Supporting Material, File S3 Text

Homeostatic Controllers Compensating for Growth and Perturbations

P. Ruoff^{1*}, O. Agafonov¹, D. M. Tveit², K. Thorsen², T. Drengstig²

¹Centre for Organelle Research

²Department of Electrical Engineering and Computer Science,

University of Stavanger, Stavanger, Norway

*Corresponding author. Address: Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway, Tel.: (47) 5183-1887, Fax: (47) 5183-1750, E-mail: peter.ruoff@uis.no

Steady states and theoretical set-point for motif 1 zero-order controller

Transporter-based compensatory flux with constant values of \dot{V} and $\dot{k_3}$

The rate equations for A and E when the compensatory flux is transporter based, are

$$\dot{A} = \frac{k_2 E}{V} - k_3 \cdot A - A \left(\frac{\dot{V}}{V}\right) \tag{S1}$$

$$\dot{E} = k_4 - k_6 \cdot A - E\left(\frac{\dot{V}}{V}\right) \tag{S2}$$

with $\frac{M}{k_5+M} = \frac{E}{k_7+E} = 1$ (see Eq. 16). For constant V ($\dot{V}=0$) and k_3 ($\dot{k_3}=0$), Eq. S2 defines the theoretical set-point, i.e.

$$\dot{E} = k_4 - k_6 \cdot A - A\left(\frac{\dot{V}}{V}\right) = 0 \quad \Rightarrow \quad A_{ss} = A_{set}^{theor} = \frac{k_4}{k_6}$$
 (S3)

As long as $\frac{E}{k_7+E}=1$ the controller will for any step-wise perturbation in k_3 or V move A_{ss} to A_{set}^{theor} .

However, for constant \dot{V} and $\dot{k_3}$, Eq. S3 is no longer valid. In case the volume V increases linearly, E needs to increase in order to oppose the dilution of A. To get an estimate of A_{ss} for constant \dot{V} and $\dot{k_3}$, we take the double time derivative of A, and set \ddot{A} and \dot{A} to zero

$$\ddot{A} = \frac{k_2 \dot{E}}{V} - \frac{k_2 E \dot{V}}{V^2} - \dot{k_3} A + A \left(\frac{\dot{V}}{V}\right)^2 = 0$$
 (S4)

Inserting Eq. S2 into Eq. S4 gives

$$\frac{k_2}{V} \left[k_4 - k_6 \cdot A - E\left(\frac{\dot{V}}{V}\right) \right] - k_2 \cdot E\left(\frac{\dot{V}}{V^2}\right) - \dot{k_3}A + A\left(\frac{\dot{V}}{V}\right)^2 = 0 \quad (S5)$$

Multiplying Eq. S5 with V leads to

$$k_2k_4 - k_2k_6 \cdot A - 2k_2E\left(\frac{\dot{V}}{V}\right) - \dot{k_3}A \cdot V + \underbrace{A\left(\frac{\dot{V}^2}{V}\right)}_{\Rightarrow 0} = 0$$
 (S6)

Assuming steady state conditions in Eq. S1 and neglecting there the $A\dot{V}/V$ term we can approximately write

$$\dot{A} = \frac{k_2 E}{V} - k_3 \cdot A - A\left(\frac{\dot{V}}{V}\right) = 0 \quad \Rightarrow \quad \frac{k_2 E}{V} = k_3 \cdot A_{ss} \tag{S7}$$

with E and V increasing. Inserting the right-hand side of Eq. S7 into Eq. S6 gives

$$k_2k_4 - k_2k_6 \cdot A_{ss} - 2k_3A_{ss}\dot{V} - k_3A_{ss} \cdot V = 0$$
 (S8)

Solving for A_{ss} , we get

$$A_{ss} = \frac{k_2 k_4}{k_2 k_6 + 2k_3 \dot{V} + \dot{k_3} V} \tag{S9}$$

In phase 2 of Fig. 7 we have $k_3=0$. For $k_2=2.0$, $k_3=2.0$, $k_4=20.0$, $k_4=10.0$, and $\dot{V}=2.0$, A_{ss} is calculated after Eq. S9 to be 1.25, while the numerical value of A_{ss} is 1.11. When in phase 3 (Fig. 7) $k_3=1.0$, Eq. S9 indicates, as observed, that A_{ss} will go to zero as V increases.

Cell-internal compensatory flux with constant values of \dot{V} and $\dot{k_3}$

Rate equations for A and E (Eqs. 50 and 51) are written as

$$\dot{A} = k_3 \cdot E - k_3 \cdot A - A \left(\frac{\dot{V}}{V}\right) \tag{S10}$$

$$\dot{E} = k_4 - k_6 \cdot A - E\left(\frac{\dot{V}}{V}\right) \tag{S11}$$

by using $N/(k_7+N)=M/(k_5+M)=1$. In addition, $E/(k_8+E)=1$ giving the controller ideal behavior/precision for step-wise perturbations in k_3 and V. Calculating \ddot{A} and setting \ddot{A} and \dot{A} to zero, gives

$$\ddot{A} = k_2 \cdot \dot{E} - \dot{k_3} A + A \left(\frac{\dot{V}}{V}\right)^2 = k_2 \left[k_4 - k_6 \cdot A - E\left(\frac{\dot{V}}{V}\right)\right] - \dot{k_3} A + A \left(\frac{\dot{V}}{V}\right)^2 = 0 \tag{S12}$$

Neglecting the \dot{V}/V terms (steady state when time t and volume V become large) leads to Eq. 53

$$k_2k_4 = k_2k_6A_{ss} + \dot{k_3}A_{ss} \quad \Rightarrow \quad A_{ss} = \frac{k_2k_4}{k_2k_6 + \dot{k_3}}$$
 (S13)

Model calculations at the end of phase 3 in Fig. 18 (k_2 =1.0, k_4 =20.0, k_6 =10.0, and k_3 =1.0) show an A_{ss} =1.75, while the estimated value from Eq. S13 gives a value of 1.82.