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APPENDIX A
Under factorization condition (2), we can derive an explicit expression for a(t) as a function

of G(t), F (x) and c(t, x). For this, we represent pr(T ∈ dt) as

pr(T ∈ dt) = dG(t) = pr(T ∈ dt | X > t) pr(X > t) + pr(T ∈ dt | X < t) pr(X < t)

= dA(t) pr(X > t) + pr(T ∈ dt | X < t) pr(X < t), 20

which implies that

dA(t) =

{
dG(t)−

∫ t

x=0
pr(T ∈ dt | X = x) dF (x)

}/
pr(X > t),

i.e., a(t) = g(t)b(t), where

b(t) =

{
1− g(t)−1

∫ t

0
c(t, x) dF (x)

}/
pr(X > t)

for g(t) > 0 and b(t) = 0 for g(t) = 0. When quasi-independence (1) does not hold, b(t) 6= 1.
Overall independence and quasi-independence between T and X arise under certain restric-

tions on these functions. For example, under factorization condition (2), the functions a(t), b(t)
and c(t, x) satisfy the following:

(i) Under overall independence of T and X , i.e., independence in both the observable and the 25

unobservable regions, a(t) = g(t) and c(t, x) = g(t), and thus b(t) = 1.
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(ii) Under quasi-independence (1), a(t) = g(t) and hence b(t) = 1, but c(t, x) is not necessarily
equal to g(t). In fact, c(t, x) could be a function of both t and x. One example of this is given
by selecting f(x), then determining g(x) > 0 through

g(x)

1−G(x)
=

xf ′(x)

xf(x)− F (x)
(A1)

where f ′(x) is the derivative of f(x), and finally setting c(t, x) = g(t)F (t)/{tf(x)} for t >
x. It is straightforward to verify that this choice of g(x) given f(x) satisfies both constraints
listed in § 1 of the main paper after (2), as well as a(t) = g(t). Note that this choice of g(x)
requires that xf(x) > F (x) for all x, which in turn requires that the support of f be bounded,
or else f(x) > 1/(2x) for all sufficiently large x, which violates integrability. In addition,
(A1) implies that

d

dx

[
− log{1−G(x)}

]
=

d

dx

[
log{xf(x)− F (x)}

]
,

so that for some positive constant C, 1−G(x) = C/{xf(x)− F (x)}. This implies that30

f must be bounded from below; otherwise, as x goes to 0, the left-hand side would ap-
proach 1 and the right-hand side ∞. Thus, in this example X has to have a bounded sup-
port, [b, B], with b > 0 and B <∞. This is plausible in many contexts. In addition, it must
be that C/{xf(x)− F (x)} 6 1, and it should be a nonincreasing function. This implies that
xf ′(x) > 0. If X is a nonnegative random variable, f(x) should be a nondecreasing density,35

which is possible if the support of X is bounded.

APPENDIX B
Under complete independence between T and X , the Kaplan–Meier estimator (4), the non-

parametric maximum likelihood estimator for S(x), was shown to be uniformly consistent for
S(x) by Woodroofe (1985) for left-truncated data, and by Andersen et al. (1993, Theorem IV.3.1)40

for left-truncated and right-censored data. The likelihoods that contribute to estimation of S(x)
are identical and equal to L2 under any of three conditions: complete independence between T
and X , quasi-independence (1), or factorization (2). Hence, the estimator (4) is the nonparamet-
ric maximum likelihood estimator of S(x) under (1) or (2) as well, and its uniform consistency
can be proved in the same way as under complete independence between X and T .45

Moreover, the Kaplan–Meier estimator (4) is consistent under any of three factorization con-
ditions, but it is a consistent estimator for different parameters. Under conditions (1) or (2), it
is a consistent estimator of S(x); and under condition (5) without quasi-independence, it is a
consistent estimator of 1−A∗(x). Nonidentifiability arises because we cannot know what we
estimate, S(x) or 1−A∗(x).50

Here we show that under factorization condition (5) without quasi-independence, for both
censoring models, although S(x) is nonidentifiable, G(t) is identifiable. Under both models for
censoring, the overall likelihood for left-truncated and right-censored data can be expressed as

n∏
i=1

pr(Y ∈ dyi, δ = δi, T ∈ dti | T < X) ∝ L̃∗1L̃∗2L̃∗3
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where

L̃∗1 = 1, L̃∗2 =

n∏
i=1

pr(X ∈ dyi | T = ti)
δi pr(X > yi | T = ti)

1−δiI(ti < yi)

pr(X > ti | T = ti)
,

L̃∗3 =

n∏
i=1

pr(X > ti | T = ti) pr(T ∈ dti)∫∞
0 pr(X > u | T = u) pr(T ∈ du)

.

Under (5), L̃∗2L̃
∗
3 depends on pr(X = x | T = t) and G(t), whereas under (1) L̃∗2L̃

∗
3 depends on

S(x) and G(t). Since in nonparametric estimation the likelihood L̃∗2L̃
∗
3 is the same under (1) 55

and under (5), we cannot distinguish the parameter S(x) from A∗(x) = pr(X = x | T = t), but
G(t) is identifiable.

Under (5), the estimation of two parameters, pr(X = x | T = t) and G(t), can be done in two
steps. First, the nonparametric maximum likelihood estimator of

pr(X > t | T = t) =

∫ ∞
t

a∗(x) dx = 1−A∗(t)

is the estimator (6) in the main paper, the standard Kaplan–Meier estimator that accounts for
delayed entry and right censoring. It can be shown that the estimator (6) maximizes L̃∗2. Second,
the nonparametric maximum likelihood estimator of G(t) is the estimator (7) in the main paper, 60

with the nonparametric maximum likelihood estimator of pr(X > t | T = t) found in the first
step plugged in for Ŝ(t). This nonparametric maximum likelihood estimator of G(t) is derived
from maximization of L̃∗3, which has a multinomial structure.

We note that under (5) and right censoring, we do not need the estimator of S(t) in order to
estimate G(t). But we need the estimator of pr(X > t | T = t) whatever it estimates. Under (5) 65

without quasi-independence, pr(X > t | T = t) =
∫∞
t a∗(x) dx. Under quasi-independence,

pr(X > t | T = t) = S(t).
We also remark that under left truncation, there exists another standard identifiability problem,

where instead of S(x) we can only identify the conditional survival function S(x)/S(t1) for
x > t1, where t1 = min{t1, . . . , tn} (Andersen et al., 1993, p. 264). 70
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