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Novel antithetic integral controller arrangements and steady states
in a motif 2 background

Novel antithetic integral controller arrangements
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Figure S1. (a) Color-coded representation of a negative feedback loop
containing an integral controller. (b) Molecular feedback schemes where the
antithetic integral controller (outlined in brown) is embedded within different
structural feedback loops which relate to the basic feedback motifs described
in Ref. (1). Colors indicate how the different kinetic and signaling processes
relate to the parts in the feedback loop in (a). Numbers define the different
motifs.
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Fig. S1a shows a generalized feedback loop containing an integral controller
outlined in brown color. In Fig. S1b eight basic molecular feedback arrange-
ments are shown in corresponding color code. The antithetic integral con-
troller (also outlined in brown) is due to the removal of E1 and E2 by second-
order kinetics. Activating and inhibitory signaling is shown by the dashed
lines. In the following we describe some of the steady state behaviors in
relation to the motif 2 antithetic controller.

Steady states and theoretical set-point for motif 2 antithetic con-
troller

Transporter-based compensatory flux with constant values of V̇
and k̇3

The rate equations (Eqs. 76, 22, and 23) are

Ȧ =
k2·k10
k10+E1

· 1
V
− k3 · A− A

(
V̇

V

)
(S1)

Ė1 = A

(
k4·M
k5+M

)
− k6 · E1 · E2 − E1

(
V̇

V

)
(S2)

Ė2 =
k8·O
k9+O

− k6 · E1 · E2 − E2

(
V̇

V

)
(S3)

In deriving an expression for the steady state in A, we assume that precursors
M and O are in sufficient amounts such that

M

k5+M
=

O

k9+O
= 1

We can get an expression for A directly when inspecting Eq. S2. Rewriting
Eq. S2 gives
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k4 · A = Ė1 + k6·E1·E2 + E1

(
V̇

V

)
(S4)

During the first phase in Fig. 29a, when V̇=k̇3=0, and A, E1, and E2 are in
a steady state, we get

Ass =
k6
k4
E1·E2 =

k8
k4

= Atheor
set (S5)

showing that E1·E2 is constant. In case V and k3 are linearly increasing the
E1V̇ /V term in Eq. S4 can be neglected, as E1 is getting low and the V̇ /V
term goes to zero. Ė1 is negative, but low. Ignoring Ė1 shows that A can be
described in term of E1E2

A =
k6
k4
E1·E2 (S6)

In fact, A and k6E1E2/k4 follow each other very closely (Fig. S2), even when
the controller is no longer able to cope with the linear increase of V and k3
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Figure S2. Same system as in Fig. 29a with k6E1E2/k4 (orange curve)
overlayed on A (blue curve), showing that k6E1E2/k4 describes the behavior
of A closely.
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Fig. S2 shows that in phase 3 the product E1E2 can no longer be kept con-
stant. Subtracting Eq. S2 from Eq. S3 and solving for A gives

A =
k8
k4︸︷︷︸

Atheor
set

−d(E2−E1)

dt
− (E2 − E1)

(
V̇

V

)
(S7)

indicating that the increase in E2 (Fig. 29a) cannot be matched by the dere-
pressing/decreasing E1, resulting in the decrease of A and the breakdown of
the controller.

Transporter-based compensatory flux with exponential increase of
V̇ and k̇3

In case V and k3 increase exponentially k6E1E2/k4 still describes the behavior
of A, but the controller is not able (in comparison with a linear increase in
V and k3) to keep E1E2 constant (see Fig. S3).
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Figure S3. Same system as in Fig. 29b with k6E1E2/k4 (orange curve)
overlayed on A (blue curve).
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The increasing E2 values cannot be balanced by the decreasing E1 concen-
tration leading to controller breakdown.

Cell-internal compensatory flux with constant values of V̇ and and
k̇3

When the compensatory flux is cell internal the rate equation for A (Eq. 76
with N/(k7+N) = 1) becomes

Ȧ =
k2·k10
k10+E1

− k3 · A− A

(
V̇

V

)
(S8)

while the rate equations for E1 and E2 remain as described by Eqs. S2 and
S3. Calculating Ä and setting it to zero leads to the following expression

Ä = − k2·k10
(k10+E1)2

Ė1 − k̇3·A− k3·Ȧ+ A

(
V̇

V

)2

= 0 (S9)

Considering first the case that k3 is kept constant (k̇3=0), while V increases
linearly, we observe (phase 2, Fig. 29c) that A attains a stable steady state
with Ȧ=0. Considering further that V̇ /V → 0, we arrive at the condition
that Ė1=0, i.e.

Ä = − k2·k10
(k10+E1)2

Ė1 = 0 (S10)

Since Ȧ = Ė1 = V̇ /V = 0, we arrive at Eq. S5 showing that in case of a
cell-internal compensatory flux the m2-antithetic controller is able to keep A
at Atheor

set as long as there is sufficient supply for A, E1, and E2 and that the
maximum compensatory flux k2 has not been reached.

When k3 increases linearly, the term k̇3·A in Eq. S9 cannot be ignored. In-
serting Eq. S2 into Eq. S9, observing from the numerical calculation that
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Ȧ=0, and approximating V̇ /V = 0, Eq. S9 is written ask4Ass − k8 − E1

(
V̇

V

)
︸ ︷︷ ︸

→ 0

 = − k̇3(k10+E1)
2

k2k10
Ass (S11)

Dividing the left- and right-hand side of Eq. S11 by k4, observing that
k8/k4=A

theor
set , and rearranging the equation, gives

Ass

(
1 +

k̇3(k10+E1)
2

k2k4k10

)
= Atheor

set (S12)

or

Ass =
Atheor

set

1 + k̇3(k10+E1)2

k2k4k10

(S13)

Eq. S13 indicates that when both V and k3 increase linearly there should be
an offset in Ass below Atheor

set , but the ”offset term”

k̇3(k10+E1)
2

k2k4k10

is generally low, because k2 represents the maximum compensatory flux,
which in the calculations is 1×105. The ”offset term” can further be reduced
by increasing the aggressiveness of the controller when increasing k4 and k8
values, but maintaining the k8/k4 ratio, i.e., keeping Atheor

set constant.

Cell-internal compensatory flux with exponential increase of V̇ and
and k̇3

Fig. 29d shows that when only V increases exponentially during phase 2 with
V̇=κV (κ being a constant), and k3 is kept constant (k̇3 = 0), the controller
is able to maintain a constant steady state in A, as well as in E1 and E2.
The rate equations in this case are

6



Ȧ =
k2·k10
k10+E1

− k3 · A− κA (S14)

Ė1 = k4A− k6·E1·E2 − κE1 (S15)

Ė2 = k8 − k6·E1·E2 − κE2 (S16)

Since A, E1, and E2 are during phase 2 in a steady state (Fig. 29d) we get
an expression for Ass, by setting Eq. S15 to zero and solving for Ass

Ass =
k6
k4
E1·E2 +

κ

k4
E1 (S17)

Another expression for Ass can be found by calculating Ė1−Ė2 and setting
the resulting expression to zero (E1 and E2 are in a steady state)

Ė1−Ė2 = k4·Ass − k8 + κ(E2 − E1) = 0 (S18)

which gives

Ass =
k8
k4︸︷︷︸

Atheor
set

+
κ(E1 − E2)

k4︸ ︷︷ ︸
overcompensation part

(S19)

which identifies the factors leading to the overcompensation. Interestingly,
increasing the controller aggressiveness by increasing k8 and k4, but keeping
their ratio (Atheor

set ) constant, the overcompensation can be reduced and Ass

will approach Atheor
set .

Setting Eqs. S19 and S17 equal, and solving for k6E1E2/k4 leads to the
relationship

k6
k4
E1·E2 = Atheor

set −
κE2

k4
(S20)
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showing that k6E1E2/k4 lies (under steady state conditions) slightly below
Atheor

set .

When in phase 3 k3 increases exponentially, E1 decreases. The resulting
derepression by E1 moves Ass towards Atheor

set , but when the E1 concentration
becomes too low due to the increasing E2 (which removes E1) homeostasis is
lost once E2 exceeds E1. For low E1 values Ė1 is also low, and, as Eq. S15 in-
dicates, the decreasing A concentrations is quite well described by k6E1E2/k4
(Fig. S4).
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Figure S4. Same system as in Fig. 29d with k6E1E2/k4 (orange curve)
overlayed on A (blue curve).
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