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Supplementary Materials 

S1. Data resources  

S1.1 Data sets used in this study 

Reference drug profiles of the CMap drug perturbation dataset (build 02) were downloaded from 

the CMap website (https://portals.broadinstitute.org/cmap/). This dataset consists of 6100 

ranked gene lists (i.e. drug instances) that are derived from the differential gene expression 

analysis between drug-treated and untreated human cell lines. These drug instances represent 

3587 drug treatment sets (see S3.2 for the definition of drug treatment set) [1] that cover 1309 

distinct drugs.  

Three gene expression datasets from breast and prostate cancer samples, and two gene 

expression datasets from non-cancer diseases: systemic lupus erythematosus (SLE) and 

hepatitis B infection (HBV), were used in this study. We downloaded the breast cancer and 

prostate cancer level-3 RNA-Seq data from The Cancer Genome Atlas (TCGA) Genomic Data 

Commons Data Portal (https://portal.gdc.cancer.gov/). The microarray-based prostate cancer 

(GSE3325) gene expression dataset [2], SLE gene expression dataset (GSE65391) and HBV 

dataset (GSE69590) were obtained from the Gene Expression Omnibus (GEO) database. 

Following Sinha et al.[3], and Borcherding et al. [4] a two-sample t-test was performed on log-

transformed TCGA level-3 normalized count data to analyze the differential expression between 

disease and normal samples. For the microarray data from GEO, we also performed two-

sample t-test between disease and non-disease samples. For the SLE dataset, we only 

included the samples from batch 2 (there are two different batches in this dataset) for the 

analysis. Details of the three cancer datasets are listed in Table S3. The two TCGA RNA-seq 

datasets contain the expression values of each gene (gene symbol), while the GEO prostate 

cancer dataset and HBV dataset were assayed by Affymetrix Human Genome U133 Plus 2.0 

Array and SLE dataset by Illumina HumanHT-12 v3 Array. When querying methods such as 

CMap and sscMap, the gene symbols or probe IDs in all datasets were converted to Affymetrix 

probe IDs because these software require the input gene signatures to be probe IDs. On the 

other hand, Cogena and Dr. Insight use gene symbols as input, which required us to convert 

different probe IDs in the GEO datasets to gene symbols before analysis.  



S1.2 Ground-truth disease-reversing drugs 

For breast cancer and prostate cancer, we used FDA-approved drugs and drugs that were in 

advanced clinical trials [5] as ground-truth drugs for performance validation.  The breast cancer 

ground-truth drug set includes 195 drug treatment sets that represent 72 distinct drugs. The 

prostate cancer drug set contains 155 drug treatment sets that cover 55 distinct drugs.  

For the two additional non-cancer datasets, we collected drugs that were in advanced clinical 

trials from https://clinicaltrials.gov. To be more specific, we searched the disease names 

(systemic lupus erythematosus and hepatitis B infection individually) in https://clinicaltrials.gov, 

and selected drugs that were in phase 3 and 4 clinical trials with either “completed” or “active” 

status. For SLE data, we also included the drugs that were well established to treat SLE from 

https://resources.lupus.org/entry/medications-used-to-treat-lupus. Finally, we merged these 

drugs with the total drug list from the CMap database as our ground truth drug set. Lists of the 

ground-truth drugs are listed in Table S4. 

S1.3 Ground-truth drug target genes  

We collected the documented drug target genes from STITCH and CTD databases to evaluate 

if the identified CEGs were over-represented by reported drug targets. The drug-target 

interactions acquired from the STITCH database contain only undirected interactions between 

drugs and target genes, whereas the information from CTD database is directed (i.e., each 

interaction in the database is annotated as up-regulation or down-regulation).  

S2. Proofs of theorems 

Here we prove that: Theorem 1, given two independent rank variables 𝑋 and 𝑌 with the same 

range 1,2,… ,𝑁 , the statistic 𝑅 = min !
!
, !
!

 has the cumulative distribution function (CDF) of 

𝐼! 𝑎 = 1, 𝑏 = 2 , where 𝐼! 𝑎, 𝑏  is the regularized incomplete Beta function; and Theorem 2: 

given two rank variables 𝑋  and 𝑌  with the same range 1,2,… ,𝑁 ,  𝑅 = max !
!
, !
!

 has the 

cumulative distribution function (CDF) of 𝐼! 𝑎 = 2, 𝑏 = 1 , where 𝐼! 𝑎, 𝑏  is the regularized 

incomplete Beta function.  

Theorem 1 Proof: We first calculate the CDF for R as follows: 
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Also, the regularized incomplete Beta function is defined as: 

𝐼! 𝑎, 𝑏 =
B 𝑟; 𝑎, 𝑏
B 𝑎, 𝑏

, 

where B 𝑟; 𝑎, 𝑏 = 𝑡!!! 1 − 𝑡 !!!!
! 𝑑𝑡 is the incomplete Beta function. B 𝑎, 𝑏 = ! ! ! !

! !!!
 is the 

complete Beta function, where Γ 𝑛 = 𝑛 − 1 ! is the Gamma function for positive integer n. If 

we substitute 𝑎 = 1, 𝑏 = 2 into 𝐼! 𝑎, 𝑏  we have: 

𝐼! 1,2 =
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Theorem 2 Proof: We first calculate the CDF for R as follows: 
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Similarly, the regularized incomplete Beta function is given by: 
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S3. Selection of CEG cutoff parameter 

To evaluate how different p-value thresholds of CEGs affect the performance of Dr. Insight, we 

tested a spectrum of p-values parameters from 0.0001 to 0.2 to select CEGs. Same as the 

performance evaluation strategy used in the main article, we performed enrichment analysis to 

assess whether the identified drug candidates by CEG threshold had statistically significant 

overlap with the ground-truth drugs. We applied this evaluation procedure to all five datasets 



(three cancer datasets that were originally reported in the manuscript and two additional non-

cancer datasets).  

The bar plots in Figure S1 give the log-transformed p-values of the enrichment test results from 

six different CEG cutoffs (0.0001, 0.001, 0.01, 0.05, 0.1, 0.2; red bars). In addition, we also 

added the enrichment scores of the CMap method (blue bars) side-by-side with Dr. Insight’s 

results as references. First of all, as shown by the bar plots, Dr. Insight apparently outperformed 

CMap in most scenarios regardless of the CEG cutoffs applied. For Dr. Insight itself, there is a 

clear trend that the performance of Dr. Insight consistently degraded when the cutoff was set to 

be either “very significant” (0.0001) or “insignificant” (0.2), while the peak performance of the 

repurposing algorithm was always achieved when the cutoff was set close to 0.05. This 

observation is well expected, where the behavior of Dr. Insight should highly correlate with the 

amount of useful information incorporated into the model. In other words, when setting the cutoff 

to a very stringent level such as 0.0001, we only utilize a small portion of top CEGs with highest 

differential expression, yet we exclude many significant CEGs with decent p-values but are not 

ranked on the top. Taking the TCGA breast cancer data as an example, when applying a cutoff 

of 0.001, we only had 3 CEGs, compared to 564 CEGs returned by the cutoff of 0.05 for drug 

fulvestrant. As a result, Dr. Insight detected fulvestrant as a significant drug with a drug p-value 

of 2.57e-4 for the 0.05 cutoff, yet it remained insignificant for the 0.001 cutoff (drug p-

value=0.23). On the other hand, when a looser threshold is used (e.g., 0.2), it introduces more 

noise into the model by including non-significant CEGs, hence negatively impacts the 

performance of the method. 

Our suggested cutoff (p-value = 0.05) had consistent leading performance (at least top 2) 

across all five datasets. In some cases, we observe that a p-value cutoff of 0.01 and 0.1 may 

result in slightly better enrichment, yet their difference compared to the 0.05 cutoff was very 

minimum. For instance, cutoff=0.01 yielded an enrichment p-value of 1.09e-4 in the TCGA 

prostate cancer dataset, compared to the enrichment p-value of 1.25e-4 by the suggested 0.05 

cutoff; in the HBV study, cutoff=0.1 resulted in an enrichment p-value of 1.22e-3, compared to 

1.56e-3 given by the 0.05 cutoff. All taken together, the above empirical evidences suggest that 

the recommended 0.05 cutoff serves as a very robust threshold for selecting CEGs in Dr. Insight. 

We used this parameter for CEG selection throughout the experiments in the manuscript. 

Meanwhile, in the Dr. Insight R package, we provided the parameter “CEG.threshold” in the 

function “drug.ident” so that users adjust the CEG threshold when needed. 

  



S4. Gene signatures and drug treatment sets 

S4.1 Gene signatures 

To evaluate the drug repurposing performance of CMap, sscMap and NFFinder, which do not 

have specific recommendations for the size of query gene signatures, we used gene lists of 

varying sizes (50, 100, 200, 300, 400, 600, 800 and 1000 Affymetrix probes) for query. These 

gene signatures were composed of top- and bottom-ranked most differentially expressed genes. 

The size range was determined based on numerous existing CMap applications, where small 

(40, 100 or 150 probes [6-8]), medium (230 or 406 probes [9, 10]), and larger sizes (870 to 1000 

probes [10, 11]) were used. We set 1000 probes as the upper limit for analysis in this study 

because it is the biggest signature size allowed for the CMap software. The input for Cogena 

was the original gene expression data of the signature genes (rather than only the gene lists). 

Because the Cogena paper has the recommended criteria of FDR ≤ 0.05 and log-fold-change ≥ 

1, so we selected the gene signature with these criteria to evaluate the performance of Cogena 

in both simulation and real data studies. 

S4.2. Drugs are studied at treatment set level 

We define a drug treatment set as a set of drug instances collected from one cell line that is 

treated by one drug. For example, “tamoxifen_MCF7” drug treatment set contains four drug 

instances that were obtained from tamoxifen perturbed MCF7 cell line. We take drug treatment 

set as the unit for our drug study. The drug treatment set is referred to as “drug” for simplicity in 

the results description.  

S5. Realistic simulation of disease-drug associations 

The procedure of the realistic simulation is illustrated in Figure S3, and it includes the following 

main steps:  

(1) Select synthetic positive drug set based on clustering analysis.  

We first generated the prototype list (PRL) of each individual drug by merging all of its instances 

in CMap into one ranked gene list [12]. Clustering analysis was performed on PRLs of all the 

drugs and a cluster of highly correlated drugs were selected as the synthetic positive drug set 𝐺 

for simulation analysis.  

To be more specific, we first merged all 6100 drug instances into the PRLs of 3587 drug 

treatment sets (see definition of “drug treatment set” in S3.2) with the aggregation algorithm 



introduced by Iorio et al. [12].  All the drug treatment sets were then clustered by their pairwise 

Spearman’s correlation values. A cluster 𝐶 containing 697 drug treatments with high within-

cluster similarity was chosen as the drug candidate pool for generating synthetic positive drug 

set 𝐺  (Figure S3-1). For each realization of the simulation, we randomly selected 20 drug 

treatments from 𝐶 as the ground-truth drug set 𝐺. The remaining drugs in CMap were referred 

to as negative drug set 𝐺. The rank lists of synthetic positive drugs in 𝐺 were then merged to 

generate a prototype PRL list designated as 𝑃!. 

(2) Learn ground-truth disease-drug association patterns from FDA-approved drugs.  

To realistically mimic disease-drug associations for synthetic ground-truth drugs, we first 

investigated the rank correlations between real cancer datasets and the gene expression of 

their corresponding FDA-approved drugs. A sub-set of the FDA drugs with higher correlations 

with the disease data were selected as reference positive drug set 𝑔. The rank list of disease 

data was denoted as 𝐿!"#. To train the rank correlation pattern 𝑅!"#$%#$↔!"#$ from FDA drugs, we 

used a Mote Carlo procedure to randomly sample a new rank vector 𝑃! from the pooled rank 

lists of drug set 𝑔. A non-parametric model of disease-drug association was given by:  𝐿!"# =

𝑅!"#$%#$↔!"#$ 𝑃! . 

(3) Generate synthetic disease rank list 𝐿!. 

Based on the inferred disease-drug association pattern 𝑅!"#$%#$↔!"#$  from step (2), we 

calculated the synthetic disease rank list 𝐿! = 𝑅!"#$%#$↔!"#$ 𝑃! . 𝐿! was used as the input for 

the simulation study and drug set 𝐺 was the ground-truth drug set.  

Repeated experiments were performed (n=10) to account for the variability in the simulation 

study and the average performance was reported. 

S6. Additional information for performance comparison for drug detection 

We evaluated drug predictability of each method by accessing its ability to correctly predict 

ground-truth drug treatment sets. The drug treatment set predicting p-values were directly 

reported by CMap, sscMap and Dr. Insight. However, for NFFinder and Cogena, only instance-

level p-values were reported. Hence, we use the minimum p-value of all the instances within a 

particular drug treatment set as its overall statistical significance.  

In simulation studies, receiver operating characteristic (ROC) curve was used to compare the 

drug prediction performance from different repurposing methods. To focus on negative 



connectivity (drug treatment effect), p-values associated with positive connectivity by CMap and 

sscMap were set to 1. For CMap, sscMap and NFFinder, multiple gene signatures with different 

sizes were used for the query, which yielded multiple ROC curves. For each of these signature-

based methods, the average of eight ROC curves that corresponded to eight query signatures 

sizes was plotted to show the overall performance.  The range of performance for different 

signatures was shown by the shaded area in Figure S4.  

When studying real cancer datasets, we compared the drug prediction performance of these 

methods by evaluating whether the proposed drug treatment candidates (p ≤ 0.05) by each 

method had statistically significant overlap with ground-truth drugs (Fisher’s exact test). The 

number of detected significant drugs from each method and the number of successfully 

predicted ground-truth drugs are listed in Table S5.1 – Table S5.11.  

S7. Additional information for drug target prediction 

Another major goal of the study is to validate that the concordantly expressed genes (CEGs) 

identified by Dr. Insight are better surrogates for drug target prediction compared to differentially 

expressed genes (DEGs). To this end, we evaluated the enrichment of ground-truth drug targets 

collected from public drug interaction databases, such as STITCH and CTD, for both CEG and 

DEG-based methods. As is demonstrated in the main article, for each of the identified drugs by 

Dr. Insight, we used Fisher’s exact test to assess if the CEGs of this drug were over-

represented by known target genes collected in the STITCH or CTD databases. If a statistical 

significant p-value (e.g., 0.05) is obtained, the corresponding drug is deemed “enriched” in 

known drug-target interactions (“enriched drugs” for short).  Similarly for the DEG-based 

methods, i.e., CMap, sscMap, and NFFinder, enrichment analysis of known drug targets was 

performed on the differentially expressed genes identified from the disease data. Finally, the 

percentage of enriched drugs out of total identified drugs, for both CEG and DEG-based 

methods, were calculated and compared in Figure 5, Figure S6 and Figure S7. 

It is worth noting that drug targets from the CTD database have directions (i.e., whether a gene 

is up-regulated or down-regulated after drug perturbation). Therefore, more specific evaluation 

of target prediction can be achieved using drug targets from the CTD database by taken into 

consideration the direction information. In other words, we evaluated if the up-regulated 

CEGs/DEGs were particularly enriched with drug up-regulated targets, and vice versa for the 

down-regulation. 



The numbers and the percentages of enriched drugs for Dr. Insight are listed in Table S6 and 

Table S7, including results from the three cancer datasets.  The percentages of the CMap-

proposed drugs whose DEGs are enriched with true targets were shown in the main text (Figure 

5). Figure S6 and Figure S7 show the bar plots of the percentages of the sscMap and NFFinder-

proposed drugs whose DEGs are enriched with true targets. In both figures, the percentage of 

the Dr. Insight-proposed drugs whose CEGs are enriched with true targets were also included 

for comparison.  

S8. Systematic comparison of drug actionable targets in pathways 

The pathway analysis results of Dr. Insight are tightly connected to the selected CEGs. For a 

given drug, a significant pathway should have a greater outlier-sum (a function of CEGs and 

their corresponding z-scores, Eq. (5) of the main text) than (1) the outlier-sum of the same 

pathway for other drugs and (2) the outlier-sum of the rest of the pathways for the same drug. 

We have shown in the main manuscript (3.4 CEGs significantly improve drug target prediction 

and Figure 4) that CEGs are better proxy for drug target prediction, compared to DEGs used by 

other signature-based methods [13-16]. The fact that our pathway analysis highly depends on 

the selected CEGs will hence inherit their predictive power. In other words, it is rational to 

expect that the identified pathways by Dr. Insight will be more enriched in “drug actionable 

targets” (i.e., genes with reversed expression between disease and drug-perturbed data) 

compared to DEG-based methods.  

To verify the above point, we systematically evaluated the percentage of “drug actionable 

targets” in pathway analysis of TCGA breast cancer data using both CEG and DEG-based 

methods. We define a drug actionable target as a gene with significantly reversed expression 

(ranked top/bottom 10%) in both disease and drug-perturbed data. Multiple DEG signatures with 

varying sizes were used for CMap. For each drug identified, we performed a hypergeometric 

test on all DEG signatures to identify significantly enriched PID pathways. Similar as we did for 

the CEGs, we took the DEGs within these significant pathways and measured the percentage of 

drug actionable targets. From Table S8, we see that CEGs (average 740 genes; minimum 234 

genes; maximum 1099 genes) gives an average of more than 40% enrichment in genes that are 

consistently ranked in the top/bottom of both disease and drug data, compared to less than 10% 

of enrichment by DEG-based method. These results show that the aberrant regulation of the 

pathways can be effectively normalized by drugs proposed by Dr. Insight. The DEG-based 



method, on the other hand, “greedily” searches for pathways that have the highest expression 

change in the disease data, yet their reversibility to drug treatment is compromised. 

S9. Robustness evaluation for drug detection 

To address the robustness of Dr. Insight against noise in the data, we performed a sensitivity 

analysis by adding different levels of noise to the disease dataset and evaluated the 

performance of three methods: Dr. Insight, simple inverse correlation and the original CMap 

method. We selected one cancer dataset: prostate cancer data from TCGA, and one non-

cancer dataset: systemic lupus erythematosus dataset as examples, to demonstrate how much 

noise can be tolerated by each method.  

To simulate datasets with controlled noise effects, we first used the inverse cumulative 

distribution function (𝜙!!) for normal distribution to transform the original scaled gene ranks r/N 

into continuous numbers x as 𝑥 = 𝜙!! !
!

, where N is the total number of genes and r is the 

rank of each gene. We then generated the noise 𝜀 from a standard normal distribution. We 

combined different percentages of the noise data and disease data to generate “noise-corrupted” 

input: 

𝑦 = 𝜂𝑥 + (1 − 𝜂)𝜖, 

where 𝜂 = 0%, 20%, 60%, 80%, 90%, denoting a spectrum of noise settings. Finally, we sort y 

and generate the new rank 𝑟! for downstream analysis. To assess how well each method 

tolerates noise, we used enrichment test to measure whether the drugs repurposed by each 

method at a given noise level have significant overlap with the ground truth drugs for the 

disease. Each noise setting was simulated for 20 times and the p-values of the enrichment tests 

were summarized. Figure S10 gives the median of log-transformed enrichment p-value of the 

three methods at different noise levels.  

Figure S10 shows that in both prostate cancer and SLE data, Dr. Insight consistently achieved 

the highest enrichment p-values among all three methods, validating its robust and superior 

performance to noisy datasets. In the prostate cancer simulation study, both Dr. Insight and the 

inverse correlation method were robust against added noise, where they produced significant 

enrichment (p-value <0.05, indicated by black horizontal line) even with 90% of noise. As a 

contrast, the original CMap method was much more sensitive to noise, most likely due to that 

CMap only utilizes a limited amount of data (i.e., a set of selected signature genes from the 

disease data) for drug repurposing. Similar results have been observed on the SLE dataset, 



where Dr. Insight and inverse correlation showed robustness to as much as 60% noise, 

whereas CMap can hardly produce any significant results even without added noise. 

 

S10. Software and reproducibility of breast cancer study  

 
The R package of Dr. Insight can be freely downloaded from https://cran.r-

project.org/web/packages/DrInsight/index.html. Our package depends on two existing packages 

“igraph” [13] and “qusage” [14]. In our vignette, we have given detailed instructions to reproduce 

our TCGA case study (https://cran.r-project.org/web/packages/DrInsight/vignettes/my-

vignette.html).   



Supplementary Tables 
Table S1. Signature selection for CMap analysis from the review paper by Musa et al. [15] 

Disease Dataset Signature criteria Signature size 

prostate 
cancer 

Celastrol- and 
gedunin-treated cell 
lines (GSE5505 and 
GSE5508) 

Criteria unknown; signatures 
validated by GE-HTS bead-based 
assay 

27 

T-ALL Human and mouse 
T-ALL cell lines 
(GSE12948, 
GSE8416 and 
GSE14618) 

p-value ≤ 0.05  150 

Gastric 
cancer 

Yonsei gastric cancer 
(GSE13861) 

p-value ≤ 0.001 & fold change ≥ 2   1000 

CNS 
injuries 

Human MCF7 breast 
adenocarcinoma 
(GSE34331) 

p-value ≤ 0.05 & fold change ≥ 1.5 21 

GBM GSE4290 p-value ≤ 0.0001 & fold change ≥ 
4 

406 

GSE7696 270 

GSE14805 870 

GSE15824 111 

GSE16011 1000 

Stem cell 
leukemia 
(SCL) 

hESCs cell lines 
(GSE54508) 

p-value ≤ 0.01 & fold change ≥ 2, 
then top and bottom100 genes 

200 

Myelomato
sis 

Human myeloma cell 
lines (GSE14011) 

FDR ≤ 0.25 & fold change ≥ 1.5 38 

AML AML data (GSE7538) Top and bottom 75 probes 150 

MLL-
rearranged 
infant ALL 

GSE32962 FDR ≤ 0.05 50 

Ovarian 
cancer 

GSE82007 p-value ≤ 0.001 60 

 



Table S2. Comparison of connectivity-mapping based drug repurposing methods. The 

“Method name” column gives a list of representative methods that use CMap drug profiles or 

other drug perturbed expression data. The methods listed in the brackets are variations of the 

original method with technical improvements. For example, methodology-wise, gCMAP is very 

similar to CMap, except that it implements some existing gene set enrichment methods to 

evaluate the connectivity and aggregates the mapping tool into an R package; QUARrATiC 

borrows the sscMap methodology but extends the reference drug perturbation datasets from 

CMap data to The Library of Integrated Network-Based Cellular Signatures (LINCS) data. Dr. 

Insight is the only method that does not belong to the category of “two-step, signature-based” 

repurposing framework, while at the same time, it is equipped with the capability to predict drug 

targets and perform functional analysis at pathway/network level. 

Method name 
 

Drug repurposing Drug mechanism study 

 Signature-
based two-step 
model? 

Fixed signature 
size? 

Target 
prediction? 

Pathway and  
functional 
analysis? 

CMap 
(gCMAP [16], 
DMAP [17], DvD 
[18]) 

Y Y N N 

sscMap [19] 
(QUADrATiC [20]) 

Y Y N N 

CDA [21] Y Y N Y 
Shigemizu, et al. 
2012 [22] 
(Chen, et al. 2016 
[5]) 

Y N N Y 

NFFinder [23] Y Y N N 
Cogena [24] Y Y N Y 
Wen, et al. 2016 
[25] 

Y N N N 

Dr. Insight N N Y Y 

 
 

 

 

 

 



Table S3. Disease datasets.  

Datasets  TCGA 
breast 
cancer 
(BRCA) 

TCGA 
prostate 
cancer 
(PRAD) 

GEO 
prostate 
cancer 
(PRAD) 

Systemic 
lupus 
erythemato
sus (SLE) 

Hepatitis B 
infection 
(HBV) 

Data type RNAseq 
data 

RNAseq 
data 

Microarray 
data 

Microarray 
data 

Microarray 
data 

# case samples 1099 498 7 118 3 
# control samples 111 52 6 40 3 
# genes used in analysis  11067 11067 12994  12994 12994 
 

Table S4. List of ground-truth drugs that are used as benchmarks in our study. For breast 

cancer and prostate cancer, FDA-approved drugs have been highlighted in red. The rest of the 

drugs are in advanced clinical trials [5].  

Breast cancer  Prostate cancer  Systemic lupus 
erythematosus  

Hepatitis B infection 

tamoxifen 
exemestane 
raloxifene 
fulvestrant 
paclitaxel 
methotrexate 
letrozole 
doxorubicin 
vinblastine 
camptothecin 
vorinostat 
simvastatin 
etoposide 
irinotecan 
estradiol 
lovastatin 
prednisolone 
sirolimus 
metformin 
naproxen 
dexamethasone 
trifluridine 
lidocaine 
aminoglutethimide 
alvespimycin 
ciprofloxacin 

estropipate 
flutamide 
megestrol 
aminoglutethimide 
nilutamide 
diethylstilbestrol 
cyproterone 
mitoxantrone 
rofecoxib 
genistein 
methylprednisolone 
lovastatin 
tacrolimus 
celecoxib 
fluvastatin 
camptothecin 
doxorubicin 
papaverine 
vorinostat 
simvastatin 
sirolimus 
finasteride 
prednisolone 
testosterone 
metformin 
azacitidine 

aspirin          
acetaminophen       
ibuprofen           
naproxen            
prednisolone        
methylprednisolone  
indomethacin        
nabumetone          
celecoxib           
cyclophosphamide    
methotrexate        
azathioprine        
hydroxychloroquine  
chloroquine         
heparin             
warfarin            
belimumab           
ACTH                
adrenocorticotropic 

estradiol      
tacrolimus     
zidovudine    
levonorgestrel 
ribavirin 



azacitidine 
naltrexone 
tacrolimus 
gefitinib 
ribavirin 
estriol 
chlorhexidine 
testosterone 
omeprazole 
loperamide 
pentoxifylline 
bisoprolol 
doxycycline 
digoxin 
fluvoxamine 
captopril 
ranitidine 
thalidomide 
tanespimycin 
minocycline 
gabapentin 
celecoxib 
methylprednisolone 
prednisone 
ramipril 
hydralazine 
clonidine 
bupivacaine 
diclofenac 
imatinib 
mifepristone 
propranolol 
riluzole 
ondansetron 
melatonin 
nimesulide 
chloroquine 
sulindac 
propofol 
prochlorperazine 
dacarbazine 
lisinopril 
metoprolol 
decitabine 

gefitinib 
thalidomide 
hydrocortisone 
gabapentin 
dexamethasone 
fulvestrant 
niclosamide 
leflunomide 
tamoxifen 
dextromethorphan 
amantadine 
paclitaxel 
exemestane 
theophylline 
mifepristone 
ciprofloxacin 
pioglitazone 
tanespimycin 
ranitidine 
quercetin 
etoposide 
isotretinoin 
omeprazole 
propofol 
prednisone 
diphenhydramine 
colchicine 
bupivacaine 

 



ifosfamide 
cyclobenzaprine 

 

 

 

Table S5.1. CMap drug identification results with TCGA BRCA data 

Gene signature sizes 50 100 200 300 400 600 800 1000 
# identified drug 
treatments 

56 52 55 67 74 74 71 56 

# identified ground-truth 
drug treatments 

5 6 3 6 5 6 6 5 

Enrichment p value 0.214 0.074 0.617 0.182 0.417 0.246 0.218 0.218 
 

Table S5.2. CMap drug identification results with TCGA PRAD data 

Gene signature sizes 50 100 200 300 400 600 800 1000 
# identified drug 
treatments 

52 83 65 66 80 73 76 71 

# identified ground-truth 
drug treatments 

8 11 7 7 9 10 8 9 

Enrichment p value 0.002 0.001 0.021 0.022 0.007 0.001 0.016 0.003 
 

Table S5.3. CMap drug identification results with GEO PRAD data 

Gene signature sizes 50 100 200 300 400 600 800 1000 
# identified drug 
treatments 

62 57 61 58 53 48 66 65 

# identified ground-truth 
drug treatments 

6 6 7 6 4 4 7 3 

Enrichment p value 0.049 0.035 0.015 0.037 0.194 0.151 0.022 0.539 
 

Table S5.4. sscMap drug identification results with TCGA BRCA data 

Gene signature sizes 50 100 200 300 400 600 800 1000 
# identified drug 
treatments 

6 19 659 998 1185 1316 1404 1436 

# identified ground-truth 
drug treatments 

0 1 31 45 61 63 72 77 

Enrichment p value 1.000 0.674 0.911 0.980 0.866 0.972 0.902 0.793 
 

 

 

 

 



Table S5.5. sscMap drug identification results with TCGA PRAD data 

Gene signature sizes 50 100 200 300 400 600 800 1000 
# identified drug 
treatments 

8 18 100 177 202 381 653 810 

# identified ground-truth 
drug treatments 

1 4 9 11 14 17 21 25 

Enrichment p value 0.298 0.006 0.027 0.141 0.052 0.483 0.954 0.983 
 

Table S5.6. sscMap drug identification results with GEO PRAD data 

Gene signature sizes 50 100 200 300 400 600 800 1000 
# identified drug 
treatments 

4 8 17 15 10 11 26 29 

# identified ground-truth 
drug treatments 

1 2 4 3 1 0 1 0 

Enrichment p value 0.162 0.044 0.005 0.025 0.357 1.000 0.684 1.000 
 

Table S5.7. NFFinder drug identification results with TCGA BRCA data 

Gene signature sizes 50 100 200 300 400 600 800 1000 
# identified drug 
treatments 

329 285 623 782 651 854 1007 1069 

# identified ground-truth 
drug treatments 

26 24 40 45 43 54 66 62 

Enrichment p value 0.052 0.032 0.227 0.508 0.161 0.213 0.103 0.471 
 

Table S5.8. NFFinder drug identification results with TCGA PRAD data 

Gene signature sizes 50 100 200 300 400 600 800 1000 
# identified drug 
treatments 

347 592 548 717 529 719 842 783 

# identified ground-truth 
drug treatments 

18 28 32 34 32 38 42 38 

Enrichment p value 0.238 0.329 0.041 0.298 0.026 0.096 0.161 0.231 
 

Table S5.9. NFFinder drug identification results with GEO PRAD data 

Gene signature sizes 50 100 200 300 400 600 800 1000 
# identified drug 
treatments 

191 159 249 207 216 323 292 372 

# identified ground-truth 
drug treatments 

16 17 20 18 20 27 20 28 

Enrichment p value 0.007 3.98E-4 0.005 0.003 0.001 0.001 0.025 0.002 
 

 

 



Table S5.10. Cogena drug identification results 

Cogena TCGA BRCA TCGA PRAD GEO PRAD 
# identified drug treatments 335 98 27 
# identified ground-truth drug 
treatments 

30 5 2 

Enrichment p value 0.008 0.418 0.327 
 

Table S5.11. Dr. Insight drug identification results 

Dr. Insight TCGA BRCA TCGA PRAD GEO PRAD 
# identified drug treatments 70 69 53 
# identified ground-truth drug 
treatments 

15 11 11 

Enrichment p value 5.96E-6 1.25E-4 1.32E-5 
 

Table S6. Drugs identified by Dr. Insight whose CEGs are enriched with STITCH drug 
targets 

 # enriched drugs % of enriched drugs 
TCGA BRCA dataset 15 44% 
TCGA PRAD dataset 10 29% 
GEO PRAD dataset 11 42% 
 

Table S7. Drugs identified by Dr. Insight whose CEGs are enriched with CTD drug targets 

 # up targets 
enriched 
drugs 

% of up targets 
enriched drugs 

# down targets 
enriched drugs 

% of down targets 
enriched drugs 

TCGA BRCA 
dataset 

15 47% 12 38% 

TCGA PRAD 
dataset 

16 47% 11 31% 

GEO PRAD 
dataset 

19 63% 14 50% 

 
 
 
 

 

 

 



Table S8. Percentage of pathway CEGs/DEGs that are consistently ranked at the 
top/bottom (inversely expressed) 10% of drug and disease data. 

Gene type Number of drugs 
identified 

Number of pathways 
identified 

Percentage of 
consistently 
top/bottom ranked 
genes 

CEG 10 31 43.0% 

DEG (50 probes) 2 2 0.96% 

DEG (100 probes) 1 1 2.60% 

DEG (200 probes) 0 5 3.73% 

DEG (300 probes) 7 5 5.01% 

DEG (400 probes) 6 8 5.24% 

DEG (600 probes) 4 8 5.19% 

DEG (800 probes) 3 8 5.15% 

DEG (1000 probes) 6 9 5.70% 

 

 

 

 

 

 

 

	  



Supplementary Figures 

 

 
Figure S1. Dr. Insight performance with different CEG cutoff. The x axis shows the 
different CMap signature size parameters, and CEG p-value cutoff parameters: 0.0001, 
0.001, 0.01, 0.05, 0.1, 0.2. The y axis is the -log p-value of the enrichment test results of 
candidate drugs. The CEG parameter used in the manuscript is in the dotted boxes. 
TCGA BRCA: breast cancer dataset from TCGA. TCGA PRAD: prostate cancer dataset 
from TCGA. GEO PRAD: prostate cancer dataset from GEO. SLE: systemic lupus 
erythematosus dataset. HBV: Hepatitis B virus infection dataset. 

 



 
Figure S2. Drug identification results comparison of different methods with various 
signature sizes. A. Drug identification results comparison among five different signature 
sizes on two prostate cancer datasets (upper panel: TCGA data; lower panel: GEO 
data). The Venn Diagrams show the agreement of drug identification results among the 
five signatures sizes (50, 100, 300, 600, and 1000 probes). Each Venn Diagram is the 
result of one method, as indicated on the top of each Venn Diagram. B. Drug 
identification results comparison among four signature-based methods with TCGA 
breast cancer dataset. The Venn Diagrams show the agreement of drug identification 
results among the four signature-based methods: cMap, sscMap, NFFinder and Cogena. 
Each Venn Diagram is the result of one sized gene signature, as indicated on the top of 
each Venn Diagram. 



 

 

Figure S3. Overview of the simulation process. (1) Select synthetic positive drug set. 
Based on a highly correlated 697-drug cluster, a positive drug set 𝐺 is sampled. The 
merged rank list 𝑃! for 𝐺 is calculated. (2) Learn ground-truth disease-drug association 
patterns based on FDA drug set 𝑔. The rank correlation pattern 𝑅!"#$%#$↔!"#$ is trained 
using Monte Carlo sampling. (3) Generate synthetic disease rank list 𝐿!. 



  
Figure S4. Average ROC curves of Dr. Insight and four signature-based connectivity-
mapping methods. For CMap, sscMap and NFFinder, the shaded area represents the 
range of the ROC curves that corresponds to eight different signature sizes.  

 



 

Figure S5.  Comparing Dr. Insight with existing methods on non-cancer datasets. The 
bar plots give the log-transformed enrichment p-values from the four methods. Multiple 
enrichment p-values are reported for CMap, sscMap, which correspond to query 
signatures of different sizes. The horizontal lines indicate the 0.05 statistical 
significance level. A. Systemic lupus erythematosus. B. Hepatitis B virus infection 
dataset. 



 

Figure S6. Target enrichment analysis: sscMap vs. Dr. Insight. (A) Results from 
STITCH database (undirected).  (B) Results from CTD database (directed).  

  

Figure S7. Target enrichment analysis: NFFinder vs. Dr. Insight. (A) Results from 
STITCH database (undirected).  (B) Results from CTD database (directed). 



 

 

Figure S8. Seven additional target pathways of trichostatin A (TSA) and their potential 
target genes. Blue hexagons are genes that are identified as CEGs by Dr. Insight, which 
are also documented as known TSA targets in the CTD database; blue circles are novel, 
previously undocumented TSA targets.   

 
 
 
 
 
 



 
Figure S9. Compare Dr. Insight with the inverse correlation method. The x axis 
indicates the five datasets: TCGA.BRCA: breast cancer dataset from TCGA. 
TCGA.PRAD: prostate cancer dataset from TCGA. GEO.PRAD: prostate cancer 
dataset from GEO. SLE: systemic lupus erythematosus dataset. HBV: Hepatitis B virus 
infection dataset. The y axis is the log-transformed enrichment p-values from the five 
methods. 
 
 

 
 
Figure S10. Robustness evaluation against noise. The amount of noise tolerated by 
three methods has been evaluated using TCGA PRAD (prostate cancer) data and SLE 
(systemic lupus erythematosus) data. The x axis denotes the percentage of noise 
added to the original data. The y axis is the median (of 20 repeated experiments) of log-
transformed enrichment p-value. Eight different signature sizes were used for CMap.  



Abbreviations and Terminologies 
CEG: concordantly expressed genes 

DEG: differentially expressed genes 

ROC: receiver operating characteristic curve 

AUC: the area under an ROC curve 

BRCA: breast invasive carcinoma 

PRAD: prostate adenocarcinoma  

SLE: systemic lupus erythematosus 

HBV: hepatitis B virus  

Drug instance/instance: the gene list ranked by the results of comparison between cells 

perturbed by drug treatment and cells grown in the same plate and treated with vehicle alone. 

Each instance represents one replicate of single drug treatment condition (e.g. concentration, 

cell line, duration, etc.). One drug can have multiple instances where same or different 

treatment combinations are used. 

Drug treatment set: a drug treatment set contains one or multiple drug instances that represent 

a single drug perturbation on a single cell line, denoted in the analysis results as drug_cellLine, 

e.g. tamoxifen_MCF7 (S3.2).  
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