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Steady states and theoretical set-point for motif 1 zero-order con-

troller

Transporter-based compensatory flux with constant values of V̇
and k̇3

The rate equations for A and E when the compensatory flux is transporter
based, are

Ȧ =
k2E

V
− k3·A− A

(
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V

)

(S1)

Ė = k4 − k6·A− E

(

V̇

V

)

(S2)

with M

k5+M
= E

k7+E
=1 (see Eq. 16). For constant V (V̇=0) and k3 (k̇3=0),

Eq. S2 defines the theoretical set-point, i.e.

Ė = k4 − k6·A− A
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)

= 0 ⇒ Ass = Atheor
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=

k4
k6

(S3)

As long as E

k7+E
=1 the controller will for any step-wise perturbation in k3 or

V move Ass to Atheor

set
.

However, for constant V̇ and k̇3, Eq. S3 is no longer valid. In case the volume
V increases linearly, E needs to increase in order to oppose the dilution of
A. To get an estimate of Ass for constant V̇ and k̇3, we take the double time
derivative of A, and set Ä and Ȧ to zero
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= 0 (S4)

Inserting Eq. S2 into Eq. S4 gives
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Multiplying Eq. S5 with V leads to

k2k4 − k2k6·A− 2k2E
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− k̇3A·V + A
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)

︸ ︷︷ ︸

→ 0

= 0 (S6)

Assuming steady state conditions in Eq. S1 and neglecting there the AV̇ /V
term we can approximately write

Ȧ =
k2E

V
− k3·A− A

(

V̇

V

)

= 0 ⇒
k2E

V
= k3·Ass (S7)

with E and V increasing. Inserting the right-hand side of Eq. S7 into Eq. S6
gives

k2k4 − k2k6·Ass − 2k3AssV̇ − k̇3Ass·V = 0 (S8)

Solving for Ass, we get

Ass =
k2k4

k2k6+2k3V̇+k̇3V
(S9)

In phase 2 of Fig. 7 we have k̇3=0. For k2=2.0, k3=2.0, k4=20.0, k4=10.0,
and V̇=2.0, Ass is calculated after Eq. S9 to be 1.25, while the numerical
value of Ass is 1.11. When in phase 3 (Fig. 7) k̇3=1.0, Eq. S9 indicates, as
observed, that Ass will go to zero as V increases.

Cell-internal compensatory flux with constant values of V̇ and k̇3

Rate equations for A and E (Eqs. 50 and 51) are written as

Ȧ = k3·E − k3·A− A
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(S10)
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)

(S11)
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by using N/(k7+N)=M/(k5+M)=1. In addition, E/(k8+E)=1 giving the
controller ideal behavior/precision for step-wise perturbations in k3 and V .
Calculating Ä and setting Ä and Ȧ to zero, gives

Ä=k2·Ė−k̇3A+A

(

V̇

V

)2

=k2

[

k4−k6·A−E

(

V̇

V

)]

−k̇3A+A

(

V̇

V

)2
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(S12)
Neglecting the V̇ /V terms (steady state when time t and volume V become
large) leads to Eq. 53

k2k4 = k2k6Ass + k̇3Ass ⇒ Ass =
k2k4

k2k6+k̇3
(S13)

Model calculations at the end of phase 3 in Fig. 18 (k2=1.0, k4=20.0, k6=10.0,
and k̇3=1.0) show an Ass=1.75, while the estimated value from Eq. S13 gives
a value of 1.82.
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