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Steady states and theoretical set-point for motif 1 autocatalytic
controller

Transporter-based compensatory flux with constant values of V̇
and k̇3 (kinE =koutE =1×10−5)

The rate equations Eqs. 33-34 are rewritten in the following form

Ȧ =
k2E

V
− k3·A− A

(
V̇

V

)
(S1)

Ė = k4·E − k6·A·E − E
(
V̇

V

)
(S2)

where in Eq. 34 M/(k5+M)=1.0 and the term kinE−koutE ·E is neglected. In
addition, sufficent M is present to avoid a controller breakdown as shown in
phase 3 of Fig. 11.

Calculating Ä from Eq. S1 gives

Ä =
k2Ė

V
− k2EV̇

V 2
− k̇3·A+ A

(
V̇

V

)2

= 0 (S3)

Note that V̈=0 since V̇=constant. In addition we assume steady state in A
such that Ȧ=0.

Inserting Eq. S2 into Eq. S3 gives

k2
V

[
k4E − k6·E·A− E

(
V̇

V

)]
− k2EV̇

V 2
− k̇3A+ A

(
V̇

V

)2

= 0 (S4)
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Collecting terms gives

k2E

V︸︷︷︸
k3Ass

·k4 −
k2E

V︸︷︷︸
k3Ass

·k6·Ass −
2E

V

 V̇

V︸︷︷︸
→ 0

− k̇3Ass + Ass

 V̇

V︸︷︷︸
→ 0


2

= 0 (S5)

Rearranged we get

k3k4Ass−k3k6A2
ss− k̇3Ass = 0 ⇒ Ass =

k3k4 − k̇3
k3k6

= Atheorset −
k̇3
k3k6

(S6)

where Atheorset =k4/k6 for step-wise perturbations.
To show that the autocatalytic controller can manage a k3 perturbation of
the form

k3(t) = k3,0 + a·tn (S7)

we note that the ratio k̇3/k3 → 0 as t → ∞, i.e.

lim
t→∞

{
k̇3
k3

}
= lim

t→∞

{
n·atn−1
k3,0+atn

}
L′Hôpital

= n(n− 1) lim
t→∞

{
1

t

}
= 0 (S8)

such that the term k̇3/(k3k6) in Eq. S6 goes to zero.

Transporter-based compensatory flux with constant values of V̇
and k̇3 and non-negligible kinE and koutE terms (kinE =koutE =10.0)

Starting with rate equation 34 (now S9):

Ė = k4·E − k6·A·E + kinE − koutE ·E − E
(
V̇

V

)
(S9)

Inserting Eq. S9 into Eq. S3 gives:

Ä=
k2
V

[
k4E−k6·E·A+ kinE−koutE ·E−E

(
V̇

V

)]
−k2EV̇

V 2
−k̇3A+A

(
V̇

V

)2

(S10)
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Looking for the steady state when V and k3 increase linearly (V̇ and k̇3 are
constant), the V̇ /V and V̇ /V 2 terms are neglected by assuming that V̇ � V .
For Ȧ this leads to

Ȧ =
k2E

V
− k3·A− A

(
V̇

V

)
≈ k2E

V
− k3·A (S11)

which, when setting Eq. S11 to zero, gives the relationship between the steady
state in A, Ass, and the changing E, V , and k3 values, i.e.,

E =

(
k3
k2

)
· V · Ass (S12)

Setting Eq. S10 to zero, neglecting the V̇ /V and V̇ /V 2 terms and inserting
E from Eq. S12 into Eq. S10, results in the expression for Ass

A2
ss − Ass

(
k4
k6
− koutE

k6
− k̇3
k3k6

+
k2k

in
E

V

)
= 0 (S13)

For increasing k3 and V the terms k̇3/k3k6 and k2k
in
E /V become small in

comparison with (k4−koutE )/k6 such that the new set-point is approximately

Ass ≈
k4−koutE

k6
(S14)

Fig. S1 illustrates the change in set-point for kinE =koutE =10.0, using the rate
constant values from Fig. 11. During the first phase the system is as in
Fig. 11, with kinE =koutE =1×10−5. In phases 2 and 3 the values of kinE and koutE

are changed 10.0. Eq. S14 predicts a set-point of 1.0. In phase 2 of Fig. S1
the numerically calculated Ass is 1.001, while in phase 3 this value is 0.9996,
indicating that Eq. S14 describes the new set-point quite well.
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Figure S1. Performance of the motif 1 autocatalytic controller (Eqs. 33-
35). Phase 1: constant volume V and constant k3. Initial concentrations and
rate constant values (at steady state) as in Fig. 11: V0=25.0, V̇=0.0, A0=2.0,
E0=100.0, M0=1 × 1012, k2=1.0, k3=2.0, k̇3=0.0, k4=20.0, k5=1 × 10−6,
k6=10.0, and kinE =koutE =1×10−5. The controller keeps A at its set-point at
Atheorset =k4/k6=2.0. Phase 2: rate constants remain the same as in phase
1, but kinE =koutE =10.0 and V increases linearly with V̇=1.0. Phase 3: V
continues to increase with the same rate and k3 increases with rate k̇3=1.0.
The controller moves A towards the new set-point Atheorset =(k4−koutE )/k6=1.0
in both phase 2 and phase 3. In comparison to Fig. 11 no breakdown in
phase 3 occurs due to a high initial M concentration.

The set-point (Eq. S14) is also defended for step-wise perturbations in V or
k3. For kinE =koutE =10.0 a change of k3 from 2.0 to 8.0 (V kept constant at
25.0 and other rate constants remain as in Fig. S1) shows a numerical Ass
value of 1.005, while the same Ass value is observed for a step-wise change
of V from 25.0 to 100.0, while k3 is kept constant at 2.0.

Transporter-based compensatory flux with exponentially increas-
ing values of V̇ and k̇3 and non-negligible kinE and koutE terms (kinE =koutE =10.0)

The autocatalytic rate of V is described by the equation

V̇ = κV (S15)

where κ is a constant (=0.1) and related to the doubling time of V by ln 2/κ.
Similarly, the autocatalytic increase of k3 is described by

k̇3 = ζk3 (S16)
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where ln 2/ζ is the doubling time of k3. In accordance with Eq. 48, ζ=0.2.

The rate equations for A and E take the form (assuming again that sufficient
M is always present and M/(k5+M)=1.0):

Ȧ =
k2E

V
− k3·A− κ·A (S17)

Ė = k4·E − k6·A·E + kinE − koutE ·E − κ·E (S18)

Setting Ȧ=0 and calculating Ä=0 gives

Ä =
k2Ė

V
− k2V̇

V 2
− k̇3Ass − κȦss︸︷︷︸

=0

= 0 (S19)

Inserting Eq. S18 into Eq. S19, and substituting the relationship between
growing E, V , k3 and the steady state in A (Ass from Eq. S17),

E =
V

k2
(k3 + κ)Ass , (S20)

into the equation of Ä, we get:

Ä = k4(k3+κ)Ass−k6(k3+κ)A2
ss+

k2k9
V
−koutE (k3+κ)Ass−κ(k3+κ)Ass−ζk3Ass−

k2κ

V
= 0

(S21)

Rearranging leads to a quadratic equation in Ass

A2
ss −

k4k6−k
out
E

k6
− κ

k6
− ζk3
k6(k3+κ)︸ ︷︷ ︸
→ ζ/k6

Ass −
k2
V

(k9−κ)︸ ︷︷ ︸
→ 0

= 0 (S22)

For increasing k3 the term ζk3/(k6(k3+κ)) approaches ζ/k6, while for increas-
ing large V the last term in Eq. S22 vanishes.
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When both V and k3 increase exponentially the set-point becomes

Ass ≈
k4−koutE −κ−ζ

k6
(S23)

In comparison with linear growth (Eq. S14) exponential growth gives addi-
tional offsets in the set-point, which depend on κ and ζ, i.e., on how fast
the exponential growth in V or k3 occurs. This is shown in Fig. S2 where
the perturbation profile of Fig. 14 and the rate constant values from Fig. 11
(Fig. 15c) are applied, except that kinE and koutE are changed in phases 2 and
3 from 1×10−5 to 10.0.
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Figure S2. Performance of the motif 1 autocatalytic controller (Eqs. 33-35)
with transporter based compensatory flux applying the perturbation profile
from Fig. 14. Phase 1: constant volume V and constant k3. Initial concen-
trations and rate constant values (at steady state) as in Fig. 11: V0=25.0,
V̇=0.0, A0=2.0, E0=100.0, M0=1 × 1012, k2=1.0, k3=2.0, k̇3=0.0, k4=20.0,
k5=1× 10−6, k6=10.0, and kinE =koutE =1×10−5. The controller keeps A at its
set-point at Atheorset =k4/k6=2.0. Phase 2: rate constants remain the same as
in phase 1, but kinE =koutE are both changed to 10.0 and V increases exponen-
tially with V̇=κV (κ = 0.1). Phase 3: V continues to increase exponentially
and k3 starts to increase exponentially with the rate law k̇3=ζk3 (ζ = 0.2).
The controller moves A towards a new steady state dependent on κ and/or ζ
as outlined by Eq. S23. For comparison the set-point k4−koutE /k6 (=1.0) for
linear growth is indicated as a dashed line showing the offset from k4−koutE /k6
due to exponential growth.
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Cell-internal compensatory flux with constant values of V̇ and k̇3
(kinE =koutE =1×10−5)

Assuming that N and M are sufficiently high to avoid controller breakdown
by low N and M values, the rate equations for A and E are in this case
(neglecting the kinE−koutE ·E term with kinE = koutE = 1×10−5):

Ȧ = k2·E − k3·A− A
(
V̇

V

)
(S24)

Ė = k4·E − k6·A·E − E
(
V̇

V

)
(S25)

Calculating Ä and setting it to zero gives

Ä = k2Ė − k̇3A+ A

(
V̇

V

)2

= 0 (S26)

Inserting Eq. S25 into Eq S26

Ä = k2

k4 E︸︷︷︸
k3Ass/k2

−k6·A· E︸︷︷︸
k3Ass/k2

− E︸︷︷︸
k3Ass/k2

(
V̇

V

)− k̇3Ass +Ass

(
V̇

V

)2

= 0

(S27)

From the steady state condition of Eq. S24, we use approximately (for large
V ) E = k3Ass/k2. Collecting terms in Eq. S27

k3k4Ass − k3k6A2
ss − k̇3Ass = 0 (S28)

Dividing by Ass gives

Ass =
k4
k6
− k̇3
k3k6

(S29)

where k4/k6=A
theor
set .
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Cell-internal compensatory flux with linearly increasing values of
V̇ and k̇3 and non-negligible kinE and koutE terms (kinE =koutE =10.0)

The rate equation for A is described by Eq. S24, while the rate equation for
E now includes the kinE−koutE ·E term:

Ė = k4·E − k6·A·E + kinE−koutE ·E − E
(
V̇

V

)
(S30)

Inserting Eq. S30 into the expression for Ä (Eq. S26) gives:

Ä = k2

[
k4E − k6·A·E + kinE−koutE ·E − E

(
V̇

V

)]
− k̇3Ass + Ass

(
V̇

V

)2

= 0

(S31)

Setting Ȧ=0 (Eq. S24), neglecting the AV̇ /V term, we get the (approximate,
for large V ) relationship between increasing E and k3 while A is kept at its
steady state, i.e.,

E =

(
k3
k2

)
Ass (S32)

Inserting E from Eq. S32 into Eq. S31, neglecting the terms containing V̇ /V
gives

k3k4Ass − k3k6A2
ss + k2k

in
E − k3koutE Ass − k̇3Ass = 0 (S33)

Rearranging Eq. S33 gives Eq. 61:

A2
ss − Ass

(
k4−koutE

k6
− k̇3
k3k6

)
− k2k

in
E

k3k6
= 0 (S34)

Fig. S3 shows the behavior for linearly increasing V and k3. When only V
increases in phase 2 the controller moves A to the Ass value described by
the solution of Eq. S34. Although this steady state in A is dependent on the
value of k3, it is independent of how fast V grows. Finally, in phase 3 k3
starts to grow and the controller moves Ass to the set-point (k4 − koutE )/k6
independent of the (linear) growth rate of k3 (see, however, the chapter below
when V and k3 grow exponentially and kinE =koutE =10.0).
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Figure S3. Performance of the motif 1 autocatalytic controller (Eq. 59
and Eqs. 34-35). Phase 1: constant volume V and constant k3. Ini-
tial concentrations and rate constant values: V0=25.0, V̇=0.0, A0=2.0,
E0=100.0, N0=M0=1× 1012, k2=1.0, k3=2.0, k̇3=0.0, k4=20.0, k5=1× 10−6,
k6=10.0, and kinE =koutE =1×10−5. The controller keeps A at its set-point at
Atheorset =k4/k6=2.0. Phase 2: rate constants remain the same as in phase
1, but kinE =koutE =10.0 and V increases linearly with V̇=1.0. The numerical
value of Ass is 1.3656 and independent of how fast V grows. This value is
in excellent agreement with the solution of the quadratic equation (1.3660).
Phase 3: V continues to increase with the same rate and k3 starts to grow
with rate k̇3=1.0. The controller moves A now towards the new set-point
(k4−koutE )/k6=1.0.

Cell-internal compensatory flux with exponential increase of V̇ and
k̇3 (kinE =koutE =1×10−5)

We have the same rate equations as above (Eqs. S24-S25) with kinE =koutE =1×10−5

(which we neglect in the analytical approach here). Since V and k3 both grow
exponentially we can write

V̇ = κV & k̇3 = ζk3 (S35)

where κ and ζ are constants. The rate equations are (assuming sufficient
amounts of N and M , and, for the sake of simplicity, we set N/(k7 +
N)=M/(k5 +M)=1.0)

Ȧ = k2·E − k3·A− κA (S36)
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Ė = k4·E − k6·A·E − κE (S37)

Assuming steady state in A (Ȧ=0) we can write from Eq. S36

E =

(
k3 + κ

k2

)
Ass (S38)

where E increases in relationship with k3 in order to keep A at its steady
state.

Calculating Ä and noting that Ȧ=0 and that ζ and κ are constants, gives

Ä = k2Ė − k̇3Ass = k2 [k4E − k6·Ass·E − E·κ]− k̇3Ass = 0 (S39)

Inserting the expression for Ess from Eq. S38 into Eq. S39 and collecting
terms gives

Ass =
k4
k6
− κ

k6
− k̇3
k6(k3+κ)

(S40)

In Eq. S40 k4/k6 is the theoretical set-point Atheorset the controller defends
when step-wise perturbations are applied. The term κ/k6 is the offset from
Atheorset due to the exponential increase of V , while the term k̇3/(k6(k3+κ))
is the offset due to the exponential increase of k3. This last term can be
reduced to the ratio ζ/k6 by using k̇3=ζk3 and observing that

lim
k3→∞

k̇3
k6(k3+κ)

= lim
k3→∞

ζk3
k6(k3+κ)

L′Hôpital
=

ζ

k6
(S41)

Referring to Fig. 25c, the numerical steady state is calculated at the end
of phase 2 to be 1.99. The same offset of 0.01 is obtained for κ/k6 from
Eq. S40 (rate constant values are found in Fig. 22). At the end of phase 3 in
Fig. 25c the numerical Ass value is 1.971, while the overall calculated offset
from Eq. S40 is 1.97 which includes the exponential increase of k3 (Eq. 48)
with a ζ of 0.2.
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Cell-internal compensatory flux with exponentially increasing val-
ues of V̇ and k̇3 and non-negligible kinE and koutE terms (kinE =koutE =10.0)

The rate equations and conditions are the same as in the previous section,
except that Ė now includes the term kinE−koutE ·E, i.e.,

Ȧ = k2·E − k3·A− κA (S36)

Ė = k4·E − k6·A·E + kinE − koutE ·E − κE (S42)

We calculate Ä, set Ȧ and Ä to zero, and then insert Eq. S37 into the Ä-
expression. Then all E’s are substituted with the expression from Eq. S38,
which gives the equation for Ä and Ass:

Ä =k2Ė − k̇3Ass = k2
[
k4E − k6·Ass·E + kinE − koutE ·E − E·κ

]
− k̇3Ass

= k2

[
k4

(
k3+κ

k2

)
Ass−k6·Ass·

(
k3+κ

k2

)
Ass+k

in
E−koutE ·

(
k3+κ

k2

)
Ass−κ

(
k3+κ

k2

)
Ass

]
− k̇3Ass
= k4(k3+κ)Ass−k6(k3+κ)A2

ss+k2k
in
E−koutE (k3+κ)Ass−κ(k3+κ)Ass−k̇3Ass

= −k6(k3+κ)A2
ss+Ass

[
k4(k3+κ)− koutE (k3+κ)−κ(k3+κ)−k̇3

]
+k2k

in
E

= 0
(S43)

Dividing the last expression in Eq. S43 by −k6(k3+κ) gives

A2
ss−Ass

[
k4
k6
−k

out
E

k6
− κ

k6
− ζk3
k6(k3+κ)

]
− k2k

in
E

k6(k3+κ)
=0 (S44)

where k̇3 has been substituted by ζk3 (see Eq. S35). When k3 becomes large
the term k3/(k3+κ) goes to 1 and k2k

in
E /k6(k3+κ) goes to 0, such that Eq. S44

can be written as:

A2
ss−Ass

[
k4
k6
−k

out
E

k6
− κ

k6
− ζ

k6

]
=0 (S45)

and Ass becomes:

Ass =
k4
k6
− κ

k6
− ζ

k6
−k

out
E

k6
(S46)
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