3.22E-01 1.60E-01 2.10E-01 7.03E-01
Right-6 7.12E-02 1.37E-01 3.47E-01 1.59E-01 2.10E-01 7.03E-01
Right-7 9.71E-02 3.20E-01 6.06E-01 4.93E-01 6.03E-01 8.45E-01
Right-8 7.32E-02 3.07E-01 5.05E-01 1.92E-01 3.62E-01 8.45E-01
Right-9 6.75E-02 1.37E-01 3.72E-01 1.59E-01 2.10E-01 7.03E-01
Right-10 6.75E-02 1.37E-01 3.22E-01 1.59E-01 2.10E-01 7.03E-01
Right-11 6.75E-02 1.37E-01 3.22E-01 1.67E-01 2.10E-01 7.03E-01
Right-12 2.92E-01 4.28E-01 6.77E-01 4.10E-01 6.33E-01 8.45E-01
Right-13 6.75E-02 2.95E-01 3.22E-01 1.59E-01 2.25E-01 7.53E-01
Right-14 9.40E-02 1.46E-01 4.51E-01 3.41E-01 5.46E-01 9.27E-01
Right-15 6.75E-02 1.37E-01 3.22E-01 1.59E-01 2.10E-01 7.03E-01
Right-16 6.75E-02 1.37E-01 3.87E-01 1.60E-01 2.25E-01 7.50E-01
Right-17 1.52E-01 1.37E-01 3.87E-01 3.13E-01 2.65E-01 8.45E-01
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Table S6. Global CT measurements from birth to 24 months of age for both vertex-wise and region-wise averages of CT values, calculated for
the whole brain, the left hemisphere, and the right hemisphere, respectively.

Vertex-wise average (mm) Region-wise average (mm)
Both Left Right Both Left Right

hemispheres hemisphere hemisphere hemispheres hemisphere hemisphere
Birth 2.1025 2.0984 2.1066 2.1110 2.1070 2.1150
1M 2.1683 2.1645 2.1720 2.1755 2.1721 2.1789
2M 2.2359 2.2325 2.2393 2.2420 2.2392 2.2449
3M 2.3028 2.2997 2.3059 2.3079 2.3055 2.3103
4M 2.3682 2.3653 2.3711 2.3727 2.3707 2.3748
5M 2.4313 2.4285 2.4341 2.4355 2.4337 2.4373
6M 2.4905 2.4877 2.4933 2.4946 2.4930 2.4963
7M 2.5444 2.5415 2.5472 2.5486 2.5470 2.5501
8M 2.5913 2.5884 2.5941 2.5958 2.5943 2.5973
9M 2.6299 2.6270 2.6327 2.6345 2.6331 2.6360
10M 2.6588 2.6560 2.6616 2.6636 2.6622 2.6649
11M 2.6786 2.6759 2.6812 2.6834 2.6821 2.6846
12M 2.6907 2.6882 2.6932 2.6954 2.6943 2.6965
13M 2.6966 2.6943 2.6988 2.7011 2.7002 2.7020
14M 2.6976 2.6955 2.6996 2.7019 2.7011 2.7027
15M 2.6952 2.6933 2.6970 2.6993 2.6986 2.6999
16M 2.6908 2.6891 2.6924 2.6946 2.6941 2.6951
17M 2.6858 2.6842 2.6873 2.6893 2.6888 2.6897
18M 2.6807 2.6793 2.6820 2.6841 2.6837 2.6844
19M 2.6765 2.6752 2.6777 2.6801 2.6798 2.6804
20M 2.6731 2.6719 2.6742 2.6773 2.6770 2.6776
21M 2.6704 2.6693 2.6714 2.6755 2.6753 2.6758
22M 2.6682 2.6672 2.6691 2.6744 2.6742 2.6747
23M 2.6660 2.6651 2.6669 2.6738 2.6736 2.6741
24M 2.6638 2.6630 2.6646 2.6735 2.6733 2.6736
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