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Supplementary Information Materials and Methods 

 

Participants 

20 right-handed volunteers with normal or corrected-to-normal vision participated in this 

experiment (9 m/11 f, mean age 25.3). Before the experiment, participants filled a form 

declaring they had no metal objects on their bodies. During the course of the experiment, 

participants wore non-magnetic clothes.  

 

Experimental Procedure 

After we placed the Head Position Indicator (HPI) coils on the participants’ head, the experiment 

proper began. Participants sat upright in the MEG system. We instructed them to keep fixation 

and to avoid eye blinks and movements as best as possible during the experiment. In between 

the blocks participants took a short break but remained seated in the MEG system. We 

displayed the visual stimuli via a video projector outside of the MEG chamber. It projected to a 

back-projection screen in the MEG chamber. We monitored participants via video camera as 

they performed the experimental task. At the beginning of each trial, a fixation cross  would 

appear at the centre of the screen for 1 to 1.8 s. After this jittered period, the Rubin vase picture 

would appear at the centre of the screen for 150 ms (see main text Fig. 4 for trial example). We 

presented half of the participants with the original Rubin vase picture (black background) and 

the other half with a colour inverted version (white background). We did this to ensure that the 

luminance of the picture did not bias the dominant percept, and post-hoc group analysis 

revealed no differences between the types of background on the measures reported. After the 

Rubin vase picture presentation, a mask stimulus would appear for 200 msec. We created this 

mask by randomly scrambling blocks of pixels of the face-vase picture. After the mask 

presentation, we asked participants to report whether they saw the face or the vase. The 

response window was 2 s; if participants did not respond within that window, the next trial 

would start. Participants responded with the index and middle finger of the left or right hand. 

We counter-balanced the response hands across subjects. The experiment consisted of 400 

trials in total, broken into 4 blocks of 100 trials. We controlled the visual stimulus presentation 
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with Matlab (1) and the Psychophysics Toolbox (2), and corrected the timings using a photo 

diode. The procedure of the experiment is illustrated in the main text Fig. 4. 

 
Behavioural Analysis 

We collected behavioural reports after the end of each trial, giving us 400 responses. To test for 

the stochastic nature of the response we used curve-fitting procedures from the curve-fitting 

toolbox in Matlab. Specifically, for each participant we binned the data according to how many 

trials in a row they responded with the same perceptual report. We broke this down in 11 bins 

with 0 repetitions to 10 repetitions, averaged the number of repetitions within each bin across 

participants, and then fit the averaged data to a binomial distribution generated in Matlab 

across the 11 bins before calculating goodness-of-fit. 

 

MEG Data Acquisition 

We carried out the MEG recordings using a 306-channel whole-head VectorView MEG system 

(Elekta-Neuromag, Ltd., Helsinki, Finland, 204 gradio- and 102 magnetometers) installed in a 

magnetically shielded chamber (AK3b, Vakuumschmelze Hanau, Germany), with signals 

recorded at 1000 Hz sample rate. Hardware filters were adjusted to band-pass the MEG signal in 

the frequency range of 0.01 Hz to 330 Hz. Prior to the recording, we recorded points on the 

participant's head using a digitizer (Polhemus, VT, USA). These points included the 5 HPI coils, 

the three fiducials (nasion, left and right pre-auricular points), and over 200 additional points 

covering the head as evenly as possible. We used the HPI coils to monitor head position during 

the experiment. 

 

MEG Preprocessing and Source Projection 

We pre-processed the data using the Fieldtrip toolbox (3). From the raw continuous data, we 

extracted epochs of 4 seconds lasting from 2.5 seconds before onset of the picture to 1.5 

seconds after onset of the picture. This resulted in 400 trials per participant. We applied a high-

pass filter on this epoched data at 1 Hz (IIR Butterworth 6-order two-pass filter with 36 dB/oct 

roll-off), followed by a band-stop filter of 49 – 51Hz to remove power line noise. We then down-

sampled the data to 400 Hz. We visually inspected the trials for strong non-physiological 

artefacts (e.g. channel jumps) and rejected the contaminated trials before computing ICA. We 

removed components representing typical physiological artefacts (e.g. blinks , ECG) and 
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reconstructed the cleaned raw data. We finally removed the remaining noisy trials by visual 

inspection. For each participant, we then assigned the trials to the 2 conditions according to the 

participants’ response. Although there was almost equal incidence of face and vase reports to 

start with, the balance of trial numbers changed after artefact rejection. To ensure a similar 

signal-to-noise-ratio across conditions, we equalized the trial numbers of face and vase reports 

by random omission (percentage of trials left in the analysis: M = 79.32%, SD = 15.12%).  

We projected the data to source space by applying LCMV (linear constrained mean variance) 

beamformer filters to the sensor level data (4). We created anatomically realistic headmodels 

(5) using participants’ individual structural MRI and the Polhemus digitized scalp shape. For 

three participants for which we could not obtain an individual MRI, we used a template MRI 

which was morphed to fit the individuals head shape using an affine transformation. We 

calculated a three-dimensional source grid (resolution: 8 mm) covering an entire MNI standard 

brain volume. For each of these points, we computed an LCMV filter using the individual 

leadfield and the data covariance matrix (estimated separately for the focus of analysis; see 

below). We used these spatial filters to then project classifier weights into source space and 

compute oscillatory and connectivity measures for distinct ROIs (see next sections).  

 

Multivariate Pattern Analysis (MVPA) 

We resampled the MEG data to 100 Hz to speed up the MVPA computations (6, 7) using an 

algorithm that first applies a low-pass filter at one third of the resampling frequency. So, we 

performed the decoding analysis on the broadband 1-33 Hz time-domain signal. We used MNE 

Python (8) which uses Scikit-learn (9, 10) for the decoding and implemented a 4-fold cross-

validation procedure within each subject. The analysis was shifted over time on a sample -by-

sample basis. For each time-point at each sensor, we Z-normalized the MEG data, trained a 

Logistic Regression classifier on three folds, and tested on the left-out fold. We operationalized 

the decoding performance as Area Under the Curve (AUC). 

To find out which brain regions contributed to above chance decoding performance the most, 

we used the classifier weights that the classifier used to separate face from vase reports. To 

obtain interpretable sensor-level topographies, we multiplied the classifier weights by the data 

covariance in a first step (11). Then we applied LCMV beamformer filters (using a -.3 to .35 s 

window to calculate the covariance matrix) to project the weights into source space. At the 

source level, we abolished polarity differences across voxels by taking the absolute values. This 
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approach is near-identical to the "informative activity" procedure reported in a recent study 

(12). Finally, we averaged the source-level weights across the intervals 50 to 120 ms and 120 to 

200 ms and applied a 95%-max threshold to mask our ROIs.  This resulted in a V1 ROI centred 

around MNI coordinates [12 -88 0] mm with a size of 32 grid points and a FFA ROI centred 

around MNI coordinates [28 -64 -4] mm with a size of 1 grid point (8mm grid resolution). 

 

Analysis of Post-stimulus Oscillatory Activity 

The MVPA provided a clear ROI in right ventromedial temporal cortex corresponding to Fusiform 

Face Area (FFA) at expected latencies (around 160 ms). We performed time-frequency analysis 

specifically for this ROI by using the single-trial source-projected time series (using the full epoch 

length for calculation of the covariance matrix). We estimated power using multitaper Fast 

Fourier Transform (FFT) with discrete prolate spheroidal sequences (dpss) (13), with separate 

window lengths (.5 s for low frequencies [2-30 Hz in 1 Hz steps] and .3 s for high frequencies [33-

99 Hz in 3 Hz steps]). We adapted smoothing to the specific frequencies for which we estimated 

power (linearly increasing from 2 to 6 Hz for low frequencies and set to +/- 20% of the center 

frequencies for high frequencies). As a control analysis, we repeated the same procedure for 

high frequencies using window lengths of 0.2 s and 0.1 s.  

 

Analysis of Pre-stimulus Power, Coherence, and Granger Causality 

In addition to the face-sensitive region FFA, the classifier weights source analysis implied the 

involvement of V1 at earlier time points. We calculated power, coherence,  imaginary part of 

coherency, and Nonparametric Granger causality (14) in the pre-stimulus period between FFA 

and V1 in source space (using the full epoch length to calculate the covariance matrix). We used 

multi-taper frequency transformation with a spectral smoothing of 2 Hz to get Fourier 

coefficients in the pre-stimulus period (-1 to 0 s), after which we extracted power and computed 

coherence and bivariate Granger causality. This gave us separate estimates of connection 

strengths from FFA to V1 ("feedback") and vice versa ("feedforward"). We repeated the same 

Granger causality analysis on time-reversed data, expecting reversals in the directionalities of 

the estimates to rule out spurious connectivity results (15). That is, we expected the 

feedforward Granger estimates of the original data to differ from those of the time -reversed 

data, and to instead resemble the feedback estimates of the original data, and vice versa. 

We averaged all results over all grid points within the V1 ROI. 



 

 

6 

 

As a control analysis, we calculated time- and frequency-resolved coherence based on the time-

frequency data obtained as described in the previous section, and averaged across the 

frequencies between 50 and 90 Hz to obtain a coherence time-course. 

 

Statistical Analysis of MEG Data 

For the MVPA analysis, we tested decoding performance against chance level (50%) using a 

dependent-samples T-test. Since we were interested in periods in which the classifier performs 

above chance, we used a one-sided T-test. For all remaining statistical analyses, we used 

nonparametric cluster permutation tests (16), comparing a selected test statistic against a 

distribution obtained from 10000 permutations. We set thresholds for forming clusters at p < 

.05 and considered an effect significant if its probability with respect to the nonparametric 

distribution was p < .05. For the post-stimulus time-frequency contrast in FFA, we tested power 

in the face-vase contrast in the window of 0 to .35 s, separately for the low and high 

frequencies, using 2-sided dependent-samples T-tests, and without applying a baseline 

correction. We did the same for pre-stimulus power, except that this estimate was not time-

resolved. We tested coherence and feedforward and feedback connectivity with 1-sided 

dependent-samples T-tests as we had hypothesized greater values of these measures on face 

trials compared to vase trials. We restricted the statistical testing window of coherence and 

Granger to the frequency window 5-25 Hz, which covers the visible peaks in the grand-averaged 

power and coherence spectra. 
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Figure S1: Behavioral responses (percentage of times each participant reported seeing 

faces). Dots represent individual participants and boxplot represents median and 
quartiles. 
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Figure S2: A) Time-frequency contrast in V1 (face vs vase reports) using 300 ms analysis 
window for the frequencies 33 – 99 Hz. Colors represent smoothed T-values obtained 
from cluster-based permutation testing of the contrast (face – vase; ns). B) Time-
frequency contrast in FFA (face vs vase reports) using 300 ms analysis window for the 
frequencies 33 – 99 Hz. Colors represent smoothed T-values obtained from cluster-
based permutation testing of the contrast (face – vase; pcluster = .029).  Black lines 
surround the time-frequency gamma-range cluster that drove the significant statistical 

difference. 
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Figure S3: Sensor-wise time-frequency contrasts (face vs vase reports) with cluster-
based permutation testing revealed no time-frequency-sensor clusters.  Colors 

represent smoothed T-values of the contrast, averaged across all sensors (204 
gradiometers and 102 magnetometers). 
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Figure S4: The apparently early onset of the gamma effect in FFA is a consequence of 
the width of the time window used for the time-frequency analysis, such that the 

apparent onset of the effect precedes the reported 40 ms peak by a period 
approximately equivalent to half of the analysis window width. Top-left: with an analysis 

window of 300 ms, the apparent onset of the effect is -100 ms, or around 150 ms before 
the reported 40 ms peak. Top-middle: with an analysis window of 200 ms, the apparent 
onset of the effect is -50 ms, or around 100 ms before the reported 40 ms peak. Top-
right: with an analysis window of 100 ms, the apparent onset of the effect is 0 ms, or 
around 50 ms before the reported 40 ms peak. Middle row: Grand-averaged time-
frequency plots of FFA gamma activity on face trials. Bottom row: Grand-averaged time-
frequency plots of FFA gamma activity on vase trials. Top row colors represent 
smoothed T-values obtained from cluster-based permutation testing of the time-
frequency power contrast (face – vase). Middle and bottom row colors represent 
smoothed time-frequency power values in arbitrary units. 
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Figure S5: The time-courses of the connectivity effect and the gamma effect show that 
the pre-stimulus connectivity effect precedes the post-stimulus gamma effect by around 
350 ms. The time-courses represent T-values obtained from cluster-based permutation 

testing of the face vs vase effects. The red time-course represents T-values obtained 
from cluster-based permutation testing of the face vs vase coherence contrast, 

averaged over the frequencies 5 – 25 Hz, and clustering over the time dimension. The 
blue time-course represents T-values obtained from cluster-based permutation testing 

of the face vs vase time-frequency power contrast, averaged over the gamma 
frequencies 50 – 90 Hz, and clustering over the time dimension from -1 s to 0.2 s. The 

thick horizontal red and blue lines plotted below the time-courses indicate the time 
periods which drove the significant statistical differences (pcluster < .05).  
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Figure S6: Pre-stimulus contrast (face vs vase) of imaginary part of coherency produces 

the same result as the coherence contrast, but with less high frequency noise. Red line is 
imaginary coherency on face trials and blue line on vase trials. Shaded error regions 

represent the standard error of the mean for within-subject designs (17). Compared to 
vase trials, face trials show increased pre-stimulus imaginary coherency between V1 and 
FF1 in the alpha/beta frequency range. 
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Figure S7: Granger Causality estimates on time-reversed data reveal an expected 
reversal in the directionality of results compared to original data, thereby increasing 
confidence that the observed results are not a product of co-varying noisy sources. 
Shaded error regions represent the standard error of the mean for within-subject 
designs (17). A) Feedforward (V1 -> FFA) Granger causality estimates on original data (a 

copy of Fig. 2C, left). B) Feedback (FFA -> V1) Granger causality estimates on original 
data (a copy of Fig. 2C, right). C) V1 -> FFA Granger Causality estimates on time-reversed 
data resemble FFA -> V1 in original data (B), but not V1 -> FFA in original data (A). D) FFA 
-> V1 Granger Causality estimates on time-reversed data resemble  V1 -> FFA 
connectivity in original data (A), but not FFA -> V1 in original data (B). 
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Figure S8: No correlation between feedback Granger Causality and percent face reports 
across participants. r value represents Pearson’s correlation coefficients. Shaded area 

represents 95% confidence intervals. 
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Figure S9: No correlation between the maximum gamma effect (obtained from the 100 
ms analysis window data) and either pre-stimulus feedback Granger or post-stimulus 

decoding accuracy. r value represents Pearson’s correlation coefficient. Shaded area 
represents 95% confidence intervals. 
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