Supporting Material, File S5 Text

Homeostatic Controllers Compensating for Growth and Perturbations

P. Ruoff¹*, O. Agafonov¹, D. M. Tveit², K. Thorsen², T. Drengstig²
¹Centre for Organelle Research
²Department of Electrical Engineering and Computer Science,
University of Stavanger, Stavanger, Norway

^{*}Corresponding author. Address: Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway, Tel.: (47) 5183-1887, Fax: (47) 5183-1750, E-mail: peter.ruoff@uis.no

Steady states and theoretical set-point for motif 1 autocatalytic controller

Transporter-based compensatory flux with constant values of \dot{V} and $\dot{k_3}$ ($k_E^{in} = k_E^{out} = 1 \times 10^{-5}$)

The rate equations Eqs. 33-34 are rewritten in the following form

$$\dot{A} = \frac{k_2 E}{V} - k_3 \cdot A - A \left(\frac{\dot{V}}{V}\right) \tag{S1}$$

$$\dot{E} = k_4 \cdot E - k_6 \cdot A \cdot E - E\left(\frac{\dot{V}}{V}\right) \tag{S2}$$

where in Eq. 34 $M/(k_5+M)=1.0$ and the term $k_E^{in}-k_E^{out}\cdot E$ is neglected. In addition, sufficent M is present to avoid a controller breakdown as shown in phase 3 of Fig. 11.

Calculating \ddot{A} from Eq. S1 gives

$$\ddot{A} = \frac{k_2 \dot{E}}{V} - \frac{k_2 E \dot{V}}{V^2} - \dot{k_3} \cdot A + A \left(\frac{\dot{V}}{V}\right)^2 = 0$$
 (S3)

Note that $\ddot{V}=0$ since $\dot{V}=$ constant. In addition we assume steady state in A such that $\dot{A}=0$.

Inserting Eq. S2 into Eq. S3 gives

$$\frac{k_2}{V} \left[k_4 E - k_6 \cdot E \cdot A - E \left(\frac{\dot{V}}{V} \right) \right] - \frac{k_2 E \dot{V}}{V^2} - \dot{k_3} A + A \left(\frac{\dot{V}}{V} \right)^2 = 0 \quad (S4)$$

Collecting terms gives

$$\underbrace{\frac{k_2 E}{V}}_{k_3 A_{ss}} \cdot k_4 - \underbrace{\frac{k_2 E}{V}}_{k_3 A_{ss}} \cdot k_6 \cdot A_{ss} - \underbrace{\frac{2E}{V}}_{V} \left(\underbrace{\frac{\dot{V}}{V}}_{\to 0}\right) - \dot{k_3} A_{ss} + A_{ss} \left(\underbrace{\frac{\dot{V}}{V}}_{\to 0}\right)^2 = 0 \quad (S5)$$

Rearranged we get

$$k_3 k_4 A_{ss} - k_3 k_6 A_{ss}^2 - \dot{k_3} A_{ss} = 0 \quad \Rightarrow \quad A_{ss} = \frac{k_3 k_4 - \dot{k_3}}{k_3 k_6} = A_{set}^{theor} - \frac{\dot{k_3}}{k_3 k_6}$$
 (S6)

where $A_{set}^{theor} = k_4/k_6$ for step-wise perturbations.

To show that the autocatalytic controller can manage a k_3 perturbation of the form

$$k_3(t) = k_{3,0} + a \cdot t^n$$
 (S7)

we note that the ratio $k_3/k_3 \rightarrow 0$ as $t \rightarrow \infty$, i.e.

$$\lim_{t \to \infty} \left\{ \frac{\dot{k_3}}{k_3} \right\} = \lim_{t \to \infty} \left\{ \frac{n \cdot at^{n-1}}{k_{3,0} + at^n} \right\} \stackrel{\text{L'Hôpital}}{=} n(n-1) \lim_{t \to \infty} \left\{ \frac{1}{t} \right\} = 0$$
 (S8)

such that the term $k_3/(k_3k_6)$ in Eq. S6 goes to zero.

Transporter-based compensatory flux with constant values of V and k_3 and non-negligible k_E^{in} and k_E^{out} terms ($k_E^{in} = k_E^{out} = 10.0$)

Starting with rate equation 34 (now S9):

$$\dot{E} = k_4 \cdot E - k_6 \cdot A \cdot E + k_E^{in} - k_E^{out} \cdot E - E\left(\frac{\dot{V}}{V}\right)$$
 (S9)

Inserting Eq. S9 into Eq. S3 gives:

$$\ddot{A} = \frac{k_2}{V} \left[k_4 E - k_6 \cdot E \cdot A + k_E^{in} - k_E^{out} \cdot E - E\left(\frac{\dot{V}}{V}\right) \right] - \frac{k_2 E \dot{V}}{V^2} - \dot{k_3} A + A\left(\frac{\dot{V}}{V}\right)^2$$
(S10)

Looking for the steady state when V and k_3 increase linearly (\dot{V} and \dot{k}_3 are constant), the \dot{V}/V and \dot{V}/V^2 terms are neglected by assuming that $\dot{V} \ll V$. For \dot{A} this leads to

$$\dot{A} = \frac{k_2 E}{V} - k_3 \cdot A - A \left(\frac{\dot{V}}{V}\right) \approx \frac{k_2 E}{V} - k_3 \cdot A \tag{S11}$$

which, when setting Eq. S11 to zero, gives the relationship between the steady state in A, A_{ss} , and the changing E, V, and k_3 values, i.e.,

$$E = \left(\frac{k_3}{k_2}\right) \cdot V \cdot A_{ss} \tag{S12}$$

Setting Eq. S10 to zero, neglecting the \dot{V}/V and \dot{V}/V^2 terms and inserting E from Eq. S12 into Eq. S10, results in the expression for A_{ss}

$$A_{ss}^2 - A_{ss} \left(\frac{k_4}{k_6} - \frac{k_E^{out}}{k_6} - \frac{\dot{k_3}}{k_3 k_6} + \frac{k_2 k_E^{in}}{V} \right) = 0$$
 (S13)

For increasing k_3 and V the terms k_3/k_3k_6 and $k_2k_E^{in}/V$ become small in comparison with $(k_4-k_E^{out})/k_6$ such that the new set-point is approximately

$$A_{ss} \approx \frac{k_4 - k_E^{out}}{k_E} \tag{S14}$$

Fig. S1 illustrates the change in set-point for $k_E^{in} = k_E^{out} = 10.0$, using the rate constant values from Fig. 11. During the first phase the system is as in Fig. 11, with $k_E^{in} = k_E^{out} = 1 \times 10^{-5}$. In phases 2 and 3 the values of k_E^{in} and k_E^{out} are changed 10.0. Eq. S14 predicts a set-point of 1.0. In phase 2 of Fig. S1 the numerically calculated A_{ss} is 1.001, while in phase 3 this value is 0.9996, indicating that Eq. S14 describes the new set-point quite well.

Figure S1. Performance of the motif 1 autocatalytic controller (Eqs. 33-35). Phase 1: constant volume V and constant k_3 . Initial concentrations and rate constant values (at steady state) as in Fig. 11: V_0 =25.0, \dot{V} =0.0, A_0 =2.0, E_0 =100.0, M_0 =1 × 10¹², k_2 =1.0, k_3 =2.0, k_3 =0.0, k_4 =20.0, k_5 =1 × 10⁻⁶, k_6 =10.0, and $k_E^{in}=k_E^{out}=1\times10^{-5}$. The controller keeps A at its set-point at $A_{set}^{theor}=k_4/k_6$ =2.0. Phase 2: rate constants remain the same as in phase 1, but $k_E^{in}=k_E^{out}$ =10.0 and V increases linearly with \dot{V} =1.0. Phase 3: V continues to increase with the same rate and k_3 increases with rate \dot{k}_3 =1.0. The controller moves A towards the new set-point $A_{set}^{theor}=(k_4-k_E^{out})/k_6$ =1.0 in both phase 2 and phase 3. In comparison to Fig. 11 no breakdown in phase 3 occurs due to a high initial M concentration.

The set-point (Eq. S14) is also defended for step-wise perturbations in V or k_3 . For $k_E^{in}=k_E^{out}=10.0$ a change of k_3 from 2.0 to 8.0 (V kept constant at 25.0 and other rate constants remain as in Fig. S1) shows a numerical A_{ss} value of 1.005, while the same A_{ss} value is observed for a step-wise change of V from 25.0 to 100.0, while k_3 is kept constant at 2.0.

Transporter-based compensatory flux with exponentially increasing values of \dot{V} and $\dot{k_3}$ and non-negligible k_E^{in} and k_E^{out} terms ($k_E^{in} = k_E^{out} = 10.0$)

The autocatalytic rate of V is described by the equation

$$\dot{V} = \kappa V \tag{S15}$$

where κ is a constant (=0.1) and related to the doubling time of V by $\ln 2/\kappa$. Similarly, the autocatalytic increase of k_3 is described by

$$\dot{k}_3 = \zeta k_3 \tag{S16}$$

where $\ln 2/\zeta$ is the doubling time of k_3 . In accordance with Eq. 48, $\zeta=0.2$.

The rate equations for A and E take the form (assuming again that sufficient M is always present and $M/(k_5+M)=1.0$):

$$\dot{A} = \frac{k_2 E}{V} - k_3 \cdot A - \kappa \cdot A \tag{S17}$$

$$\dot{E} = k_4 \cdot E - k_6 \cdot A \cdot E + k_E^{in} - k_E^{out} \cdot E - \kappa \cdot E \tag{S18}$$

Setting $\dot{A}=0$ and calculating $\ddot{A}=0$ gives

$$\ddot{A} = \frac{k_2 \dot{E}}{V} - \frac{k_2 \dot{V}}{V^2} - \dot{k_3} A_{ss} - \underbrace{\kappa \dot{A}_{ss}}_{=0} = 0$$
 (S19)

Inserting Eq. S18 into Eq. S19, and substituting the relationship between growing E, V, k_3 and the steady state in A (A_{ss} from Eq. S17),

$$E = \frac{V}{k_2}(k_3 + \kappa)A_{ss} , \qquad (S20)$$

into the equation of \ddot{A} , we get:

$$\ddot{A} = k_4(k_3 + \kappa)A_{ss} - k_6(k_3 + \kappa)A_{ss}^2 + \frac{k_2k_9}{V} - k_E^{out}(k_3 + \kappa)A_{ss} - \kappa(k_3 + \kappa)A_{ss} - \zeta k_3A_{ss} - \frac{k_2\kappa}{V} = 0$$
(S21)

Rearranging leads to a quadratic equation in A_{ss}

$$A_{ss}^{2} - \left(\frac{k_{4}}{k_{6}} - \frac{k_{E}^{out}}{k_{6}} - \frac{\kappa}{k_{6}} - \underbrace{\frac{\zeta k_{3}}{k_{6}(k_{3} + \kappa)}}_{\rightarrow \zeta/k_{6}}\right) A_{ss} - \underbrace{\frac{k_{2}}{V}(k_{9} - \kappa)}_{\rightarrow 0} = 0$$
 (S22)

For increasing k_3 the term $\zeta k_3/(k_6(k_3+\kappa))$ approaches ζ/k_6 , while for increasing large V the last term in Eq. S22 vanishes.

When both V and k_3 increase exponentially the set-point becomes

$$A_{ss} \approx \frac{k_4 - k_E^{out} - \kappa - \zeta}{k_6} \tag{S23}$$

In comparison with linear growth (Eq. S14) exponential growth gives additional offsets in the set-point, which depend on κ and ζ , i.e., on how fast the exponential growth in V or k_3 occurs. This is shown in Fig. S2 where the perturbation profile of Fig. 14 and the rate constant values from Fig. 11 (Fig. 15c) are applied, except that k_E^{in} and k_E^{out} are changed in phases 2 and 3 from 1×10^{-5} to 10.0.

Figure S2. Performance of the motif 1 autocatalytic controller (Eqs. 33-35) with transporter based compensatory flux applying the perturbation profile from Fig. 14. Phase 1: constant volume V and constant k_3 . Initial concentrations and rate constant values (at steady state) as in Fig. 11: V_0 =25.0, \dot{V} =0.0, A_0 =2.0, E_0 =100.0, M_0 =1 × 10¹², k_2 =1.0, k_3 =2.0, \dot{k}_3 =0.0, k_4 =20.0, k_5 =1 × 10⁻⁶, k_6 =10.0, and $k_E^{in}=k_E^{out}=1$ ×10⁻⁵. The controller keeps A at its set-point at $A_{set}^{theor}=k_4/k_6$ =2.0. Phase 2: rate constants remain the same as in phase 1, but $k_E^{in}=k_E^{out}$ are both changed to 10.0 and V increases exponentially with $\dot{V}=\kappa V$ ($\kappa=0.1$). Phase 3: V continues to increase exponentially and k_3 starts to increase exponentially with the rate law $\dot{k}_3=\zeta k_3$ ($\zeta=0.2$). The controller moves A towards a new steady state dependent on κ and/or ζ as outlined by Eq. S23. For comparison the set-point $k_4-k_E^{out}/k_6$ (=1.0) for linear growth is indicated as a dashed line showing the offset from $k_4-k_E^{out}/k_6$ due to exponential growth.

Cell-internal compensatory flux with constant values of \dot{V} and $\dot{k_3}$ $(k_E^{in}{=}k_E^{out}{=}1{\times}10^{-5})$

Assuming that N and M are sufficiently high to avoid controller breakdown by low N and M values, the rate equations for A and E are in this case (neglecting the $k_E^{in} - k_E^{out} \cdot E$ term with $k_E^{in} = k_E^{out} = 1 \times 10^{-5}$):

$$\dot{A} = k_2 \cdot E - k_3 \cdot A - A \left(\frac{\dot{V}}{V}\right) \tag{S24}$$

$$\dot{E} = k_4 \cdot E - k_6 \cdot A \cdot E - E\left(\frac{\dot{V}}{V}\right) \tag{S25}$$

Calculating \ddot{A} and setting it to zero gives

$$\ddot{A} = k_2 \dot{E} - \dot{k_3} A + A \left(\frac{\dot{V}}{V}\right)^2 = 0 \tag{S26}$$

Inserting Eq. S25 into Eq S26

$$\ddot{A} = k_2 \left[k_4 \underbrace{E}_{k_3 A_{ss}/k_2} - k_6 \cdot A \cdot \underbrace{E}_{k_3 A_{ss}/k_2} - \underbrace{E}_{k_3 A_{ss}/k_2} \left(\frac{\dot{V}}{V} \right) \right] - \dot{k_3} A_{ss} + A_{ss} \left(\frac{\dot{V}}{V} \right)^2 = 0$$
(S27)

From the steady state condition of Eq. S24, we use approximately (for large V) $E = k_3 A_{ss}/k_2$. Collecting terms in Eq. S27

$$k_3 k_4 A_{ss} - k_3 k_6 A_{ss}^2 - \dot{k_3} A_{ss} = 0 (S28)$$

Dividing by A_{ss} gives

$$A_{ss} = \frac{k_4}{k_6} - \frac{k_3}{k_3 k_6} \tag{S29}$$

where $k_4/k_6 = A_{set}^{theor}$.

Cell-internal compensatory flux with linearly increasing values of \dot{V} and $\dot{k_3}$ and non-negligible k_E^{in} and k_E^{out} terms ($k_E^{in} = k_E^{out} = 10.0$)

The rate equation for A is described by Eq. S24, while the rate equation for E now includes the $k_E^{in} - k_E^{out} \cdot E$ term:

$$\dot{E} = k_4 \cdot E - k_6 \cdot A \cdot E + k_E^{in} - k_E^{out} \cdot E - E\left(\frac{\dot{V}}{V}\right)$$
 (S30)

Inserting Eq. S30 into the expression for \ddot{A} (Eq. S26) gives:

$$\ddot{A} = k_2 \left[k_4 E - k_6 \cdot A \cdot E + k_E^{in} - k_E^{out} \cdot E - E \left(\frac{\dot{V}}{V} \right) \right] - \dot{k_3} A_{ss} + A_{ss} \left(\frac{\dot{V}}{V} \right)^2 = 0$$
(S31)

Setting \dot{A} =0 (Eq. S24), neglecting the $A\dot{V}/V$ term, we get the (approximate, for large V) relationship between increasing E and k_3 while A is kept at its steady state, i.e.,

$$E = \left(\frac{k_3}{k_2}\right) A_{ss} \tag{S32}$$

Inserting E from Eq. S32 into Eq. S31, neglecting the terms containing \dot{V}/V gives

$$k_3 k_4 A_{ss} - k_3 k_6 A_{ss}^2 + k_2 k_E^{in} - k_3 k_E^{out} A_{ss} - \dot{k_3} A_{ss} = 0$$
 (S33)

Rearranging Eq. S33 gives Eq. 61:

$$A_{ss}^2 - A_{ss} \left(\frac{k_4 - k_E^{out}}{k_6} - \frac{\dot{k_3}}{k_3 k_6} \right) - \frac{k_2 k_E^{in}}{k_3 k_6} = 0$$
 (S34)

Fig. S3 shows the behavior for linearly increasing V and k_3 . When only V increases in phase 2 the controller moves A to the A_{ss} value described by the solution of Eq. S34. Although this steady state in A is dependent on the value of k_3 , it is independent of how fast V grows. Finally, in phase 3 k_3 starts to grow and the controller moves A_{ss} to the set-point $(k_4 - k_E^{out})/k_6$ independent of the (linear) growth rate of k_3 (see, however, the chapter below when V and k_3 grow exponentially and $k_E^{in} = k_E^{out} = 10.0$).

Figure S3. Performance of the motif 1 autocatalytic controller (Eq. 59 and Eqs. 34-35). Phase 1: constant volume V and constant k_3 . Initial concentrations and rate constant values: V_0 =25.0, \dot{V} =0.0, A_0 =2.0, E_0 =100.0, N_0 = M_0 =1 × 10¹², k_2 =1.0, k_3 =2.0, \dot{k}_3 =0.0, k_4 =20.0, k_5 =1 × 10⁻⁶, k_6 =10.0, and $k_E^{in}=k_S^{out}=1$ ×10⁻⁵. The controller keeps A at its set-point at $A_{set}^{theor}=k_4/k_6$ =2.0. Phase 2: rate constants remain the same as in phase 1, but $k_E^{in}=k_E^{out}$ =10.0 and V increases linearly with \dot{V} =1.0. The numerical value of A_{ss} is 1.3656 and independent of how fast V grows. This value is in excellent agreement with the solution of the quadratic equation (1.3660). Phase 3: V continues to increase with the same rate and k_3 starts to grow with rate \dot{k}_3 =1.0. The controller moves A now towards the new set-point $(k_4-k_E^{out})/k_6$ =1.0.

Cell-internal compensatory flux with exponential increase of \dot{V} and \dot{k}_3 ($k_E^{in}=k_E^{out}=1\times 10^{-5}$)

We have the same rate equations as above (Eqs. S24-S25) with $k_E^{in} = k_E^{out} = 1 \times 10^{-5}$ (which we neglect in the analytical approach here). Since V and k_3 both grow exponentially we can write

$$\dot{V} = \kappa V \quad \& \quad \dot{k}_3 = \zeta k_3 \tag{S35}$$

where κ and ζ are constants. The rate equations are (assuming sufficient amounts of N and M, and, for the sake of simplicity, we set $N/(k_7 + N) = M/(k_5 + M) = 1.0$)

$$\dot{A} = k_2 \cdot E - k_3 \cdot A - \kappa A \tag{S36}$$

$$\dot{E} = k_4 \cdot E - k_6 \cdot A \cdot E - \kappa E \tag{S37}$$

Assuming steady state in A ($\dot{A}=0$) we can write from Eq. S36

$$E = \left(\frac{k_3 + \kappa}{k_2}\right) A_{ss} \tag{S38}$$

where E increases in relationship with k_3 in order to keep A at its steady state.

Calculating \ddot{A} and noting that $\dot{A}=0$ and that ζ and κ are constants, gives

$$\ddot{A} = k_2 \dot{E} - \dot{k_3} A_{ss} = k_2 \left[k_4 E - k_6 \cdot A_{ss} \cdot E - E \cdot \kappa \right] - \dot{k_3} A_{ss} = 0 \tag{S39}$$

Inserting the expression for E_{ss} from Eq. S38 into Eq. S39 and collecting terms gives

$$A_{ss} = \frac{k_4}{k_6} - \frac{\kappa}{k_6} - \frac{\dot{k}_3}{k_6(k_3 + \kappa)}$$
 (S40)

In Eq. S40 k_4/k_6 is the theoretical set-point A_{set}^{theor} the controller defends when step-wise perturbations are applied. The term κ/k_6 is the offset from A_{set}^{theor} due to the exponential increase of V, while the term $k_3/(k_6(k_3+\kappa))$ is the offset due to the exponential increase of k_3 . This last term can be reduced to the ratio ζ/k_6 by using $k_3=\zeta k_3$ and observing that

$$\lim_{k_3 \to \infty} \frac{\dot{k_3}}{k_6(k_3 + \kappa)} = \lim_{k_3 \to \infty} \frac{\zeta k_3}{k_6(k_3 + \kappa)} \stackrel{\text{L'Hôpital}}{=} \frac{\zeta}{k_6}$$
 (S41)

Referring to Fig. 25c, the numerical steady state is calculated at the end of phase 2 to be 1.99. The same offset of 0.01 is obtained for κ/k_6 from Eq. S40 (rate constant values are found in Fig. 22). At the end of phase 3 in Fig. 25c the numerical A_{ss} value is 1.971, while the overall calculated offset from Eq. S40 is 1.97 which includes the exponential increase of k_3 (Eq. 48) with a ζ of 0.2.

Cell-internal compensatory flux with exponentially increasing values of \dot{V} and $\dot{k_3}$ and non-negligible k_E^{in} and k_E^{out} terms ($k_E^{in} = k_E^{out} = 10.0$)

The rate equations and conditions are the same as in the previous section, except that \dot{E} now includes the term $k_E^{in} - k_E^{out} \cdot E$, i.e.,

$$\dot{A} = k_2 \cdot E - k_3 \cdot A - \kappa A \tag{S36}$$

$$\dot{E} = k_4 \cdot E - k_6 \cdot A \cdot E + k_E^{in} - k_E^{out} \cdot E - \kappa E \tag{S42}$$

We calculate \ddot{A} , set \dot{A} and \ddot{A} to zero, and then insert Eq. S37 into the \ddot{A} -expression. Then all E's are substituted with the expression from Eq. S38, which gives the equation for \ddot{A} and A_{ss} :

$$\ddot{A} = k_{2}\dot{E} - \dot{k_{3}}A_{ss} = k_{2} \left[k_{4}E - k_{6} \cdot A_{ss} \cdot E + k_{E}^{in} - k_{E}^{out} \cdot E - E \cdot \kappa \right] - \dot{k_{3}}A_{ss}$$

$$= k_{2} \left[k_{4} \left(\frac{k_{3} + \kappa}{k_{2}} \right) A_{ss} - k_{6} \cdot A_{ss} \cdot \left(\frac{k_{3} + \kappa}{k_{2}} \right) A_{ss} + k_{E}^{in} - k_{E}^{out} \cdot \left(\frac{k_{3} + \kappa}{k_{2}} \right) A_{ss} - \kappa \left(\frac{k_{3} + \kappa}{k_{2}} \right) A_{ss} \right]$$

$$- \dot{k_{3}}A_{ss}$$

$$= k_{4}(k_{3} + \kappa) A_{ss} - k_{6}(k_{3} + \kappa) A_{ss}^{2} + k_{2}k_{E}^{in} - k_{E}^{out}(k_{3} + \kappa) A_{ss} - \kappa (k_{3} + \kappa) A_{ss} - \dot{k_{3}}A_{ss}$$

$$= -k_{6}(k_{3} + \kappa) A_{ss}^{2} + A_{ss} \left[k_{4}(k_{3} + \kappa) - k_{E}^{out}(k_{3} + \kappa) - \kappa (k_{3} + \kappa) - \dot{k_{3}} \right] + k_{2}k_{E}^{in}$$

$$= 0$$

$$(S43)$$

Dividing the last expression in Eq. S43 by $-k_6(k_3+\kappa)$ gives

$$A_{ss}^{2} - A_{ss} \left[\frac{k_{4}}{k_{6}} - \frac{k_{E}^{out}}{k_{6}} - \frac{\kappa}{k_{6}} - \frac{\zeta k_{3}}{k_{6}(k_{3} + \kappa)} \right] - \frac{k_{2} k_{E}^{in}}{k_{6}(k_{3} + \kappa)} = 0$$
 (S44)

where k_3 has been substituted by ζk_3 (see Eq. S35). When k_3 becomes large the term $k_3/(k_3+\kappa)$ goes to 1 and $k_2k_E^{in}/k_6(k_3+\kappa)$ goes to 0, such that Eq. S44 can be written as:

$$A_{ss}^2 - A_{ss} \left[\frac{k_4}{k_6} - \frac{k_E^{out}}{k_6} - \frac{\kappa}{k_6} - \frac{\zeta}{k_6} \right] = 0$$
 (S45)

and A_{ss} becomes:

$$A_{ss} = \frac{k_4}{k_6} - \frac{\kappa}{k_6} - \frac{\zeta}{k_6} - \frac{k_E^{out}}{k_6} \tag{S46}$$