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Steady states and theoretical set-point for motif 2 zero-order con-
troller

Transporter-based compensatory flux with constant values of V̇
and k̇3

We refer to the rate equations for A and E (Eqs. 43-44), which are written
in the following form:
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by setting in Eq. 44 M/(k11+M)=E/(k10+E)=1.

Calculating Ä gives
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Inserting Eq. S2 into Eq. S3 leads to
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Multiplying Eq. S4 by V (k4+E)2/(k2k4) gives

Ä = −k8A+k9+E

(
V̇

V

)
−(k4+E)

(
V̇

V

)
−k̇3A·

V (k4+E)2

k2k4

+A

(
V̇

V

)2

·V (k4+E)2

k2k4

(S5)

1



Setting the V̇ /V terms in Eq. S5 to zero we get

Ä = −k8A+ k9 − k̇3A·
V (k4+E)2

k2k4

(S6)

Setting Eq. S1 to zero and neglecting the V̇ /V terms gives the relationship
between decreasing E and increasing V and k3 to keep A at a constant steady
state Ass, i.e.
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Inserting (k2k4)2 from Eq. S7 into Eq. S6 and setting Ä=0 gives
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For constant k̇3 and increasing values of V and k3 the offset term k̇3k2k4/k
2
3AssV

goes to zero and Ass is kept by the controller at its theoretical set-point
Atheorset =k9/k8 as clearly seen in Fig. 13. Since a constant Ass level by this
controller type is maintained by decreasing E values the negative feedback
loop will break when E becomes low and the controller reaches its capacity
limits (Eq. 48).

Cell-internal compensatory flux with constant values of V̇ and and
k̇3

In this case the rate equations (Eqs. 62-63) are written as
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by setting N/(k7+N)=E/(k10+E)=M/(k11+M)=1. Taking the second-time
derivative Ä gives
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Inserting Ė from Eq. S10 into Eq. S11
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Setting Eq. S9 to zero and neglecting the V̇ /V term, we have the condition
how E has to decrease for increasing k3 to keep A constant at Ass, i.e.,
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Substituting (k4+E)2 in Eq. S11 by (k4k6)2/k2
3A

2
ss, setting the resulting equa-

tion to zero, and neglecting the V̇ /V terms, leads to
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where Atheorset =k9/k8 and the offset term is zero for k̇3=0, and goes to zero
when k̇3 is constant and k3 increases.

Cell-internal compensatory flux with exponential increase of V̇ and
k̇3

i) Exponential increase in V and constant k3 (phase 2). We start again with
the rate equations
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In the case k̇3=0, but V increases exponentially, say V̇=κV , Ass and Ess show
constant value, where Ass shows an offset above Atheorset (overcompensation).
The steady state in A can be calculated by setting Eq. S2 to zero, i.e.,
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ii) Exponential increase in V and k3 (phase 3). Assuming that V̇=κV and

k̇3=ζk3 with κ and ζ constants, we can calculate Ä

Ä = − k4k6

(k4+E)2
Ė − k̇3A (S16)

assuming that Ȧ=0. Inserting Eq. S2 (note that V̇ /V=κ) into Eq. S16 and
setting Eq. S16 to zero gives the expression for the steady state of A, Ass,

− k4k6

(k4+E)2
[k8·Ass − k9 − κ·E]− k̇3Ass = 0 (S17)

leading to

Ass = − k4k6

k̇3(k4+E)2
[k8·Ass − k9 − κ·E] (S18)

Note, that while A is in a steady state, E is decreasing (derepressing) in
order to increase the compensatory flux. Eq. S18 can be rewritten as
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where Aapparentset is an ”apparent set-point”. Thus, Eq. S19 can be written as

Ass = −γ0(Ass − Aappset ) ⇒ Ass =

(
γ0

1 + γ0

)
Aappset (S20)
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Figure S1. (a) Perturbation profile of V and k3 (same figure as Fig. 14).
(b) Response of controller (same results as in Fig. 25d). (c) Behaviors of
Ass and Aappset as a function of time (Eq. S20). (d) By the end of phase 3 E2

decreases more rapidly than the exponential increase of k̇3, which is indicated
by the product k̇3E

2 going to zero.
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Fig. S1c shows how γ0 and Aappset changes with respect to the controller’s
behavior when exposed to exponential increase in V and k3 with the re-
sponse shown in Fig. 25d. For convenience the perturbation profile and the
controller’s response are repeated in Figs. S1a and b. The derepression by
decreasing E leads to an increase in γ0 (Fig. S1c, curve outlined in blue).
The increase in γ0 is the result of E2 decreasing more rapidly than the expo-
nential increase of k̇3. This is indicated in Fig. S1 where the product k̇3E

2

during phase 3 decreases and Ass → Atheorset .
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