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Steady states and theoretical set-point for motif 2 zero-order con-
troller

Transporter-based compensatory flux with constant values of 1%
and ks

We refer to the rate equations for A and E (Eqs. 43-44), which are written
in the following form:
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by setting in Eq. 44 M/(ky+M)=E/(kio+E)=1.
Calculating A gives
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Inserting Eq. S2 into Eq. S3 leads to
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Multiplying Eq. S4 by V (ky+E)?/(koks) gives
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Setting the V/V terms in Eq. S5 to zero we get
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Setting Eq. S1 to zero and neglecting the V /V terms gives the relationship
between decreasing E and increasing V' and k3 to keep A at a constant steady
state A, i.e.
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Inserting (kzks)? from Eq. S7 into Eq. S6 and setting A=0 gives
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For constant k}, and increasing values of V' and k3 the offset term kgkg ky/k3AsV
goes to zero and A, is kept by the controller at its theoretical set-point

Atheor—kg kg as clearly seen in Fig. 13. Since a constant A, level by this
controller type is maintained by decreasing E values the negative feedback
loop will break when E becomes low and the controller reaches its capacity

limits (Eq. 48).

Cell-internal compensatory flux with constant values of V and and
ks

In this case the rate equations (Egs. 62-63) are written as
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by setting N/(k;+N)=E/(kio+E)=M/(ki1+M)=1. Taking the second-time
derivative A gives

. 2
kaks - - v
M p pAr A~ 11

(Bt ~ Rl <V> (S11)

Inserting E from Eq. S10 into Eq. S11
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Setting Eq. S9 to zero and neglecting the V/ V term, we have the condition
how E has to decrease for increasing k3 to keep A constant at A, i.e.,
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Substituting (ks+E)* in Eq. S11 by (kyke)?/k3 A2, setting the resulting equa-
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tion to zero, and neglecting the V' /V terms, leads to
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where A" =kg/ks and the offset term is zero for ks=0, and goes to zero

when k3 is constant and k3 increases.

Cell-internal compensatory flux with exponential increase of V and
ks

i) Exponential increase in V' and constant k3 (phase 2). We start again with
the rate equations
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In the case k/:3:0, but V increases exponentially, say V:KV, A, and E g show

constant value, where Ay, shows an offset above A" (overcompensation).

The steady state in A can be calculated by setting Eq. S2 to zero, i.e.,
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ii) Exponential increase in V and ks (phase 3). Assuming that V=« and

ks=Cks with x and ¢ constants, we can calculate A
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assuming that A=0. Inserting Eq. S2 (note that V/V=k) into Eq. S16 and
setting Eq. S16 to zero gives the expression for the steady state of A, A,
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leading to
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Note, that while A is in a steady state, F is decreasing (derepressing) in
order to increase the compensatory flux. Eq. S18 can be rewritten as
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where AP*™ is an ”apparent set-point”. Thus, Eq. S19 can be written as
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Figure S1. (a) Perturbation profile of V' and k3 (same figure as Fig. 14).
(b) Response of controller (same results as in Fig. 25d). (c) Behaviors of
A,y and AP as a function of time (Eq. S20). (d) By the end of phase 3 E?
decreases more rapidly than the exponential increase of k'g, which is indicated

by the product k3 E? going to zero.



Fig. Slc shows how 7 and AYY changes with respect to the controller’s
behavior when exposed to exponential increase in V' and k3 with the re-
sponse shown in Fig. 25d. For convenience the perturbation profile and the
controller’s response are repeated in Figs. Sla and b. The derepression by
decreasing F leads to an increase in 7y (Fig. Slc, curve outlined in blue).
The increase in vy is the result of E? decreasing more rapidly than the expo-
nential increase of k5. This is indicated in Fig. S1 where the product ks E?

during phase 3 decreases and A,, — A!eor.
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