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Signal Analysis Methods 

In order to extract periodicities recorded in a non-linear and non-stationary (frequencies change over 

time) time-series, we need a data analysis technique with the ability to decompose they into a finite 

amount of AM-FM components, called Intrinsic Mode Functions (IMFs), in the time domain itself. 

The Ensemble Empirical Mode Decomposition (EEMD) and its complete variant (CEEMD) are adaptive, 

noise-assisted data analysis methods that improve on the ordinary Empirical Mode Decomposition 

(EMD) by Huang et al.1. This decomposition provides a powerful method to look into the different 

processes behind a given time series data, and provides a way to separate short time-scale events from a 

general trend. 

Empirical mode decomposition is a form of adaptive time series decomposition method where the basis 

functions are derived from the signal itself, while in some standard forms of spectral analysis methods 

like Fourier and wavelet analysis, the basis functions are fixed as sine and cosine for the first and as 

mother wavelet functions for the second. The decomposition process produce IMFs that are singular 

function representing an oscillatory mode with one instantaneous frequency that needs to satisfy two 

criteria: 



• In the whole time series, the number of extrema and 

the number of zero crossings must be either equal or differ at 

most by one; 

• At any point in the time series, the mean value of the 

envelopes which is defined by local maxima (upper envelope) 

and local minima (lower envelope) is equal to zero.

The EMD theory says that any signal 

using the following equation1: 𝑥(𝑡) =

where 𝐼𝑀𝐹௜(𝑡), (𝑖 = 1,2, … , 𝑛) are the Intrinsic Mode Functions 

(IMF) and 𝑅௡(𝑡)is the residue-trend component.

The computational steps to extracting IMFs via EMD is based 

on the “Sifting algorithm”, which is an iterative method 

detailed as follows: 

 

Step 1: Identify all the local maxima and minima of the signal 

𝑥(𝑡). 

Step 2: Interpolate the local extrema using cubic spline to 

obtain the upper 𝑈(𝑡) and the lower 

Step 3: Calculate the local mean value of the up

lower envelopes 𝑚(𝑡) = (𝑈(𝑡) + 𝐿(𝑡

Step 4: Subtract the local mean 𝑚(𝑡)

original signal: ℎଵ(𝑡) = 𝑥(𝑡) − 𝑚(𝑡).

Step 5: Replace the signal 𝑥(𝑡) byℎଵ

reiterate Steps 1–4 until the ℎଵ(𝑡) satisfies the IMF criteria.

 

Assuming that after i times of iteration, the conditions are satisfied then 

IMF and so on. When 𝑅௡(𝑡) = ℎ௡(𝑡)

sifting process; if not, increase n and start at step 1 again to extract another IMF.

The decomposition process actuated with EMD, starts with the sequential extraction of higher freq

IMF versus lower, until the last residual trend.

The EMD algorithm has some limitations in decomposing signals where amplitude

too close to each other, these closely spaced components will be intermittent in the signal. This 

phenomenon, called mode-mixing problem, is amplified when sifting algorithm use all the local extrema 

to construct the interpolated envelopes, owing to the sensitivity of interpolation methods, stop criterion of 

IMF, and the end effect. Everything does yes

IMF. 
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ଵ(𝑡)and check if ℎଵ(𝑡)satisfies the two criteria for an IMF. If not 

satisfies the IMF criteria. 

Assuming that after i times of iteration, the conditions are satisfied then 𝐶ଵ(𝑡) = ℎ

), 𝑅௡(𝑡) represents a residuum (trend-monotone function), we stop the 

sifting process; if not, increase n and start at step 1 again to extract another IMF. 

The decomposition process actuated with EMD, starts with the sequential extraction of higher freq

IMF versus lower, until the last residual trend. 

The EMD algorithm has some limitations in decomposing signals where amplitude

too close to each other, these closely spaced components will be intermittent in the signal. This 

mixing problem, is amplified when sifting algorithm use all the local extrema 

to construct the interpolated envelopes, owing to the sensitivity of interpolation methods, stop criterion of 

IMF, and the end effect. Everything does yes that the intermittent signals cannot be separated from the 

satisfies the two criteria for an IMF. If not 

ℎଵ(𝑡) becomes the first 

monotone function), we stop the 

 

The decomposition process actuated with EMD, starts with the sequential extraction of higher frequencies 

The EMD algorithm has some limitations in decomposing signals where amplitude-frequency ranges are 

too close to each other, these closely spaced components will be intermittent in the signal. This 

mixing problem, is amplified when sifting algorithm use all the local extrema 

to construct the interpolated envelopes, owing to the sensitivity of interpolation methods, stop criterion of 

that the intermittent signals cannot be separated from the 



The mode-mixing phenomenon manifests when the oscillations with different time scales are preserved in 

one IMF, or, from a different view, the oscillations with the same time scale are sifted into different 

IMFs. 

To overcome the mode mixing obstacle, an extension to EMD algorithm was proposed by Wu and 

Huang2 and it is called Ensemble EMD (EEMD). It performs EMD over an ensemble of Gaussian white 

noise assisted data. The EEMD consists of adding different realizations of white noise to the original data 

𝑥(𝑡)in several trials. Since the added noise is different in each trial, the resulting IMFs do not exhibit any 

correlation with the corresponding IMFs from one trial to another. If the number of trials is sufficiently 

high, the added noise can be eliminated by ensemble averaging of the obtained IMFs related to the 

different trials (stacking). EEMD algorithms can be described as: 

1. Add series of white Gaussian noise 𝑤௜(𝑡)(𝑖 = 1, … , 𝐿) to the original signal 𝑥(𝑡) and generate 𝑥௜(𝑡) =

𝑥(𝑡) + 𝑤௜(𝑡); 

2. Derive a set of IMFs 𝐶௜௝(𝑡)(𝑗 = 1, … , 𝑛) and residues 𝑅௜(𝑡)(𝑖 = 1, … , 𝐿) by decomposing each of 𝑥௜(𝑡) 

applying EMD; where, 𝐶௜௝(𝑡)is the jth IMF of the ith trial; 

3. Repeat the above steps until i > L; 

4. Average over the ensemble to obtain the final IMF 𝐶௝(𝑡)(𝑗 = 1, … , 𝑛). 

Although EEMD alleviates the effect of mode mixing, noise will remain in the corresponding IMFs if the 

ensemble number is small. To eliminate the residue of added noise in IMFs, a Complete EEMD 

(CEEMD) algorithm, developed by Torres et al.3 was introduced. The noise residue was reduced by 

adding a fixed percentage of positive and negative white noise to the original data generating two sets of 

ensemble IMFs. The final IMF components are the means of all corresponding IMF components. The 

CEEMD algorithm process can be described as follows: 

1. Add a pair of opposite phase Gaussian white noises  𝑤௜
±(𝑡)(𝑖 = 1, … , 𝐿) to 𝑥(𝑡) with the same 

amplitude, generating two signals as follows: 
𝑥௜

ା (𝑡) = 𝑥(𝑡) + 𝜔௜
ା(𝑡)

𝑥௜
ି (𝑡) = 𝑥(𝑡) + 𝜔௜

ି(𝑡)
; 

2. Repeat Step 1, and decompose each new data 𝑥௜
ା(𝑡) and 𝑥௜

ି(𝑡) using the EMD algorithm; 

3. Obtain two sets of IMFs 𝐶௜௝
ା(𝑡) and 𝐶௜௝

±(𝑡)(𝑗 = 1, … , 𝑛); 

4. Obtain the final IMFs 𝐶௝(𝑡)(𝑗 = 1, … , 𝑛) by averaging 𝐶௜௝
ା(𝑡) and 𝐶௜௝

±(𝑡)(𝑗 = 1, … , 𝑛) using this equation 

𝐶௝(𝑡) =
ଵ

ଶ௅
∑ 𝐶௜௝(𝑡)ଶ௅

௜ୀଵ ; where 𝐶௜௝(𝑡) represents the j-th IMF of the i-th iteration. 

All the IMF components extracted from the asthma death signals and the reference global signals are 

analyzed with “REDFIT” (Schulz & Mudelsse84), an evolution of the Lomb-Scargle periodogram4,5, and 

Foster’s6 weighted wavelet Z-transform. 

“REDFIT” is a specialized tool to analyze unevenly sampled signal X(ti), where ti=t1,t2,...,  tN. 

The REDFIT modified periodogram, as a function of the frequency , is so defined:   

 𝑃௑(𝜔) =
ଵ

ଶ
{

[∑௫(௧)cos(ఠ(௧ିఛ))]మ

∑cosమ(ఠ(௧ିఛ))
+

[∑௫(௧)sin(ఠ(௧ିఛ))]మ

∑sinమ(ఠ(௧ିఛ))
}; 



where  is defined as: tan(2ωτ) =
∑sin(ଶఠ௧)

∑cos(ଶఠ௧)
. 

When PX() is defined in this manner, it has several useful properties which the usual discrete Fourier 

transform does not have. The inclusion of the  constant, that is a frequency dependent time delay, ensure 

to make the periodogram insensitive to time shift. 

A more import property of modified periodogram PX() is defined so that if the time series X(ti) is purely 

white noise, then the power in PX() follows an exponential probability distribution function. This 

exponential distribution provides a convenient estimate of the “false alarm probability” that says if a 

given peak is a true periodicity, or whether it is the result of randomly distributed noise. The periodogram 

PX() has the desired exponential PDF only when it is normalised by the total variance of the data5, and 

this result is still valid for signals with an uneven time-spacing. 

The “false alarm probability” works good only if the noise contained in the signal is “white”, generally, 

stratigraphic/paleoclimatic signals are characterized by “red-noise” that in the periodogram is showed by 

continuous decrease of spectral amplitude with increasing frequency7,8. Therefore, for red-noised signals 

the estimate of confidence levels in Lomb-Scargle periodogram, cut off high frequencies spectral 

components and enhance low frequencies false peaks. A valid solution at this problematic is the 

utilization of a first-order autoregressive AR(1) process to explain this red-noise signature9, this solution 

was implemented by Schulz and Mudelsee7 in the “REDFIT” software that estimates the AR(1) 

parameters directly from unevenly spaced signal. The estimated AR(1) model is then transformed from 

the time domain into the frequency domain. Comparison of the modified periodogram of the our signal 

with the spectrum of the AR(1) model allows to test the hypothesis that the analyzed signal is consistent 

with a red-noise AR(1) model. Once it is made this test we can: 

 to correct our signal Lombe-Scargle spectrum because it is biased, in particular spectral amplitudes 

at the high frequency end of the spectrum are often over-estimated; 

 to estimate the confidence levels because now the PDF of the spectrum, at each frequency, follows 

a 2 distribution. 

The Foster’s4 weighted wavelet Z-transform, that handle irregularly sampled signals, is defined as a 

suitable weighted projection onto three trial function giving the Weighted Wavelet Z transform (WWZ) 

and the Weighted Wavelet Amplitudes (WWA). 

The concept of “projection” is applied in most time series analysis methods and consists to model the 

observed data as a linear combination of trial functions and to adjust their coefficients and parameters so 

as to minimize the sum of the squared errors. 

The inner product is the main tool to project the observed data onto any subspace of the function space. In 

fact, we can project the sampled time series vector onto the subspace of the sampling space, using a set of 

n trial functions 𝜑௔(𝑡), 𝑎 = 1,2,3....., 𝑛 that define a set of trial vectors 

|𝜑௔(𝑡)⟩ = [𝜑௔(𝑡ଵ), 𝜑௔(𝑡ଶ), 𝜑௔(𝑡ଷ),......, 𝜑௔(𝑡ே)], linearly independent. 



Such subspace of trial vectors, was called by Foster “model space” of dimension 𝑛 ≤ 𝑁. 

Each vector |𝑦⟩ in the model space is a linear combination of trial functions with constant coefficients 𝑦௔; 

|𝑦⟩ = ∑ 𝑦௔|𝜑௔⟩௔ . Now, the target of the projection is to compute the coefficients ya, for which the vector 

|𝑦⟩ minimizes the sum of the squared residuals. To compute these coefficients, we use the “inner product” 

of two model space vectors |𝑦⟩ and |𝑧⟩ with coefficients ya and zb ⟨𝑦|𝑧⟩ = ∑ ∑ 𝑦௔𝑧௕⟨𝜑௔|𝜑௕⟩௕௔ =

∑ ∑ 𝑆ab𝑦௔𝑧௕௕௔ , where Sab is the Super-matrix 𝑆ab = ⟨𝜑௔|𝜑௕⟩, that represents the matrix of inner products of 

the trial functions. To obtain the best fit ya coefficients of the trial vectors, we multiply the inverse of the 

S-matrix by the vector of inner products of the trial function with our time series data: 𝑦௔ = ∑ 𝑆ab
ିଵ⟨𝜑௕|𝑥⟩௕ . 

Well-know these coefficients, we can finally compute the model function |𝑦⟩ and its variation: 𝑉௬ =

⟨𝑦|𝑦⟩ − ⟨1|𝑦⟩ଶ. 

The WWZ-WWA transform is a typical example of function-space projection, where to treat unevenly 

sampled data we need a projection onto complex and weighted trial function as the abbreviated Morlet 

mother wavelet: 

𝜑(𝑡) = 𝑒௜ఠ(௧ିఛ)ି௖ మ(௧ିఛ)మ
, 

that we can split in the trial function part: 𝜑(𝑡) = 𝑒௜ఠ(௧ିఛ),  

and in the statistical weights part: 𝑤௔ = 𝑒ି௖ మ(௧ೌିఛ)మ
. 

Now, to compute the weighted projection coefficients ya, we calculate the inner product between the 

following three trial functions: 𝜑ଵ(𝑡) = 1(𝑡); 𝜑ଶ(𝑡) = cos(𝜔(𝑡 − 𝜏)); 𝜑ଷ(𝑡) = sin(𝜔(𝑡 − 𝜏)), and the 

sampling space vector |𝑥(𝑡)⟩, using a weights wa. 

𝑦௔ =
∑ ∑ ௌab

షభ௪ೌఝೌ(௧ഁ)௫(௧ഁ)ಿ
ഁసభ

య
ೌసభ

∑ ௪ೌ
య
ೌసభ

; where; 𝑆ab
ିଵ = ⟨𝜑௔|𝜑௕⟩ିଵ, a=1,2,3. 

This enables to write the weighted variation (Vy) of the model function as: 

𝑉௬ =
∑ ௪ೌ௬మ(௧ೌ)ೌ

∑ ௪್್
− [

∑ ௪ೌ௬(௧ೌ)ೌ

∑ ௪್್
]ଶ = ⟨𝑦|𝑦⟩ − ⟨1|𝑦⟩ଶ . 

Similarly, we define the weighted variation (Vx) of the sampling space vector x(ti), corresponding at the 

time series data, as: 

 𝑉௫ =
∑ ௪ೌ௫మ(௧ೌ)ೌ

∑ ௪್್
− [

∑ ௪ೌ௫(௧ೌ)ೌ

∑ ௪್್
]ଶ = ⟨𝑥|𝑥⟩ − ⟨1|𝑥⟩ଶ. 

Now we can define the weighted wavelet transform as: WWT =
(ேeffିଵ)௏೤

ଶ௏ೣ
, 

where: 𝑁eff =
(∑௪ೌ)మ

∑௪ೌ
మ =

[∑௘ష೎ഘమ(೟షഓ)మ
]మ

∑௘షమ೎ഘమ(೟షഓ)మ  and represents the effective number of data points contained in each 

analyzing wavelet function. 

The WWT now defined is true only when the time series data is random (white) noise, instead, if our 

signal holds a frequency, we will have a false peak shifted towards lower frequency. This phenomenon is 

due to large wavelet window dimension at lower frequency so it samples more data points, therefore if 

𝑁eff is large the WWT values increase with decreasing . 



To have a real estimate of the frequency of significant peaks, we need to insert a test statistic less 

sensitive to the effective number of data. This statistic developed by Foster and called Z-statistic, convert 

the WWT in WWZ (Weighted Wavelet Z-transform), with this expression: WWZ(𝜔, 𝜏) =
(ேeffିଷ)௏೤

ଶ(௏ೣ ି௏೤)
. 

Values of the WWZ are approximately an F-statistic with 𝑁eff − 3 and 2 degrees of freedom, and expected 

value 1. This statistic evaluates the normalized quotient of the weighted variation of the projected data 

and the projected model function related to pure noise. For each couple (, ) the Null hypothesis (signal 

is pure noise), is tested and if rejected we have the certainty that the frequency  at the age , is a real 

component of the signal above the background noise. 

The WWZ is a powerful tool to identify signal frequency and their position, but it can’t measure signal 

amplitude. To calculate the amplitude of the corresponding periodic fluctuation we define the Weighted 

Wavelet Amplitude: WWA = ඥ(𝑦ଶ)ଶ + (𝑦ଷ)ଶ; where y2 and y3 are the expansion coefficients for the sine 

and cosine functions. Therefore, if the signal is periodic at the frequency being tested, WWA gives the 

real semi-amplitude of the corresponding best-fit sinusoid. 

 

Wavelet Threshold Denoising Model 

With the purpose of comparing the dominant periodicities recorded in the asthma death rates with the 

same order periodicities documented in the reference global signal (AMO and PDO), we applied a band-

pass filter using the wavelet multi-level decomposition and reconstruction technique, which is invertible 

and thus suitable for filtering data. In particular, we used the multiresolution analysis (MRA) algorithm to 

decompose a signal into scales with different time and frequency resolution organized according to a 

hierarchical scheme10. 
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Figure S1A. The North America land temperature anomalies (TA) Intrinsic Mode Functions” (IMF) diagrams. The original signal (black line) and IMF from 1 to 6 
(colored lines) was reported. 

 

 



 

 

Figure S1B. The North America land temperature anomalies (TA) IMF2, 3, and 4 (horizontal boxes, blue line), Lomb-Scargle periodogram (vertical boxes, blue 
line), and weighted wavelet Z-transform power spectrum were reported. The green and black line represent the 95% and 80% Confident Level respectively. 
Significantly periodicity (red dot) and relative values expressed in years were reported. 



 

Figure S2A. The Atlantic Multidecadal Oscillation index (AMO) Intrinsic Mode Functions” (IMF) diagrams. The original signal (black line) and IMF from 1 to 6 
(colored lines) was reported. 



 

  

Figure S2B. The Atlantic Multidecadal Oscillation index (AMO) IMF2, 3, 4, and 5 (horizontal boxes, blue line), Lomb-Scargle periodogram (vertical boxes, blue 
line), and weighted wavelet Z-transform power spectrum were reported. The green and black line represent the 95% and 80% Confident Level respectively. 
Significantly periodicity (red dot) and relative values expressed in years were reported. 



 

 

Figure S3A. The Pacific Decadal Oscillation index (PDO) Intrinsic Mode Functions” (IMF) diagrams. The original signal (black line) and IMF from 1 to 6 
(colored lines) was reported. 



 

 

Figure S3B. The Pacific Decadal Oscillation index (PDO) IMF2, 3, 4, and 5 (horizontal boxes, blue line), Lomb-Scargle periodogram (vertical boxes, blue line), 
and weighted wavelet Z-transform power spectrum were reported. The green and black line represent the 95% and 80% Confident Level respectively. Significantly 
periodicity (red dot) and relative values expressed in years were reported. 



 

Figure S4A. Asthma death rate 5-14 yr age group Intrinsic Mode Functions” (IMF) diagrams. The original signal (black line) and IMF from 1 to 6 (colored lines) 
was reported. 

 



 

 

Figure S4B. Asthma death rate 5-14 yr age group IMF2, 3, and 4 (horizontal boxes, blue line), Lomb-Scargle periodogram (vertical boxes, blue line), and weighted 
wavelet Z-transform power spectrum were reported. The green and black line represent the 95% and 80% Confident Level respectively. Significantly periodicity 
(red dot) and relative values expressed in years were reported. 



 

Figure S5A. Asthma mortality rate 15-24 yr age group Intrinsic Mode Functions” (IMF) diagrams. The original signal (black line) and IMF from 1 to 6 (colored 
lines) was reported. 

 



 

 

Figure S5B. Asthma mortality rate 15-24 yr age group IMF2, 3, and 4 (horizontal boxes, blue line), Lomb-Scargle periodogram (vertical boxes, blue line), and 
weighted wavelet Z-transform power spectrum were reported. The green and black line represent the 95% and 80% Confident Level respectively. Significantly 
periodicity (red dot) and relative values expressed in years were reported. 



 

 

Figure S6A. Asthma mortality rate 25-34 yr age group Intrinsic Mode Functions” (IMF) diagrams. The original signal (black line) and IMF from 1 to 6 (colored 
lines) was reported. 



 

 

Figure S6B. Asthma mortality rate 25-34 yr age group IMF2, 3, and 4 (horizontal boxes, blue line), Lomb-Scargle periodogram (vertical boxes, blue line), and 
weighted wavelet Z-transform power spectrum were reported. The green and black line represent the 95% and 80% Confident Level respectively. Significantly 
periodicity (red dot) and relative values expressed in years were reported. 



 

Figure S7A. Asthma mortality rate 35-44 yr age group Intrinsic Mode Functions” (IMF) diagrams. The original signal (black line) and IMF from 1 to 6 (colored 
lines) was reported. 

 



 

 

Figure S7B. Asthma mortality rate 35-44 yr age group IMF2, 3, and 4 (horizontal boxes, blue line), Lomb-Scargle periodogram (vertical boxes, blue line), and 
weighted wavelet Z-transform power spectrum were reported. The green and black line represent the 95% and 80% Confident Level respectively. Significantly 
periodicity (red dot) and relative values expressed in years were reported. 


