Supplementary information

A universal approach to investigate circRNA protein coding function

Running title: Intron-mediated enhancement boosts circRNA translation

Dingding Mo^{1, 2,} *, Xinping Li¹, Carsten A. Raabe^{3, 4, 5}, Di Cui¹, Jeanne-Franca Vollmar¹, Timofey S. Rozhdestvensky², Boris V. Skryabin², Juergen Brosius^{3, 6}

1. Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany.

2. Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.

3. Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.

4. Brandenburg Medical School (MHB), Fehrbelliner Strasse 38, D-16816 Neuruppin, Germany.

5. Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE),

University of Münster, Von-Esmarch-Strasse 56, D-48149 Münster, Germany.

6. Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.

*. To whom correspondence should be addressed. E-mail: moding@163.com

Supplementary Fig. 1 A.

MEDIDQSSLV	SSSADSPPRP	PPAFKYQFVT	EPEDEEDEED	EEEEEDDEDL
60	70	80	90	100
EELEVLERKP	AAGLSAAPVP	PAAAPLLDFS	SDSVPPAPRG	PLPAAPPTAP
110	120	130	140	150
ERQPSWERSP	AASAPSLPPA	AAVLPSKLPE	DDEPPARPPA	PAGASPLAEP
160	170	180	190	200
AAPPSTPAAP	KRRGSGSV <mark>DE</mark>	TLFALPAASE	PVIPSSAEKI	MDLKEQPGNT
210	220	230	240	250
VSSGQEDFPS	VLFETAASLP	SLSPLSTVSF	KEHGYLGNLS	AVASTEGTIE
260	270	280	290	300
ETLNEASREL	PERATNPFVN	RESAEFSVLE	YSEMGSSFNG	SPKGESAMLV
310	320	330	340	350
ENTKEEVIVR	SKDKEDLVCS	AALHNPQESP	ATLTKVVKED	GVMSPEKTMD
360	370	380	390	400
IFNEMKMSVV	APVREEYADF	KPFEQAWEVK	DTYEGSRDVL	AARANMESKV
410	420	430	440	450
DKKCFEDSLE	QKGHGKDSES	RNENASFPRT	PELVKDGSRA	YITCDSFSSA
460	470	480	490	500
TESTAANIFP	VLEDHTSENK	TDEKKIEERK	AQIITEKTSP	KTSNPFLVAI
510	520	530	540	550
HDSEADYVTT	DNLSKVTEAV	VATMPEGLTP	DLVQEACESE	LNEATGTKIA
560	570	580	590	600
YETKVDLVQT	SEAIQESIYP	TAQLCPSFEE	AEATPSPVLP	DIVMEAPLNS
610	620	630	640	650
LLPSTGASVA	QPSASPLEVP	SPVSYDGIKL	EPENPPPYEE	AMSVALKTSD
660	670	680	690	700
SKEEIKEPES	FNAAAQEAEA	PYISIACDLI	KETKLSTEPS	PEFSNYSEIA
710	720	730	740	750
KFEKSVPDHC	ELVDDSSPES	EPVDLFSDDS	IPEVPQTQEE	AVMLMKESLT
760	770	780	790	800
EVSETVTQHK	HKERLSASPQ	EVGKPYLESF	QPNLHITKDA	ASNEIPTLTK
810	820	830	840	850
KETISLQMEE	FNTAIYSNDD	LLSSKEDKMK	ESETFSDSSP	IEIIDEFPTF
860	870	880	890	900
VSAKDDSPKE	YTDLEVSNKS	EIANVQSGAN	SLPCSELPCD	LSFKNTYPKD
910	920	930	940	950
EAHVSDEFSK	SRSSVSKVPL	LLPNVSALES	QIEMGNIVKP	KVLTKEAEEK
960	970	980	990	1000
LPSDTEKEDR	SLTAVLSAEL	NKTSVVDLLY	WRDIKKTGVV	FGASLFLLLS
1010	1020	1030	1040	1050
LTVFSIVSVT	AYIALALLSV	TISFRIYKGV	IQAIQKSDEG	HPFRAYLESE
1060	10/0	1080	1090	1100
VAISEELVQK	YSNSALGHVN	STIKELRRLF	LVDDLVDSLK	FAVLMWVFTY
1110	1120	1130	1140	1150
VGALFNGLTL	LILALISLFS	IPVIYERHQA	QIDHYLGLAN	KSVKDAMAKI
1160				
QAKIPGLKRK	AE			

A. Full protein sequence of mouse Rtn4.

The contributions of exon 2 and 3 are highlighted in yellow and green, respectively. The glutamic acid codon (represented by E at position 188 of the protein sequence) is contributed by both exons, while the aspartic acid residue D at position 169 (highlighted in blue) resulted from circularization and remains D in the product of circular translation.

MDLKEQPGNT	VSSGQEDFPS	VLFETAASLP	SLSPLSTVSF	KEHGYLGNLS
10	20	30	40	50
AVASTEGTIE	ETLNEASREL	PERATNPFVN	RESAEFSVLE	YSEMGSSFNG
60	270	80	90	100
SPKGESAMLV	ENTKEEVIVR	SKDKEDLVCS	AALHNPQESP	ATLTKVVKED
110	120	130	140	150
GVMSPEKTMD	IFNEMKMSVV	APVREEYADF	KPFEQAWEVK	DTYEGSRDVL
160	170	180	190	200
AARANMESKV	DKKCFEDSLE	QKGHGKDSES	RNENASFPRT	PELVKDGSRA
210	220	230	240	250
YITCDSFSSA	TESTAANIFP	VLEDHTSENK	TDEKKIEERK	AQIITEKTSP
260	270	280	290	300
KTSNPFLVAI	HDSEADYVTT	DNLSKVTEAV	VATMPEGLTP	DLVQEACESE
310	320	330	340	350
LNEATGTKIA	YETKVDLVQT	SEAIQESIYP	TAQLCPSFEE	AEATPSPVLP
360	370	380	390	400
DIVMEAPLNS	LLPSTGASVA	QPSASPLEVP	SPVSYDGIKL	EPENPPPYEE
410	420	430	440	450
AMSVALKTSD	SKEEIKEPES	FNAAAQEAEA	PYISIACDLI	KETKLSTEPS
460	4/0	480	490	500
PEFSNYSEIA	KFEKSVPDHC	ELVDDSSPES	EPVDLFSDDS	TPEVPQTQEE
510	520	530	540	550
AVMLMKESLT	EVSETVIQHK	E 20	EVGRPILESF	QPNLHITKDA
			J90	
ASNELPILIA 610	KETTSLUMEE	ENTATIONDD 620	ELSSKEDKMK	ESETESDSSP 650
	VEARDDCDRE		ETANVOCCAN	
<u>161106FFIF</u> 660	670	680	690	700
	FAHVODFFCK	CRCCUCKUDI.	T.T.DNWGALES	OTEMONTURD
710	720	730	740	21010001VKF 750
KVLTKEAEEK	LPSDTEKEDR	SLTAVI.SAEL	NKTSARAETH	LRRGSGSK
760	770	780	790	798

B. Protein sequence of linear counterpart mRNA expressed by pCMV-Rtn4-Exon2-Exon3. The contributions of exon 3 are highlighted in green. The amino acid sequence from the vector is in gray.

C.

13																					
AU <mark>G</mark> A	GAC	CCUI	UU	UUGC	UCU	UCC	UG	CUGC	AUC	UGA	GC	CUGU	<mark>GA</mark> U	ACC	CU	CCU	CU	JGC	AGA.	AA	60
E	T ➔	L	F	A	L	Ρ	A	A	S	Ε	Ρ	V	Ι	Ρ	S	S		A	Е	K	
AAAU	U <mark>AU</mark>	<mark>G</mark> GA	UU	<mark>UGA</mark> A	GGA	GCA	GC	CAGG	UAA	CAC	UG	UUUC	GUC	UGG	UC	AAG	AG	GAU	JUU	CC	120
I	М	D	L	K	Ε	Q	Ρ	G	N	т	V	S	S	G	Q	E	1	D	F	P	
CAUC	UGU	CCU	GU	U <mark>UGA</mark>	AAC	UGC	UG	CCUC	UCU	UCC	UU	CUCU	AUC	UCC	UC	UCU	CA	ACI	UGU	UU	180
CUUU	UAA	AGA	AC	ACGG 1	AUA 5	CCU	UG	G <mark>UAA</mark>	CUU	AUC	AG	CAGU	GGC	AUC	CA	CAG	AA	\GG2	AAC	UA	240
U <mark>UGA</mark>	AGA	AACI	UU	UAA <mark>A</mark>	UG <mark>A</mark>	AGC	UU	CUAG	AGA	AUU	GC	CAGA	GAG	GGC ➔	AA	CAA	AU	JCCI	AUU	UG	300
<mark>UAA</mark> A 10	UAG	AGA	GU	CAGC	AGA	GUU	UU	CAGU	AU <mark>U</mark>	<mark>AG</mark> A	AU	ACUC	AGA	A <mark>AU</mark>	<mark>G</mark> G	GAU	CA	UCU	UUU	CA	
<mark>AUG</mark> G	CUC	CCC	AA	AAGG	AGA	GUC	AG	CC <mark>AU</mark>	<mark>G</mark> U <mark>U</mark>	AGU	AG	AAAA	CAC	UAA	GG	AAG	AA	G <mark>U</mark> Z	AA <mark>U</mark> I	UG	
<mark>UGA</mark> G	GAG	UAA	AG	ACAA	AGA	GGA	UU	<mark>UAG</mark> U	UUG	UAG	UG	CAGC	CCU	UCA	UA	AUC	CA	CA	AGA	GU	

C. Nucleotide sequence of circRtn4.

The nucleotides contributed by exon 2 are shown in blue and those from exon 3 in black lettering; the junction is depicted by a vertical arrow. Due to the circular nature of the RNA, the nucleotide at position 2418 is fused to nucleotide 1. If this circular RNA is translated, it generates a GAU codon (highlighted in yellow) coding for aspartic acid, denoted by a [D]. All possible AUG start codons are shown in green and stop codons in red. Where start and stop codons overlap, only the non-overlapping parts of stop codons are red. The numbers above AUG codons indicates the amino acid lengths of hypothetical reading frames, while the 16 AUG codons marked by horizontal arrows are hypothetically proceeding uninterruptedly by any stop codon, thus circling the RNA template. Circumstantial evidence points to a start at the second AUG marked by a green arrow. Part of the amino acid sequence of the open reading frame is shown in the one-letter code beneath the nucleic acid sequence. Nucleotides are arranged in blocks of 12.

D.

Frame 3

ETLFALPAASEPVIPSSAEKIMDLKEQPGNTVSSGQEDFPSVLFETAASLPSLSPLSTVSFKEHGYLGN LSAVASTEGTIEETLNEASRELPERATNPFVNRESAEFSVLEYSEMGSSFNGSPKGESAMLVENTKEEV IVRSKDKEDLVCSAALHNPQESPATLTKVVKEDGVMSPEKTMDIFNEMKMSVVAPVREEYADFKPFEQA WEVKDTYEGSRDVLAARANMESKVDKKCFEDSLEQKSHGKDSESRNENASFPSTPELVKDGSRAYITCD SFTSATESTAANIFPVLEDHTSENKTDEKKIEERKAQIITEKTSPKTSNPFLVAIHDSEADYVTTDNLS KVTEAVVATMPEGLTPDLVQEACESELNEATGTKIAYETKVDLVQTSEAIQESIYPTAQLCPSFEEAEA TPSPVLPDIVMEAPLNSLLPSTGASVAQPSASPLEVPSPVSYDGIKLEPENPPPYEEAMSVALKTSDAK EEIKEPESFNAAVQEAEAPYISIACDLIKETKLSTEPSPEFSNYSEIAKFEKSVPDHCELVDDSSPESE PVDLFSDDSIPDVPQTQEEAVMLMKESLTEVSETVTQHKHKERLSASPQEVGKPYLESFQPNLHITKDA ASNEIPTLTKKETISLQMEEFNTAIYSNDDLLSSKEDKMKESETFSDSSPIEIIDEFPTFVSAKDDSPK EYTDLEVSNKSEIANVQSGANSLPCSELPCDLSFKNTYPKDEAHVSDEFSKSRSSVSKVPLLLPNVSAL ESQIEMGNIVKPKVLTKEAEEKLPSDTEKEDRSLTAVLSAELNKTS

Frame 2

-DPFCSSCCI-ACDTLLCRKNYGFEGAAR-HCFVWSRGFPICPV-NCCLSSFSISSLNCFF-RTRIPW-LISSGIHRRNY-RNFK-SF-RIAREGNKSICK-RVSRVFSIRILRNGIIFQWLPKRRVSHVSRKH- GRSNCEE-RQRGFSL-CSPS-STRVTCDPY-SG-RRRSYVSRKDNGHF--NENVSGSTCEGRVCRF-AI-TS<mark>M</mark>GSERYL-GK-GCAGC-S-YGK-SGQK<mark>M</mark>L-R-PGAKKSWEG--KQK-

ECFFPQYPRTCEGRLQSVHHL-FLYLSNREYCSKHFPCARRSHFRK-NR-KKNRRKEGPNYNRED-PQNVKSFPCSNT-FRGRLCHNR-FIKGD-GSSGNHA-RSNARFSSGS<mark>M</mark>-K-TERSHRYKDCL-NKSGLGPDIRSYTRVNLPHSTALPII-GS-SNSVTSFA-

YCYGSSIKFSPSKHWCFCSAAQCIPTRSTVSS-L-RYKA-A-KSPTI-RSHECSTKNIGRKGRN-RA-KF-CSCSGSRSSLYIHCM-FN-RNKALH-AKSRVL-LFRNSKI-EVGA-SL-ARG-FLTGI-TS-LI---FNS-RPTNTRGGCDANEGESH-SV-DSNTTQT-GET-CFTSGGRKAIFRVFSAQFTYYKRCCI--NSNIDQKGDNFFANGRV-YCNLFQ--LTFF-GRQNERK-NIFRFISH-DNR-VSHICQC-R-FS-GVH-PRSIQQK-NC-CPERGQFVALLRIAL-PFFQEYIS-R-STCLR-ILQK-VQCI-GALIASKCFCFGISNRNGQHS-TQSTYERSRGKTSF-YRERGQIPDSCIVSRAE-NF

Frame 1

MRPFLLFLLHLSL-YPPLQKKLWI-

RSSQVTLFRLVKRISHLSCLKLLPLFLLYLLSQLFLLKNTDTLVTYQQWHPQKELLKKL-MKLLENCQRGQQIHL-IESQQSFQY-NTQKWDHLSMAPQKESQPC--KTLRKK-L-GVKTKRI-FVVQPFIIHKSHLRPLLKWLKKTELCLQKRQWTFLMK-KCQW-HL-GKSMQILSHLNKHGK-KILMREVGMCWLLELIWKVKWTKNALKIAWSKKVMGRIVKAEMRMLLSPVPQNL-RTAPERTSPVIPLPQQPRVLQQTFSLC-KITLQKIKQMKKK-KKGRPKL-QRRLAPKRQILSL-QYMIPRQIMSQQIIYQR-LRQ-WQPCLKV-RQI-FRKHVKVN-TKPQVQRLLMKQKWTWSRHQKLYKSQFTPQHSFAHHLRKLKQLRHQFCLILLWKLH-ILSFQALVLL-RSPVHPH-KYRLQLVMTV-SLSLKIPHHMKKP-V-H-KHRTQRKKLKSLKVLMQLFRKQKLLIYPLHVI-LKKQSSPLSQVQSSLIIQK-QNLRSRCLITVSSWMIPHRNLNQLTYLVMIQFLTSHKHKRRL-C--RRVSLKCLRQ-HNTNIRRDLVLHLRR-ESHI-SLFSPIYILQKMLHLMKFQH-PKRRQFLCKWKSLILQFIPMMTYFLLRKTK-KKVKHFPIHLPLR-MSFPHLSVLKMILLRSTLT-KYPTKVKLLMSRAGPIRCLAQNCPVTFLSRIHILKMKHMSQMNSPKVGPVYLRCPYCFQMFLLWNLK-KWAT-LNPKYLRKKQRKNFLLIQRKRTDP-QLYCQQS-IKLQ

D. circRtn4 computationally translated in all three reading frames.

Only frame 3 is open. Methionine residues are highlighted in green and longer potential ORFs in other reading frames of hypothetical polypeptides are highlighted in blue.

A. circRtn4-FLAG-Stop

AUGAGACCCUUU	UUGCUCUUCCUG	CUGCAUCUGAGC	CUGUGAUACCCg	actacaaggacg	60
E T L E	' A L P A	A S E P	V I P D	Y K D D	
			→		
acgatgacaago	caccg <mark>tga</mark> UCCU	CUGCAGAAAAAA	UU <mark>AUG</mark> GAUUUGA	AGGAGCAGCCAG	120
DDKI	P <mark>-</mark>		M D L K	E Q P G.	••

B.circRtn4-FLAG-ac

AUG	AGA	CCC	JUU	UUG	CUC	JUC	CUG	CUGCAUCUGAGC				CUGUGAUACCCg				actacaaggacg				60
Ε	т	L	F	A	L	Ρ	A	A	S	Ε	Ρ	V	Ι	Ρ	D	Y	K	D	D	
acga	atga	acaa	agc	caco	cg <mark>a</mark>		CUC	UGC	AGA	AAA	AAU	U <mark>AU</mark>	<mark>G</mark> GAU	ງບບບ	G <mark>c</mark> A	GGA	GCA	GCC.	AGG	120
D	D	K	Р	Р	Т	Р	\mathbf{L}	Q	Κ	Κ	\mathbf{L}	W	I	С	R	S	S	Q	V	
												М	D	L	Q	Ε	Q	Ρ	G	
UAAO	CAC	JGU	JUC	GUC	JGGU	JCA	AGA	GGA	JUUU	CCC	AUC	UGUG	CCUC	SUUU	JGA	AAC	JGCI	JGC	CUC	180
т	\mathbf{L}	F	R	\mathbf{L}	V	Κ	R	I	S	Η	\mathbf{L}	S	С	\mathbf{L}	Κ	L	\mathbf{L}	Р	\mathbf{L}	
N	т	V	S	S	G	Q	Е	D	F	Ρ	S	V	L	F	Е	Т	А	А	S	
UCUU	JCCI	JUC	UCU	AUCU	JCCI	JCUC	CUC	AACU	UGU	JUCI	JUU	UAAA	AGAI	ACAG	CGG	AUA	CCUI	JGG	UAA	240
F	\mathbf{L}	\mathbf{L}	Y	\mathbf{L}	\mathbf{L}	S	Q	\mathbf{L}	F	\mathbf{L}	\mathbf{L}	K	N	Т	D	т	\mathbf{L}	V	Т	
\mathbf{L}	Р	S	L	S	Р	L	S	т	V	S	F	Κ	Е	Η	G	Y	L	G	Ν	
CUUZ	AUC	AGC	AGU	GGCA	AUC	CAC	AGA	AGG	AACI	JAU	JGA	AGA	AACI	JU <mark>U</mark> Z	AAA	UGA	AGCI	JUC	UAG	300
Y	Q	Q	W	Н	Р	Q	K	Е	\mathbf{L}	L	Κ	K	L	_						
\mathbf{L}	S	A	V	А	S	т	Ε	G	т	Ι	Ε	Е	т	L	Ν	Е	A	S	•••	etc.

Supplementary Fig. 2

Additional constructs circRtn4-Stop (A) and circRtn4 FLAG-ac (B). Blue lettering indicates nucleotide sequence contributions of Rtn4 exon 2 and black upper-case lettering contributions of Rtn4 exon 3. Nucleotides are arranged in blocks of 12. The nucleotides for the FLAG sequence are in black lower-case letters. The corresponding amino acids are depicted in bold and purple (IUPAC one-letter amino acid code). The putative start codon in green. A) A translation stop codon was introduced after the sequence encoding the FLAG peptide, presumably after almost a full circle of translation (indicated in red). The predicted Rtn4 polypeptide variant (IUPAC one-letter amino acid code) is ~800 amino acids in length. B) The insertion of two nucleotides (ac) at positions 78/79 and a single nucleotide exchange at position 107 (c) are shown in lower case letters highlighted in blue. The correspondingly changed amino acid Q at position 4 (highlighted in blue) of the assumed Rtn4-derived amino acid sequence is also highlighted in blue. The latter was changed in order to remove a stop codon early in the second round of translation. The predicted polypeptide sequence is given in the IUPAC one-letter amino acid code. Translation product for the first round on the circle is shown in the second aa sequence row. Translation could theoretically proceed for about another ~69 amino acid into a next round of translation, provided that AUG start codon 98-100 is being used for translation initiation. The amino acid sequence of the second round of translation would leave the reading frame after the FLAG peptide at the glutamine

residue and proceed (top amino acid sequence immediately under the nucleotide sequence) until the stop codon at position 285-287 (red) is encountered. The predicted protein would be \sim 869 amino acids in length.

Supplementary Fig. 3

16 mass spectra of the tryptic peptides from circRtn4 derived protein

The left coordinate is the relative intensity, the right coordinate is the absolute intensity, the horizontal coordinate is m/z.

MDLK_EQPGNTVSSGQEDFPSVLFETAASLPSLSPLSTVSFK_EHGYLGNLSAVASTEGTIEE TLNEASR_ELPERATNPFVNRESAEFSVLEYSEMGSSFNGSPKGESAMLVENTKEEVIVR_S KDKEDLVCSAALHNPQESPATLTK_VVKEDGVMSPEK_TMDIFNEMK_MSVVAPVREEYAD FKPFEQAWEVK_DTYEGSRDVLAARANMESKVDKKCFEDSLEQKSHGKDSESR_NENASF PSTPELVK_DGSRAYITCDSFTSATESTAANIFPVLEDHTSENKTDEKKIEERKAQIITEKTSP KTSNPFLVAIHDSEADYVTTDNLSKVTEAVVATMPEGLTPDLVQEACESELNEATGTKIA YETKVDLVQTSEAIQESIYPTAQLCPSFEEAEATPSPVLPDIVMEAPLNSLLPSTGASVAQP SASPLEVPSPVSYDGIK_LEPENPPPYEEAMSVALK_TSDAK_EEIKEPESFNAAVQEAEAPYIS IACDLIK_ETK_LSTEPSPEFSNYSEIAK_FEKSVPDHCELVDDSSPESEPVDLFSDDSIPDVPQT QEEAVMLMK_ESLTEVSETVTQHK_HKERLSASPQEVGKPYLESFQPNLHITKDAASNEIPT LTKKETISLQMEEFNTAIYSNDDLLSSKEDKMKESETFSDSSPIEIIDEFPTFVSAKDDSPK_ EYTDLEVSNK_SEIANVQSGANSLPCSELPCDLSFK_NTYPK_DEAHVSDEFSK_SRSSVSK_VPLLL PNVSALESQIEMGNIVKPK_VLTKEAEEKLPSDTEKEDRSLTAVLSAELNKTSDETLFALP AASEPVIPSSAEKI

В.

MDLK.EQPGNTVSSGQEDFPSVLFETAASLPSLSPLSTVSFK_EHGYLGNLSAVASTEGTIEE TLNEASR_ELPER_ATNPFVNR_ESAEFSVLEYSEMGSSFNGSPK_GESAMLVENTK.EEVIVR_S K.DKEDLVCSAALHNPQESPATLTK_VVK.EDGVMSPEK_TMDIFNEMK_MSVVAPVR.EEYAD FKPFEQAWEVK.DTYEGSR.DVLAAR_ANMESKVDKK_CFEDSLEQK_SHGK.DSESR.NENASF PSTPELVK.DGSR_AYITCDSFTSATESTAANIFPVLEDHTSENKTDEK.K_IEER_KAQIITEKTSP K_TSNPFLVAIHDSEADYVTTDNLSK_VTEAVVATMPEGLTPDLVQEACESELNEATGTK_IA YETKVDLVQTSEAIQESIYPTAQLCPSFEEAEATPSPVLPDIVMEAPLNSLLPSTGASVAQP SASPLEVPSPVSYDGIK_LEPENPPPYEEAMSVALK_TSDAK_EEIKEPESFNAAVQEAEAPYIS IACDLIK.ETK_LSTEPSPEFSNYSEIAK.FEK_SVPDHCELVDDSSPESEPVDLFSDDSIPDVPQT QEEAVMLMK_ESLTEVSETVTQHK_HKERLSASPQEVGKPYLESFQPNLHITK_DAASNEIPT LTK.K_ETISLQMEEFNTAIYSNDDLLSSK.EDK_MK.ESETFSDSSPIEIIDEFPTFVSAK.DDSPK_ EYTDLEVSNK_SEIANVQSGANSLPCSELPCDLSFK_NTYPK.DEAHVSDEFSK_SRSSVSK_VPLLL PNVSALESQIEMGNIVK.PK_VLTK_EAEEK.LPSDTEKEDR_SLTAVLSAELNK_TSDETLFALP AASEPVIPdykddddkppSSAEK_I

Supplementary Fig. 4 Tryptic peptides identified by mass spectrometry.

A, B. Peptides derived from construct circRtn4 and from circRtn4-FLAG are shown in red and blue, respectively. For mass spectrograms, see Supplementary Figs. 3 and 6, respectively. The amino acids contributed by the FLAG sequence are in lower case. The glutamic acid residue (E) contributed by the splice site between exons 2 and 3 (last row) and the aspartic acid residue (D) at the site of circularization (penultimate row) are shown in bold.

Complete digestion is marked by an underline symbol and observed incomplete digestion yielding two or more overlapping products is marked by a dot, i.e., there were additional sequences (N-terminally and/or C-terminally) in identified peptides beyond the dots.

Supplementary Fig. 5

Alignment of circRtn4/RTN4-derived protein sequences from mouse and human. The sequences of mouse circRtn4-derived protein (mouse_Rtn4_circRNA-DP) and human circRtn4-derived protein (human_Rtn4_circRNA-DP) were aligned with the ClustalX2 program.

Supplementary Fig. 6

52 mass spectra of the tryptic peptides from circRtn4-FLAG derived protein

The left coordinate is the relative intensity, the right coordinate is the absolute intensity, the horizontal coordinate is m/z.

Supplementary Fig. 7.

Several IMEs promote circRtn4 translation in N2a cells.

A. Western blot with Anti-Nogo A antibody of protein isolated from N2a cells with circRtn4 overexpression. Control, empty vector; BE-Rtn4, pCircRNA-BE-Rtn4; DMo-Rtn4, pCircRNA-DMo-Rtn4; IVS1-Rtn4, pCircRNA-IVS1-Rtn4; PAT1-Rtn4, pCircRNA-PAT1-Rtn4; DMo-Rtn4-FLAG, pCircRNA-DMo-Rtn4-FLAG; DMo-Rtn4-Stop, pCircRNA-DMo-Rtn4-Stop; the high molecular weight bands larger than 250 kDa represent polypeptides from circRtn4 translation; monomer designates the putative product from single round of circRtn4 translation; actin is used as loading control. B. long exposure of the high molecular weight bands larger than 250 kDa.

Supplementary Fig. 8 CircRNA expression cassette of pCircRNA-BE and pCircRNA-DMo vectors.

The multiple cloning site (MCS) contains the following restriction endonuclease recognition sites: *Bgl*II, *Nhe*I, *Bmt*I, *Eco*RV, *Not*I, *Sac*II, and *Xba*I. The 5' and 3' splice sites are indicated by lines. GFP of the original pCMV-MIR vector was replaced by emGFP (emerald green fluorescent protein).

Supplementary Fig. 9 Equal transfection efficiency from circRNA vectors.

GFP expression from the SV40 promoter (Supplementary Fig. 1) in each circRNA expression plasmid DNA transfection in HEK293 cells was measured by Western blot analysis with antibody against GFP. β-Actin was used as loading control. Control, pCircRNA-DMo; BE-Rtn4, pCircRNA-BE-Rtn4; DMo-Rtn4, pCircRNA-DMo-Rtn4; DMo-Rtn4-FLAG, pCircRNA-DMo-Rtn4-FLAG; DMo-Rtn4-Stop, pCircRNA-DMo-Rtn4-Stop; PAT1-Rtn4, pCircRNA-PAT1-Rtn4; IVS1-Rtn4, pCircRNA-IVS1-Rtn4.