Supporting Information

Development of inhibitors against *Mycobacterium abscessus* tRNA (m¹G37) methyltransferase (TrmD) using fragment-based approaches

Andrew J. Whitehouse,^{†,⊥} Sherine E. Thomas,^{‡,⊥} Karen Brown,[§] Alexander Fanourakis,[†]

Daniel S. H. Chan,[†] M. Daben J. Libardo,¹ Vitor Mendes,[‡] Helena I. M. Boshoff,¹ R. Andres Floto,[§] Chris Abell,^{*,†} Tom L. Blundell,^{*,‡} and Anthony G. Coyne^{*,†}

[†]Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom. [‡]Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom. [§]Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom; Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, CB23 3RE, United Kingdom. [†]Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of

Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA.

¹Andrew J. Whitehouse and Sherine E. Thomas contributed equally.

Table of Contents

Synthetic Chemistry	S2
X-ray Crystallography	S50
Isothermal Titration Calorimetry (ITC)	S56

Synthetic Chemistry

3-Amino-5-(1-((2-methoxypyridin-3-yl)methyl)-1H-indol-6-yl)-1H-pyrazole-4carbonitrile (26h).

Trichloroacetonitrile (0.122 mL, 1.22 mmol) was added to a suspension of 3-(1-((2-methoxypyridin-3-yl)methyl)-1H-indol-6-yl)-3-oxopropanenitrile**55h**(0.124 g, 0.406 mmol) and sodium acetate (0.167 g, 2.03 mmol) in ethanol (5 mL). The reaction mixture was stirred over 15 hours, then concentrated*in vacuo*, diluted with NaHCO₃ solution (25 mL) and extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated*in vacuo*. The crude residue was dissolved in ethanol (10 mL) and hydrazine monohydrate (0.198 mL, 4.06 mmol) was added. The reaction mixture was heated under reflux for 18 hours, then quenched with excess acetone at room temperature and concentrated*in vacuo*. Purification by flash column chromatography (0 – 70% ethyl acetate in petroleum ether) afforded**26h**(85 mg, 61% yield).

LCMS (ESI+): m/z 345.2 [M + H]⁺, (ESI-): m/z 343.1 [M - H]⁻, rt 1.83 minutes, 97%; ¹H NMR (400 MHz, (CD₃)₂SO) 12.00 (1H, br s), 8.07 (1H, dd, J = 5.0, 1.6 Hz), 7.93-7.79 (1H, m), 7.76-7.42 (3H, m), 7.15 (1H, dd, J = 7.3, 1.8 Hz), 6.88 (1H, dd, J = 7.2, 5.0 Hz), 6.62-6.48 (1H, m), 6.39 (1H, br s), 5.37 (2H, s), 3.95 (3H, s); ¹³C NMR (100 MHz, (CD₃)₂SO) 160.7, 154.6, 151.2, 145.9, 136.8, 135.6, 130.8, 128.5, 125.6, 120.6, 120.1, 117.5, 117.2, 116.7, 107.3, 101.2, 69.6, 53.4, 44.2; ν_{max}/cm^{-1} 3200 (br, N-H), 2918, 2210 (C=N), 1622, 1599, 1584, 1526, 1500; HRMS (ESI+): m/z calculated for [C₁₉H₁₆N₆O + Na]⁺ = 367.1278, observed 367.1277.

3-Amino-5-(1-((6-methoxypyridin-3-yl)methyl)-1H-indol-6-yl)-1H-pyrazole-4carbonitrile (26i).

Trichloroacetonitrile (0.114 mL, 1.14 mmol) was added to a suspension of 3-(1-((6-methoxypyridin-3-yl)methyl)-1H-indol-6-yl)-3-oxopropanenitrile**55i**(0.121 g, 0.380 mmol) and sodium acetate (0.156 g, 1.90 mmol) in ethanol (5 mL). The reaction mixture was stirred over 18 hours, then concentrated*in vacuo*, diluted with NaHCO₃ solution (20 mL) and extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated*in vacuo*. The crude residue was dissolved in ethanol (10 mL) and hydrazine monohydrate (0.185 mL, 3.80 mmol) was added. The reaction mixture was heated under reflux for 7 hours, then quenched with excess acetone at room temperature and concentrated*in vacuo*. Purification by flash column chromatography (0 – 100% ethyl acetate in petroleum ether) afforded**26i**(62 mg, 47% yield).

LCMS (ESI+): m/z 345.2 [M + H]⁺, (ESI-): m/z 343.1 [M - H]⁻, rt 1.75 minutes, >99%; ¹H NMR (500 MHz, CD₃OD) 8.07 (1H, d, J = 2.5 Hz), 7.91-7.87 (1H, m), 7.64 (1H, dd, J = 8.3, 0.5 Hz), 7.55 (1H, dd, J = 8.8, 2.5 Hz), 7.51 (1H, dd, J = 8.2, 1.5 Hz), 7.40 (1H, d, J = 3.2 Hz), 6.72 (1H, dd, J = 8.6, 0.5 Hz), 6.55 (1H, dd, J = 3.1, 0.8 Hz), 5.36 (2H, s), 3.85 (3H, s); ¹³C NMR (125 MHz, CD₃OD) 165.3, 157.9, 152.6, 146.4, 139.8, 137.3, 131.4, 131.2, 127.9, 124.3, 122.3, 118.9, 117.0, 111.9, 108.9, 103.0, 74.0, 54.2, 47.9; v_{max}/cm^{-1} 2942, 2211 (C=N), 1676, 1608, 1573; HRMS (ESI)+: m/z calculated for [C₁₉H₁₆N₆O + Na]⁺ = 367.1278, observed 367.1278.

Ethyl 1-benzyl-1H-pyrazole-4-carboxylate (32).

Benzyl bromide (0.85 mL, 7.1 mmol) was added to a suspension of ethyl 4pyrazolecarboxylate **1** (1.00 g, 7.14 mmol) and potassium carbonate (4.93 g, 35.7 mmol) in acetone (20 mL). The reaction mixture was heated under reflux for 7 hours, then concentrated *in vacuo*. The crude residue was dissolved in water (15 mL) and extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo* to afford **32** (1.63 g, 93% yield).

LCMS (ESI+): m/z 231.3 [M + H]⁺, rt 2.02 minutes, 94%; ¹H NMR (500 MHz, CDCl₃) 7.94 (1H, s), 7.85 (1H, s), 7.39-7.31 (3H, m), 7.27-7.22 (2H, m), 5.30 (2H, s), 4.27 (2H, q, J = 7.1 Hz), 1.32 (3H, t, J = 7.1 Hz); ¹³C NMR (125 MHz, CDCl₃) 163.1, 141.4, 135.4, 132.7, 129.2, 128.7, 128.1, 115.7, 60.3, 56.6, 14.5; spectroscopic data consistent with literature.¹

1-Benzyl-1H-pyrazole-4-carboxylic acid (33).

A solution of NaOH (0.287 g, 7.18 mmol) in water (5 mL) was added to a solution of ethyl 1benzyl-1H-pyrazole-4-carboxylate **32** (1.60 g, 6.53 mmol) in THF (5 mL). The reaction mixture was stirred over 14 hours, then heated to 70 °C over 150 minutes. The reaction mixture was concentrated *in vacuo*, with water (10 mL) and aqueous HCl (3 M, 2.5 mL) added to the resultant residue. The product was extracted into DCM (3 x 30 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo* to afford **33** (1.30 g, 94% yield).

LCMS (ESI-): m/z 201.2 [M - H]⁻, rt 1.61 minutes, 95%; ¹H NMR (400 MHz, CDCl₃) 7.99 (1H, s), 7.90 (1H, s), 7.41-7.30 (3H, m), 7.29-7.22 (2H, m), 5.32 (2H, s); ¹³C NMR (100 MHz, CDCl₃) 168.2, 142.1, 135.1, 133.6, 129.2, 128.8, 128.2, 114.7, 56.7; ¹H NMR spectroscopic data consistent with literature.²

1-Benzyl-N-ethyl-1H-pyrazole-4-carboxamide (34).

N,*N*-Diisopropylethylamine (0.123 mL, 0.705 mmol) and DMAP (9 mg, 0.07 mmol) were added to a suspension of ethylamine hydrochloride (46 mg, 0.56 mmol) and 1-benzyl-1H-pyrazole-4-carboxylic acid **33** (0.100 g, 0.470 mmol) in DCM (3 mL). The suspension was stirred over 5 minutes, then EDC.HCl (0.135 g, 0.705 mmol) was added. The reaction mixture was stirred over 15 hours, then diluted with NaHCO₃ solution (15 mL). The product

was extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 - 10% DCM in methanol) afforded **34** (90 mg, 84% yield).

LCMS (ESI+): m/z 230.2 [M + H]⁺, rt 1.66 minutes, >99%; ¹H NMR (400 MHz, CD₃OD) 8.09 (1H, s), 7.90 (1H, s), 7.39-7.22 (5H, m), 5.35 (2H, s), 3.33 (2H, q, J = 7.3 Hz), 1.18 (3H, t, J = 7.3 Hz); ¹³C NMR (100 MHz, CD₃OD) 164.8, 140.0, 137.5, 132.7, 129.9, 129.3, 128.9, 120.0, 56.9, 35.2, 14.9; v_{max}/cm^{-1} 3287 (N-H), 3110, 2975, 2934, 1716, 1621 (C=O), 1566, 1531; HRMS (ESI)+: m/z calculated for [C₁₃H₁₅N₃O + H]⁺ = 230.1288, observed 230.1285.

1H-Pyrazole-4-carboxylic acid (35).

Ethyl 4-pyrazolecarboxylate 1 (2.00 g, 14.3 mmol) was added to a solution of NaOH (0.570 g, 14.3 mmol) in water (20 mL). The reaction mixture was heated under reflux for 2 h, then aqueous HCl (37.5% w/v, 2.4 mL) was added dropwise at 0 °C. The resultant precipitate was collected by filtration and washed with water at 0 °C to afford **35** (1.54 g, 96% yield).

¹H NMR (400 MHz, CD₃OD) 8.03 (2H, s); ¹³C NMR (100 MHz, CD₃OD) 165.3, 136.2, 114.5; ¹H NMR spectroscopic data consistent with literature. ³

1-(Tetrahydro-2H-pyran-2-yl)-1H-pyrazole-4-carboxylic acid (36).

3,4-Dihydro-2H-pyran (0.82 mL, 8.9 mmol) and *p*-toluenesulfonic acid monohydrate (85 mg, 0.45 mmol) were added to a suspension of 1H-pyrazole-4-carboxylic acid **35** (0.500 g,

4.46 mmol) in ethyl acetate (25 mL) and DMF (2.5 mL). The reaction mixture was stirred overnight, then diluted with ethyl acetate (200 mL), washed with LiCl solution (2 x 100 mL) and brine (2 x 200 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 20% methanol in DCM) afforded **36** (0.380 g, 43% yield).

¹H NMR (400 MHz, CD₃OD) 8.26 (1H, s), 7.89 (1H, s), 5.43 (1H, dd, J = 9.6, 2.8 Hz), 4.07-4.02 (1H, m), 3.72 (1H, td, J = 10.8, 2.8 Hz), 2.13-2.00 (3H, m), 1.80-1.60 (3H, m); ¹³C NMR (100 MHz, CD₃OD) 166.3, 142.0, 133.4, 116.7, 89.1, 69.0, 31.6, 26.0, 23.2; v_{max}/cm^{-1} 3120, 2918, 2861, 1662 (C=O), 1561; HRMS (ESI)-: m/z calculated for [C₉H₁₂N₂O₃ - H]⁻ = 195.0775, observed 195.0768.

Ethyl 3-((triisopropylsilyl)oxy)benzoate (38).

Imidazole (0.82 g, 12 mmol) and triisopropylsilyl chloride (1.9 mL, 9.0 mmol) were added to a solution of ethyl-3-hydroxybenzoate **37** (1.00 g, 6.02 mmol) in DMF (5.5 mL). The reaction mixture was stirred over 2 hours then diluted with ethyl acetate (150 mL), washed with LiCl solution (2 x 200 mL) and brine (2 x 200 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 5% ethyl acetate in petroleum ether) afforded **38** (1.57 g, 81% yield).

¹H NMR (400 MHz, CDCl₃) 7.63 (1H, dt, J = 7.7, 1.1 Hz), 7.55 (1H, t, J = 1.5 Hz), 7.26 (1H, t, J = 8.0 Hz), 7.07 (1H, ddd, J = 8.0, 2.6, 1.0 Hz), 4.37 (2H, q, J = 7.2 Hz), 1.40 (3H, t, J = 7.2 Hz), 1.29 (3H, sep, J = 7.3 Hz), 1.11 (18H, d, J = 7.3 Hz); ¹³C NMR (100 MHz, CDCl₃) 166.7, 156.2, 131.9, 129.4, 124.6, 122.3, 120.9, 61.1, 18.0, 14.4, 12.8; v_{max}/cm^{-1} 2945, 2868,

1721 (C=O), 1601, 1583; HRMS (ESI)+: m/z calculated for $[C_{18}H_{30}O_3Si + H]^+ = 323.2037$, observed 323.2048.

(3-((Triisopropylsilyl)oxy)phenyl)methanol (39).

Lithium aluminium hydride (2.4 M in THF, 4 mL, 9.4 mmol) was added dropwise to a solution of ethyl 3-((triisopropylsilyl)oxy)benzoate **38** (1.52 g, 4.71 mmol) in diethyl ether (40 mL) at 0 °C. The reaction mixture was warmed to room temperature and stirred over 3 hours. Isopropanol (1 mL) was added dropwise at 0 °C to the reaction mixture, followed by aqueous potassium sodium tartrate (10% w/v, 50 mL). The product was extracted into ethyl acetate (3 x 50 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo* to afford **39** (1.08 g, 83% yield).

¹H NMR (400 MHz, CDCl₃) 7.21 (1H, t, J = 7.8 Hz), 6.94-6.91 (2H, m), 6.81 (1H, dd, J = 8.2, 2.0 Hz), 4.65 (2H, s), 1.31-1.22 (3H, m), 1.11 (18H, d, J = 7.2 Hz); spectroscopic data consistent with literature. ⁴

3-Hydroxybenzyl 1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole-4-carboxylate (40).

(3-((Triisopropylsilyl)oxy)phenyl)methanol **39** (1.08 g, 3.85 mmol), DMAP (71 mg, 0.58 mmol), EDC.HCl (1.11 g, 5.78 mmol) and *N*,*N*-diisopropylethylamine (0.84 mL, 5.8 mmol) were added to a solution of 1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole-4-carboxylic acid **36** (0.755 g, 3.85 mmol) in DCM (17 mL). The reaction mixture was stirred overnight,

then tetra-*n*-butylammonium fluoride (1 M in THF, 9.6 mL, 9.6 mmol) was added. The reaction mixture was stirred over 10 minutes, then diluted with water (50 mL) and extracted into DCM (3 x 30 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 60% ethyl acetate in petroleum ether) afforded **40** (0.386 g, 28% yield).

LCMS (ESI-): m/z 301.1 [M - H]⁻, rt 1.74 minutes, >99%; ¹H NMR (500 MHz, CDCl₃) 8.15 (1H, s), 7.99 (1H, s), 7.24 (1H, t, J = 8.0 Hz), 6.95 (1H, d, J = 8.0 Hz), 6.91-6.87 (1H, m), 6.81 (1H, dd, J = 8.1, 2.8 Hz), 5.70 (1H, br s), 5.39 (1H, dd, J = 9.2, 3.0 Hz), 5.24 (2H, s), 4.08-4.04 (1H, m), 3.70 (1H, td, J = 10.4, 3.0 Hz), 2.13-2.00 (3H, m), 1.74-1.60 (3H, m); ¹³C NMR (125 MHz, CDCl₃) 163.0, 156.2, 141.2, 138.0, 131.6, 130.0, 120.3, 115.4, 115.1, 115.0, 88.0, 68.0, 65.8, 30.8, 25.0, 22.2; v_{max}/cm^{-1} 3131, 2945, 1700 (C=O), 1588, 1558; HRMS (ESI)-: m/z calculated for [C₁₆H₁₈N₂O₄ - H]⁻ = 301.1194, observed 301.1190.

Methyl 3-bromo-5-methoxybenzoate (42).

Methyl iodide (0.90 mL, 12 mmol) was added to a solution of 3-bromo-5-hydroxybenzoic acid **41** (1.00 g, 4.61 mmol) and potassium carbonate (1.59 g, 11.5 mmol) in DMF (5 mL). The reaction mixture was stirred over 72 hours, then diluted with ethyl acetate (100 mL), washed with LiCl solution (2 x 100 mL) and brine (2 x 100 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 35% ethyl acetate in petroleum ether) afforded **42** (1.10 g, 97% yield).

¹H NMR (400 MHz, CDCl₃) 7.76-7.72 (1H, m), 7.49-7.45 (1H, m), 7.24 (1H, t, J = 2.0 Hz), 3.92 (3H, s), 3.84 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 165.8, 160.4, 132.8, 125.1, 122.8, 122.3, 113.6, 55.9, 52.6; spectroscopic data consistent with literature. ⁵

(3-Bromo-5-methoxyphenyl)methanol (43).

Lithium aluminium hydride (2.4 M in THF, 2.2 mL, 5.3 mmol) was added dropwise at 0 °C to a solution of methyl 3-bromo-5-methoxybenzoate **42** (1.07 g, 4.39 mmol) in diethyl ether (40 mL). The reaction mixture was warmed to room temperature and stirred overnight. Isopropanol (3 mL) was added dropwise at 0 °C to the reaction mixture, followed by aqueous potassium sodium tartrate (10% w/v, 50 mL). The product was extracted into ethyl acetate (3 x 50 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 35% ethyl acetate in petroleum ether) afforded **43** (0.680 g, 71% yield).

¹H NMR (400 MHz, CDCl₃) 7.11 (1H, br s), 6.96 (1H, br s), 6.86 (1H, br s), 4.66 (2H, d, J = 6.0 Hz), 3.81 (3H, s), 1.76 (1H, t, J = 6.0 Hz); ¹³C NMR (100 MHz, CDCl₃) 160.7, 144.2, 123.0, 122.2, 116.4, 111.4, 64.7, 55.7; ¹H NMR spectroscopic data consistent with literature. ⁶

3-Bromo-5-methoxybenzyl-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole-4-carboxylate (44).

(3-Bromo-5-methoxyphenyl)methanol **43** (0.664 g, 3.09 mmol), *N*,*N*-diisopropylethylamine (0.81 mL, 4.6 mmol), DMAP (75 mg, 0.45 mmol) and EDC.HCl (0.879 mg, 4.63 mmol) were added to a solution of 1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole-4-carboxylic acid **36** (0.605 g, 3.09 mmol) in DCM (17 mL). The reaction mixture was stirred overnight, then diluted with water (70 mL) and extracted into DCM (3 x 80 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in* vacuo. Purification by flash column chromatography (0 – 7% methanol in DCM) afforded **44** (0.772 g, 63% yield).

¹H NMR (400 MHz, CDCl₃) 8.14 (1H, s), 7.97 (1H, s), 7.15-7.11 (1H, m), 7.01 (1H, t, J = 2.0 Hz), 6.87-6.84 (1H, m), 5.39 (1H, dd, J = 8.8, 3.2 Hz), 5.20 (2H, s), 4.11-4.02 (1H, m), 3.80 (3H, s), 3.75-3.66 (1H, m), 2.15-1.97 (3H, m), 1.74-1.59 (3H, m); ¹³C NMR (100 MHz, CDCl₃) 162.7, 160.6, 141.2, 139.3, 131.5, 123.3, 123.0, 116.9, 114.9, 113.0, 88.0, 67.9, 65.1, 55.7, 30.8, 24.9, 22.1; v_{max}/cm^{-1} 3119, 2965, 2940, 1706 (C=O), 1607, 1570, 1559; HRMS (ESI)+: m/z calculated for $[C_{17}H_{19}BrN_2O_4 + Na]^+ = 417.0420$, observed 417.0425.

Ethyl 1-(prop-2-yn-1-yl)-1H-pyrazole-4-carboxylate (45).

Propargyl bromide (80 wt. % solution in toluene, 0.60 mL, 5.4 mmol) was added to a suspension of ethyl 4-pyrazolecarboxylate **1** (0.500 g, 3.57 mmol) and potassium carbonate (0.740 g, 5.35 mmol) in DMF (4.5 mL). The reaction mixture was stirred over 72 hours, then diluted with ethyl acetate (100 mL), washed with LiCl solution (2 x 100 mL) and brine (2 x 100 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 35% ethyl acetate in petroleum ether) afforded **45** (0.515 g, 81% yield).

LCMS (ESI+): m/z 179.1 [M + H]⁺, rt 1.54 minutes, >99%; ¹H NMR (400 MHz, CDCl₃) 8.14 (1H, s), 7.94 (1H, s), 4.96 (2H, d, J = 2.5 Hz), 4.31 (2H, q, J = 7.1 Hz), 2.58 (1H, t, J = 2.5 Hz), 1.35 (3H, t, J = 7.1 Hz); ¹³C NMR (100 MHz, CDCl₃) 162.9, 141.8, 132.4, 115.9, 75.9, 75.7, 60.4, 42.1, 14.5; v_{max}/cm^{-1} 3244 (C=C), 3130, 2977, 2935, 2133, 1697 (C=O), 1551; HRMS (ESI)+: m/z calculated for [C₉H₁₀N₂O₂ + H]⁺ = 179.0815, observed 179.0822.

3-(3-(4-(Ethoxycarbonyl)-1H-pyrazol-1-yl)prop-1-yn-1-yl)-5-methoxybenzyl-1-(tetrahydro-2H-pyran-2-yl) -1H-pyrazole-4-carboxylate (46).

Ethyl 1-(prop-2-yn-1-yl)-1H-pyrazole-4-carboxylate **45** (0.135 g, 0.759 mmol), Pd(dppf)Cl₂ (28 mg, 0.038 mmol) and CuI (15 mg, 0.076 mmol) were added to a solution of 3-bromo-5methoxybenzyl 1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole-4-carboxylate **44** (0.150 g, 0.380 mmol) in DMF (3 mL) and triethylamine (3 mL). The reaction mixture was stirred at 100 °C over 4 hours, then diluted with ethyl acetate (200 mL), washed with LiCl solution (2 x 200 mL) and brine (2 x 200 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 100% ethyl acetate in petroleum ether) afforded **46** (81 mg, 43% yield).

¹H NMR (400 MHz, CDCl₃) 8.18 (1H, s), 8.14 (1H, s), 7.98 (1H, s), 7.95 (1H, s), 7.11 (1H, s), 6.95 (2H, s), 5.39 (1H, dd, J = 8.8, 3.1 Hz), 5.22 (2H, s), 5.17 (2H, s), 4.30 (2H, q, J = 7.1 Hz), 4.10-4.01 (1H, m), 3.81 (3H, s), 3.76-3.65 (1H, m), 2.16-1.94 (3H, m), 1.77-1.61 (3H, m), 1.34 (3H, t, J = 7.1 Hz); ¹³C NMR (100 MHz, CDCl₃) 163.0, 162.7, 159.7, 141.7, 141.2, 138.2, 132.4, 131.5, 124.0, 123.0, 116.5, 115.8, 115.5, 114.9, 88.0, 86.8, 81.0, 67.9, 65.3, 60.4, 55.6, 43.0, 30.8, 24.9, 22.1, 14.5; v_{max}/cm^{-1} 2944, 1710 (C=O), 1591, 1553; HRMS (ESI)+: m/z calculated for [C₂₆H₂₈N₄O₆ + Na]⁺ = 515.1901, observed 515.1890.

3-Methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl-1-(tetrahydro-2Hpyran-2-yl)-1H-pyrazole-4-carboxylate (47).

Dioxane (8 mL) was added to a mixture of 3-bromo-5-methoxybenzyl 1-(tetrahydro-2Hpyran-2-yl)-1H-pyrazole-4-carboxylate **44** (0.363 g, 0.790 mmol), bis(pinacolato)diboron (0.401 g, 1.58 mmol), Pd(dppf)Cl₂ (29 mg, 0.040 mmol) and potassium acetate (0.194 g, 1.97 mmol). The reaction mixture was heated to 80 °C over 3 hours, then diluted with water (15 mL) and extracted into ethyl acetate (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 40% ethyl acetate in petroleum ether) afforded **47** (0.192 g, 44% yield).

¹H NMR (400 MHz, CDCl₃) 8.13 (1H, s), 7.97 (1H, s), 7.43 (1H, s), 7.29 (1H, d, J = 2.4 Hz), 7.06 (1H, t, J = 1.9 Hz), 5.38 (1H, dd, J = 8.5, 3.4 Hz), 5.24 (2H, s), 4.09-4.00 (1H, m), 3.84 (3H, s), 3.74-3.64 (1H, m), 2.14-1.95 (3H, m), 1.76-1.54 (3H, m), 1.35 (12H, s).

3-(3-Methoxyphenyl)-3-oxopropanenitrile (49).

n-Butyllithium (1.6 M in hexanes, 5.2 mL, 8.3 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (0.87 mL, 17 mmol) and THF (10 mL). The reaction mixture was stirred at -78 °C over 30 minutes. Ethyl 3-methoxybenzoate **48** (0.600 g, 3.33 mmol) was added dropwise at -78 °C, and the reaction mixture stirred at -78 °C over 30 minutes. Water

(10 mL) and aqueous HCl (1 M, 20 mL) were added dropwise at 0 °C. The product was extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 50% ethyl acetate in petroleum ether) afforded **49** (0.599 g, 99% yield).

LCMS (ESI-): m/z 174.1 [M - H]⁻, rt 1.56 minutes, >99%; ¹H NMR (400 MHz, CDCl₃) 7.49-7.39 (3H, m), 7.23-7.17 (1H, m), 4.07 (2H, s), 3.87 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 187.1, 160.3, 135.7, 130.3, 121.4, 121.1, 113.9, 112.8, 55.7, 29.6; spectroscopic data consistent with literature.⁷

3-Amino-4,4,4-trichloro-2-(1H-indole-6-carbonyl)but-2-enenitrile (53).

Trichloroacetonitrile (0.738 mL, 7.36 mmol) was added to a suspension of 3-(1H-indol-6-yl)-3-oxopropanenitrile **52** (0.491 g, 2.45 mmol) and sodium acetate (1.01 g, 12.3 mmol) in ethanol (15 mL). The reaction mixture was stirred over 90 minutes. The reaction mixture was concentrated *in vacuo*, then NaHCO₃ solution (20 mL) was added. The product was extracted into DCM/methanol (10:1, 3 x 50 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 8% methanol in DCM) afforded **53** (0.717 g, 87% yield).

¹H NMR (500 MHz, (CD₃)₂SO) 11.88 (1H, br s), 11.49 (1H, s), 9.72 (1H, br s), 7.92-7.88 (1H, m), 7.62 (1H, d, J = 8.3 Hz), 7.58 (1H, t, J = 2.8 Hz), 7.38 (1H, dd, J = 8.3, 1.6 Hz), 6.55-6.51 (1H, m); ¹³C NMR (125 MHz, (CD₃)₂SO) 193.6, 167.9, 134.5, 131.1, 130.4, 129.0, 119.5, 119.0, 118.8, 112.5, 101.5, 91.3, 77.2; v_{max}/cm^{-1} 3389 (N-H), 3280 (N-H), 2205

(C=N), 1597 (C=O), 1508; HRMS (ESI)+: m/z calculated for $[C_{13}H_8Cl_3N_3O + H]^+ =$ 327.9806, observed 327.9812.

Methyl 1-(4-methoxybenzyl)-1H-indole-6-carboxylate (54a).

4-Methoxybenzyl chloride (0.255 mL, 1.88 mmol) was added to a suspension of methyl 1Hindole-6-carboxylate **50** (0.300 g, 1.71 mmol) and caesium carbonate (1.12 g, 3.42 mmol) in acetonitrile (10 mL). The reaction mixture was heated under reflux for 1 hour, then concentrated *in vacuo*. Water (25 mL) was added to the resultant residue and the product extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 30% ethyl acetate in petroleum ether) afforded **54a** (0.445 g, 88% yield).

LCMS (ESI+): m/z 296.2 [M + H]⁺, rt 2.16 minutes, >99%; ¹H NMR (400 MHz, CDCl₃) 8.12 (1H, s), 7.81 (1H, dd, J = 8.3, 1.3 Hz), 7.65 (1H, d, J = 8.4 Hz), 7.24 (1H, d, J = 3.1 Hz), 7.12-7.04 (2H, m), 6.87-6.81 (2H, m), 6.57 (1H, dd, J = 3.1, 0.6 Hz), 5.31 (2H, s), 3.92 (3H, s), 3.77 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 168.3, 159.4, 135.8, 132.5, 131.3, 129.1, 128.5, 123.5, 120.7, 120.6, 114.4, 112.1, 102.1, 55.4, 52.1, 49.7; v_{max}/cm^{-1} 2951, 2835, 1697 (C=O), 1614, 1585, 1511; HRMS (ESI)+: m/z calculated for [C₁₈H₁₇NO₃ + Na]⁺ = 318.1101, observed 318.1107.

Methyl 1-(3-methoxybenzyl)-1H-indole-6-carboxylate (54b).

3-Methoxybenzyl chloride (0.299 mL, 2.05 mmol) was added to a suspension of methyl 1Hindole-6-carboxylate **50** (0.300 g, 1.71 mmol) and caesium carbonate (1.12 g, 3.42 mmol) in acetonitrile (10 mL). The reaction mixture was heated under reflux for 1 hour, then concentrated *in vacuo*. Water (20 mL) was added to the resultant residue and the product extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 25% ethyl acetate in petroleum ether) afforded **54b** (0.471 g, 93% yield).

LCMS (ESI+): m/z 296.2 [M + H]⁺, rt 2.18 minutes, 98%; ¹H NMR (500 MHz, CDCl₃) 8.10 (1H, s), 7.81 (1H, dd, J = 8.3, 1.4 Hz), 7.66 (1H, dd, J = 8.4, 0.6 Hz), 7.27 (1H, d, J = 3.2 Hz), 7.22 (1H, t, J = 7.9 Hz), 6.81 (1H, dd, J = 8.1, 2.4 Hz), 6.72-6.68 (1H, m), 6.65-6.62 (1H, m), 6.59 (1H, dd, J = 3.1, 0.9 Hz), 5.35 (2H, s), 3.91 (3H, s), 3.73 (3H, s); ¹³C NMR (125 MHz, CDCl₃) 168.3, 160.2, 138.8, 135.9, 132.4, 131.6, 130.1, 123.6, 120.8, 120.7, 119.2, 113.1, 112.8, 112.1, 102.4, 55.3, 52.1, 50.1; v_{max}/cm^{-1} 2913, 1703 (C=O), 1602, 1505; HRMS (ESI)+: m/z calculated for [C₁₈H₁₇NO₃ + H]⁺ = 296.1281, observed 296.1277.

Methyl 1-benzyl-1H-indole-6-carboxylate (54c).

Benzyl bromide (0.244 mL, 2.05 mmol) was added to a suspension of methyl 1H-indole-6carboxylate **50** (0.300 g, 1.71 mmol) and caesium carbonate (1.12 g, 3.42 mmol) in acetonitrile (15 mL). The reaction mixture was heated under reflux for 2 hours, then concentrated *in vacuo*. Water (15 mL) was added to the resultant residue and the product extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 - 25%) ethyl acetate in petroleum ether) afforded **54c** (0.436 g, 91% yield).

LCMS (ESI+): m/z 266.2 [M + H]⁺, rt 2.16 minutes, 95%; ¹H NMR (400 MHz, CDCl₃) 8.09 (1H, s), 7.80 (1H, dd, J = 8.3, 1.4 Hz), 7.65 (1H, d, J = 8.3 Hz), 7.34-7.23 (4H, m), 7.13-7.07 (2H, m), 6.58 (1H, dd, J = 3.1, 0.7 Hz), 5.38 (2H, s), 3.90 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 168.3, 137.2, 135.9, 132.4, 131.5, 129.0, 128.0, 126.9, 123.6, 120.8, 120.7, 112.1, 102.3, 52.1, 50.2; v_{max}/cm^{-1} 2949, 1704 (C=O), 1613; HRMS (ESI)+: m/z calculated for [C₁₇H₁₅NO₂ + H]⁺ = 266.1176, observed 266.1182.

Methyl 1-(2-cyanobenzyl)-1H-indole-6-carboxylate (54d).

2-(Bromomethyl)benzonitrile (0.403 g, 2.05 mmol) was added to a suspension of methyl 1Hindole-6-carboxylate **50** (0.300 g, 1.71 mmol) and caesium carbonate (1.12 g, 3.42 mmol) in acetonitrile (10 mL). The reaction mixture was heated under reflux for 4 hours, then concentrated *in vacuo*. Water (20 mL) was added to the resultant residue and the product extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 25% ethyl acetate in petroleum ether) afforded **54d** (0.399 g, 80% yield).

¹H NMR (400 MHz, CDCl₃) 8.04 (1H, s), 7.84 (1H, dd, J = 8.4, 1.4 Hz), 7.73 (1H, dd, J = 7.5, 1.4 Hz), 7.69 (1H, d, J = 8.3 Hz), 7.44 (1H, td, J = 7.7, 1.4 Hz), 7.38 (1H, td, J = 7.6, 1.2 Hz), 7.33 (1H, d, J = 3.2 Hz), 6.78 (1H, dd, J = 7.7, 0.7 Hz), 6.65 (1H, dd, J = 3.2, 0.8 Hz), 5.62 (2H, s), 3.91 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 168.1, 140.9, 135.8, 133.6, 133.3, 132.5, 131.6, 128.5, 127.4, 124.1, 121.2, 121.0, 117.2, 111.8, 110.9, 103.2, 52.2, 48.3;

 v_{max}/cm^{-1} 2227 (C=N), 1703 (C=O), 1616, 1601, 1502; HRMS (ESI)+: m/z calculated for [C₁₈H₁₄N₂O₂ + H]⁺ = 291.1128, observed 291.1134.

Methyl 1-(pyridin-3-ylmethyl)-1H-indole-6-carboxylate (54g).

Methyl 1H-indole-6-carboxylate **50** (0.600 g, 3.42 mmol) was added portionwise at 0 °C to a suspension of sodium hydride (60% in mineral oil, 0.685 g, 17.1 mmol) in DMF (5 mL). The reaction mixture was warmed to room temperature and stirred over 1 hour. 3- (Chloromethyl)pyridine hydrochloride (0.674 g, 4.11 mmol) was added portionwise at 0 °C to the reaction mixture. The reaction mixture was warmed to room temperature and stirred over 45 minutes. Methanol (150 mL) was added dropwise at 0 °C, and the reaction mixture adjusted to pH 1 using sulfuric acid dropwise at 0 °C. The reaction mixture was heated under reflux for 14 hours, then further sulfuric acid (10 mL) was added dropwise at 0 °C. The reaction mixture was heated under reflux for 2 hours, then concentrated *in vacuo*. NaHCO₃ solution (200 mL) was added dropwise at 0 °C. The product was extracted into DCM (3 x 150 mL). The combined organic extracts were washed with NaHCO₃ solution (100 mL) and brine (100 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (70% ethyl acetate in petroleum ether) afforded **54g** (0.732 g, 75% yield).

LCMS (ESI+): m/z 267.2 [M + H]⁺, rt 1.61 minutes, 96%; ¹H NMR (400 MHz, CDCl₃) 8.54 (1H, dd, J = 4.8, 1.4 Hz), 8.51 (1H, d, J = 1.9 Hz), 8.06 (1H, s), 7.82 (1H, dd, J = 8.3, 1.4 Hz), 7.67 (1H, d, J = 8.3 Hz), 7.33 (1H, dt, J = 7.8, 1.9 Hz), 7.27 (1H, d, J = 3.2 Hz), 7.22 (1H, dd, J = 7.8, 4.9 Hz), 6.62 (1H, dd, J = 3.2, 0.8 Hz), 5.41 (2H, s), 3.91 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 168.1, 149.4, 148.3, 135.7, 134.7, 132.9, 132.5, 131.2, 124.0, 123.9, 121.1,

120.9, 111.8, 103.0, 52.1, 47.8; v_{max}/cm^{-1} 3093, 2941, 1696 (C=O), 1613, 1577, 1506; HRMS (ESI)+: m/z calculated for $[C_{16}H_{14}N_2O_2 + H]^+ = 267.1128$, observed 267.1122.

Methyl 1-((2-methoxypyridin-3-yl)methyl)-1H-indole-6-carboxylate (54h).

p-Toluenesulfonyl chloride (1.11 g, 5.80 mmol) and DMAP (6 mg, 0.05 mmol) were added to a solution of (2-methoxypyridin-3-yl)methanol 60 (0.673 g, 4.84 mmol) and triethylamine (1.35 mL, 9.67 mmol) in DCM (7 mL). The reaction mixture was stirred over 2 hours, then diluted with NaHCO₃ solution (25 mL) and extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated in vacuo. Purification by flash column chromatography (0 - 15%) ethyl acetate in petroleum ether) was attempted, affording a crude residue. A solution of methyl 1H-indole-6-carboxylate 50 (0.710 g, 4.05 mmol) in DMF (2 mL) was added dropwise at 0 °C to a suspension of sodium hydride (60% in mineral oil, 0.405 g, 10.1 mmol) in DMF (2 mL). The reaction mixture was warmed to room temperature and stirred over 30 minutes. A solution of the crude residue in DMF (1 mL) was added dropwise at 0 °C to the reaction mixture. The reaction mixture was warmed to room temperature and stirred over 30 minutes. Methanol (200 mL) was added dropwise at 0 °C to the reaction mixture followed by sulfuric acid (15 mL). The reaction mixture was heated under reflux for 90 minutes, then concentrated in vacuo. The reaction mixture was diluted with ethyl acetate (200 mL), washed with NaHCO₃ solution (2 x 200 mL) and brine (200 mL), dried (MgSO₄) and concentrated in vacuo. Purification by flash column chromatography (10% ethyl acetate in petroleum ether) afforded 54h (0.455 g, 31% yield).

LCMS (ESI+): m/z 297.2 [M + H]⁺, rt 2.14 minutes, 97%; ¹H NMR (400 MHz, CDCl₃) 8.10-8.05 (2H, m), 7.81 (1H, dd, J = 8.3, 1.4 Hz), 7.66 (1H, dd, J = 8.4, 0.6 Hz), 7.31 (1H, d, J = 3.2 Hz), 6.89-6.84 (1H, m), 6.73 (1H, dd, J = 7.3, 5.1 Hz), 6.60 (1H, dd, J = 3.1, 0.9 Hz), 5.34 (2H, s), 4.06 (3H, s), 3.91 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 168.3, 161.1, 146.1, 136.1, 135.8, 132.4, 131.8, 123.7, 120.8, 120.7, 120.1, 117.1, 112.1, 102.4, 53.7, 52.1, 45.1; v_{max}/cm^{-1} ¹ 2948, 1711 (C=O), 1617, 1595, 1584, 1501; HRMS (ESI)+: m/z calculated for [C₁₇H₁₆N₂O₃ + Na]⁺ = 319.1053, observed 319.1056.

1-((6-Methoxypyridin-3-yl)methyl)-1H-indole-6-carboxylate (54i).

A solution of methyl 1H-indole-6-carboxylate **50** (0.237 g, 1.36 mmol) in DMF (1 mL) was added dropwise at 0 °C to a suspension of sodium hydride (60% in mineral oil, 0.108 g, 2.71 mmol) in DMF (1 mL). The reaction mixture was warmed to room temperature and stirred over 30 minutes. A solution of 5-(chloromethyl)-2-methoxypyridine **58** (0.160 g, 0.904 mmol) in DMF (1 mL) was added dropwise at 0 °C to the reaction mixture. The reaction mixture was warmed to room temperature. The reaction mixture was warmed to room temperature and stirred over 1 hour. Methanol (150 mL) was added dropwise at 0 °C to the reaction mixture followed by sulfuric acid (5 mL). The reaction mixture was heated under reflux for 1 hour, then concentrated *in vacuo*. The reaction mixture was diluted with ethyl acetate (100 mL), washed with NaHCO₃ solution (2 x 100 mL) and brine (100 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 15% ethyl acetate in petroleum ether) afforded **54i** (0.227 g, 85% yield).

LCMS (ESI+): m/z 297.2 [M + H]⁺, rt 2.09 minutes, >99%; ¹H NMR (400 MHz, CDCl₃) 8.13-8.10 (1H, m), 8.05 (1H, dd, J = 2.5, 0.6 Hz), 7.81 (1H, dd, J = 8.4, 1.4 Hz), 7.65 (1H, dd, J = 8.3, 0.6 Hz), 7.31 (1H, dd, J = 8.5, 2.5 Hz), 7.23 (1H, d, J = 3.2 Hz), 6.67 (1H, d, J = 8.5 Hz), 6.58 (1H, dd, J = 3.2, 0.8 Hz), 5.29 (2H, s), 3.92 (3H, s), 3.91 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 168.2, 164.1, 145.6, 137.8, 135.6, 132.5, 131.0, 125.4, 123.7, 120.9, 120.8, 111.9, 111.5, 102.6, 53.7, 52.1, 47.3; v_{max}/cm^{-1} 2948, 1704 (C=O), 1610, 1572; HRMS (ESI)+: m/z calculated for $[C_{17}H_{16}N_2O_3 + H]^+ = 297.1234$, observed 297.1235.

Methyl 1-(pyridin-4-ylmethyl)-1H-indole-6-carboxylate (54l).

Methyl 1H-indole-6-carboxylate **50** (0.400 g, 2.28 mmol) was added portionwise at 0 °C to a suspension of sodium hydride (60% in mineral oil, 0.457 g, 11.4 mmol) in DMF (5 mL). The reaction mixture was warmed to room temperature and stirred over 1 hour. 4- (Bromomethyl)pyridine hydrobromide (0.635 g, 2.51 mmol) was added portionwise at 0 °C to the reaction mixture. The reaction mixture was warmed to room temperature and stirred over 45 minutes. Methanol (150 mL) was added dropwise at 0 °C, and the reaction mixture adjusted to pH 1 using sulfuric acid dropwise at 0 °C. The reaction mixture was heated under reflux for 14 hours, then further sulfuric acid (10 mL) was added dropwise at 0 °C. The reaction mixture was heated under reflux for 2 hours, then concentrated *in vacuo*. NaHCO₃ solution (200 mL) was added dropwise at 0 °C. The product was extracted into DCM (3 x 150 mL). The combined organic extracts were washed with NaHCO₃ solution (100 mL) and brine (100 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (20 – 80% ethyl acetate in petroleum ether) afforded **541** (0.474 g, 71% yield).

LCMS (ESI+): m/z 267.2 [M + H]⁺, rt 1.53 minutes, 96%; ¹H NMR (400 MHz, CDCl₃) 8.56-8.49 (2H, m), 7.97 (1H, s), 7.83 (1H, dd, J = 8.4, 1.4 Hz), 7.69 (1H, dd, J = 8.3, 0.5 Hz), 7.28 (1H, d, J = 3.1 Hz), 6.96-6.91 (2H, m), 6.65 (1H, dd, J = 3.2, 0.8 Hz), 5.41 (2H, s), 3.90 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 168.0, 150.3, 146.5, 135.7, 132.4, 131.5, 124.1, 121.4, 121.2, 121.0, 111.7, 103.1, 52.1, 49.1; v_{max}/cm^{-1} 2948, 1699 (C=O), 1602, 1562, 1504; HRMS (ESI)+: m/z calculated for [C₁₆H₁₄N₂O₂ + Na]⁺ = 289.0947, observed 289.0940.

Methyl 1-(quinolin-4-ylmethyl)-1H-indole-6-carboxylate (54m).

A suspension of quinolin-4-ylmethanol **62** (0.378 g, 2.37 mmol) in aqueous HBr (48%, 5 mL) was heated under reflux for 90 minutes, then concentrated *in vacuo* to afford a crude residue. A solution of methyl 1H-indole-6-carboxylate **50** (0.400 g, 2.28 mmol) in DMF (2 mL) was added dropwise at 0 °C to a suspension of sodium hydride (60% in mineral oil, 0.457 g, 11.4 mmol) in DMF (5 mL). The reaction mixture was warmed to room temperature and stirred over 30 minutes. The crude residue was added portionwise at 0 °C to the reaction mixture. The reaction mixture was warmed to room temperature and stirred (150 mL) was added dropwise at 0 °C to the reaction mixture. The reaction mixture was warmed to room temperature and stirred over 15 minutes. Methanol (150 mL) was added dropwise at 0 °C to the reaction mixture followed by sulfuric acid (10 mL). The reaction mixture was heated under reflux for 2 hours, then concentrated *in vacuo*. The reaction mixture was diluted with ethyl acetate (200 mL), washed with NaHCO₃ solution (2 x 100 mL), water (2 x 200 mL) and brine (100 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 30% ethyl acetate in petroleum ether) afforded **54m** (0.497 g, 65% yield).

LCMS (ESI+): m/z 317.2 [M + H]⁺, rt 1.83 minutes, 94%; ¹H NMR (400 MHz, (CD₃)₂SO) 8.69 (1H, d, J = 4.4 Hz), 8.30 (1H, d, J = 8.4 Hz), 8.12-8.04 (2H, m), 7.85 (1H, ddd, J = 8.3, 7.0, 1.2 Hz), 7.79-7.67 (4H, m), 6.72 (1H, dd, J = 3.1, 0.7 Hz), 6.34 (1H, d, J = 4.4 Hz), 6.20 (2H, s), 3.77 (3H, s); ¹³C NMR (100 MHz, (CD₃)₂SO) 167.0, 150.5, 147.5, 144.0, 135.5, 133.4, 132.0, 129.7, 129.6, 126.9, 125.4, 123.7, 122.7, 120.7, 120.2, 117.4, 112.0, 102.2, 51.8, 46.3; v_{max}/cm^{-1} 3112, 3095, 1700 (C=O), 1618, 1599, 1570, 1508; HRMS (ESI)+: m/z calculated for [C₂₀H₁₆N₂O₂ + Na]⁺ = 339.1104, observed 339.1100.

Methyl 1-((1-methylpiperidin-2-yl)methyl)-1H-indole-6-carboxylate (54n).

A solution of methyl 1H-indole-6-carboxylate **50** (0.392 g, 2.24 mmol) in DMF (2 mL) was added dropwise at 0 °C to a suspension of sodium hydride (60% in mineral oil, 0.122 g, 3.05 mmol) in DMF (2 mL). The reaction mixture was warmed to room temperature and stirred over 30 minutes. A solution of 2-(chloromethyl)-1-methylpiperidine **64** (0.300 g, 2.03 mmol) in DMF (2 mL) was added at 0 °C to the reaction mixture. The reaction mixture was heated to 60 °C over 1 hour. Methanol (150 mL) was added dropwise at 0 °C to the reaction mixture followed by sulfuric acid (10 mL). The reaction mixture was heated under reflux for 1 hour, then concentrated *in vacuo*. The reaction mixture was diluted with ethyl acetate (200 mL), washed with NaHCO₃ solution (2 x 200 mL) and brine (200 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 100% ethyl acetate in petroleum ether, 0 – 10% methanol in DCM) afforded **54n** (0.172 g, 27% yield).

LCMS (ESI+): m/z 287.3 [M + H]⁺, rt 1.32 minutes, 90%; ¹H NMR (400 MHz, CDCl₃) 8.11 (1H, s), 7.78 (1H, dd, J = 8.3, 1.4 Hz), 7.61 (1H, d, J = 8.3 Hz), 7.24 (1H, d, J = 3.1 Hz), 6.52

(1H, dd, J = 3.0, 0.8 Hz), 4.56 (1H, dd, J = 14.2, 4.4 Hz), 4.01-3.90 (4H, m), 2.95-2.83 (1H, m), 2.47 (3H, s), 2.44-2.34 (1H, m), 2.14 (1H, td, J = 11.3, 3.6 Hz), 1.67-1.46 (3H, m), 1.28-1.02 (3H, m); ¹³C NMR (100 MHz, CDCl₃) 168.3, 135.9, 132.2, 132.0, 123.3, 120.5, 120.4, 112.1, 101.8, 63.4, 57.3, 52.0, 49.4, 43.6, 29.5, 25.7, 23.6; v_{max}/cm^{-1} 2938, 2855, 2784, 1707 (C=O), 1614, 1505; HRMS (ESI)+: m/z calculated for $[C_{17}H_{22}N_2O_2 + H]^+ = 287.1754$, observed 287.1751.

Methyl 1-((1-methylpiperidin-3-yl)methyl)-1H-indole-6-carboxylate (54o).

A solution of methyl 1H-indole-6-carboxylate 50 (0.568 g, 3.24 mmol) in DMF (2 mL) was added dropwise at 0 °C to a suspension of sodium hydride (60% in mineral oil, 0.151 g, 3.78 mmol) in DMF (2 mL). The reaction mixture was warmed to room temperature and stirred over 30 minutes. А solution of (1-methylpiperidin-3-yl)methyl 4methylbenzenesulfonate 66 (0.797 g, 2.70 mmol) in DMF (2 mL) was added at 0 °C to the reaction mixture, followed by NaI (81 mg, 0.54 mmol). The reaction mixture was heated to 60 °C over 1 hour, then diluted with ethyl acetate (200 mL), washed with NaHCO₃ solution (2 x 200 mL) and brine (200 mL), dried (MgSO₄) and concentrated in vacuo. Purification by flash column chromatography (0 - 8% methanol in DCM), followed by reverse phase chromatography (40 - 60% acetonitrile in water (+ 0.1% NH₃)), afforded 540 (0.348 g, 45% yield).

LCMS (ESI+): m/z 287.3 [M + H]⁺, rt 1.49 minutes, >99%; ¹H NMR (400 MHz, CDCl₃) 8.10 (1H, s), 7.78 (1H, d, J = 8.3 Hz), 7.62 (1H, d, J = 8.4 Hz), 7.22 (1H, d, J = 3.0 Hz), 6.52 (1H, d, J = 2.9 Hz), 4.12 (1H, dd, J = 14.3, 7.9 Hz), 4.04 (1H, dd, J = 14.2, 7.2 Hz), 3.94 (3H, s), 2.73-2.61 (1H, m), 2.56 (1H, d, J = 10.2 Hz), 2.30-2.16 (4H, m), 2.06-1.93 (1H, m), 1.78 (1H, t, J = 10.1 Hz), 1.74-1.47 (3H, m), 1.12-0.97 (1H, m); ¹³C NMR (100 MHz, CDCl₃) 168.4, 135.8, 132.2, 131.6, 123.3, 120.6, 120.5, 112.1, 101.7, 59.6, 56.3, 52.1, 50.3, 46.8, 37.5, 28.1, 24.7; v_{max}/cm^{-1} 2934, 2780, 1707 (C=O), 1615, 1504; HRMS (ESI)+: m/z calculated for $[C_{17}H_{22}N_2O_2 + H]^+ = 287.1754$, observed 287.1748.

3-(1-(4-Methoxybenzyl)-1H-indol-6-yl)-3-oxopropanenitrile (55a).

n-Butyllithium (1.6 M in hexanes, 1.8 mL, 2.9 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (0.23 mL, 4.3 mmol) and THF (4 mL). The reaction mixture was stirred at -78 °C over 30 minutes. A solution of methyl 1-(4-methoxybenzyl)-1H-indole-6-carboxylate **54a** (0.425 g, 1.44 mmol) in THF (2 mL) was added dropwise at -78 °C over 30 minutes. The reaction mixture was stirred at -78 °C over 15 minutes. Aqueous HCl (1 M, 25 mL) was added dropwise at 0 °C. The product was extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 50% ethyl acetate in petroleum ether) afforded **55a** (0.387 g, 88% yield).

LCMS (ESI+): m/z 327.2 [M + Na]⁺, (ESI-): m/z 303.1 [M - H]⁻, rt 2.01 minutes, >99%; (400 MHz, (CD₃)₂SO) 8.22 (1H, s), 7.79 (1H, d, J = 3.0 Hz), 7.67 (1H, d, J = 8.3 Hz), 7.60 (1H, dd, J = 8.3, 1.5 Hz), 7.25-7.19 (2H, m), 6.91-6.84 (2H, m), 6.59 (1H, d, J = 3.1 Hz), 5.45 (2H, s), 4.77 (2H, s), 3.69 (3H, s); ¹³C NMR (100 MHz, (CD₃)₂SO) 189.2, 158.7, 135.0, 133.8, 132.7, 129.8, 128.7, 128.0, 120.5, 119.1, 116.3, 114.0, 111.9, 101.8, 55.1, 48.6, 29.9; v_{max}/cm^{-1}

¹ 2943, 1679 (C=O), 1607, 1511; HRMS (ESI)+: m/z calculated for $[C_{19}H_{16}N_2O_2 + Na]^+ =$ 327.1104, observed 327.1096.

3-(1-(3-Methoxybenzyl)-1H-indol-6-yl)-3-oxopropanenitrile (55b).

n-Butyllithium (1.6 M in hexanes, 2.9 mL, 4.6 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (0.40 mL, 7.6 mmol) and THF (5 mL). The reaction mixture was stirred at -78 °C over 45 minutes. A solution of methyl 1-(3-methoxybenzyl)-1H-indole-6-carboxylate **54b** (0.450 g, 1.52 mmol) in THF (5 mL) was added dropwise at -78 °C over 30 minutes. The reaction mixture was stirred at -78 °C over 1 hour. Aqueous HCl (1 M, 15 mL) was added dropwise at 0 °C. The product was extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 50% ethyl acetate in petroleum ether) afforded **55b** (0.465 g, 99% yield).

LCMS (ESI-): m/z 303.2 [M - H]⁻, rt 2.01 minutes, >99%; ¹H NMR (400 MHz, CDCl₃) 7.97 (1H, s), 7.70 (1H, d, J = 8.4 Hz), 7.59 (1H, dd, J = 8.4, 1.6 Hz), 7.37 (1H, d, J = 3.1 Hz), 7.24 (1H, t, J = 7.9 Hz), 6.81 (1H, dd, J = 8.3, 2.5 Hz), 6.73-6.67 (1H, m), 6.64-6.60 (2H, m), 5.37 (2H, s), 4.09 (2H, s), 3.74 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 187.1, 160.2, 138.2, 136.0, 133.8, 133.4, 130.2, 128.1, 121.3, 119.7, 119.2, 114.5, 113.2, 112.9, 111.3, 102.7, 55.4, 50.4, 29.6; v_{max}/cm^{-1} 2942, 1677 (C=O), 1606, 1585; HRMS (ESI)+: m/z calculated for [C₁₉H₁₆N₂O₂ + Na]⁺ = 327.1104, observed 327.1089.

3-(1-Benzyl-1H-indol-6-yl)-3-oxopropanenitrile (55c).

n-Butyllithium (1.6 M in hexanes, 4.7 mL, 7.5 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (0.78 mL, 15 mmol) and toluene (7 mL). The reaction mixture was stirred at -78 °C over 30 minutes. A solution of methyl 1-benzyl-1H-indole-6-carboxylate **54c** (0.418 g, 1.50 mmol) in toluene (5 mL) was added dropwise at -78 °C over 30 minutes. The reaction mixture was stirred at -78 °C over 1 hour, then warmed to 0 °C and stirred over 20 minutes. Aqueous HCl (3 M, 15 mL) was added dropwise at 0 °C. The product was extracted into ethyl acetate (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO4) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 30% ethyl acetate in petroleum ether, 0 – 20% methanol in DCM) afforded **55c** (0.384 g, 84% yield).

LCMS (ESI-): m/z 273.2 [M - H]⁻, rt 1.99 minutes, >99%; ¹H NMR (400 MHz, (CD₃)₂SO) 8.21 (1H, s), 7.81 (1H, d, J = 3.0 Hz), 7.69 (1H, d, J = 8.3 Hz), 7.61 (1H, dd, J = 8.4, 1.2 Hz), 7.39-7.18 (5H, m), 6.63 (1H, d, J = 2.9 Hz), 5.55 (2H, s), 4.76 (2H, s); ¹³C NMR (100 MHz, (CD₃)₂SO) 189.2, 138.0, 135.1, 134.0, 132.7, 128.7, 128.1, 127.5, 127.1, 120.6, 119.2, 116.3, 111.8, 101.9, 49.1, 29.9; v_{max} /cm⁻¹ 1679, 1663, 1606, 1504; HRMS (ESI)+: m/z calculated for [C₁₈H₁₄N₂O + H]⁺ = 275.1179, observed 275.1179.

3-Oxo-3-(1-(pyridin-3-ylmethyl)-1H-indol-6-yl)propanenitrile (55g).

n-Butyllithium (1.6 M in hexanes, 5.1 mL, 8.1 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (0.71 mL, 14 mmol) and THF (6 mL). The reaction mixture was stirred at -78 °C over 30 minutes. A solution of methyl 1-(pyridin-3-ylmethyl)-1H-indole-6-carboxylate **54g** (0.721 g, 2.71 mmol) in THF (4 mL) was added dropwise at -78 °C over 30 minutes. The reaction mixture was stirred at -78 °C over 45 minutes. Water (20 mL) was added dropwise at 0 °C, and the reaction mixture adjusted to pH 7. The product was extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 4% methanol in DCM) afforded **55g** (0.612 g, 82% yield).

LCMS (ESI+): m/z 276.2 [M + H]⁺, (ESI-): m/z 274.1 [M - H]⁻, rt 1.41 minutes, >99%; ¹H NMR (500 MHz, (CD₃)₂SO) 8.55 (1H, d, J = 1.9 Hz), 8.47 (1H, dd, J = 4.8, 1.6 Hz), 8.25 (1H, s), 7.85 (1H, d, J = 3.1 Hz), 7.69 (1H, d, J = 8.2 Hz), 7.64-7.59 (2H, m), 7.34 (1H, ddd, J = 7.8, 4.8, 0.8 Hz), 6.64 (1H, d, J = 3.0 Hz), 5.60 (2H, s), 4.76 (2H, s); ¹³C NMR (125 MHz, (CD₃)₂SO) 189.2, 148.9, 148.5, 135.0, 134.9, 133.8, 133.5, 132.7, 128.2, 123.8, 120.7, 119.3, 116.3, 111.8, 102.3, 46.6, 29.9; ν_{max} /cm⁻¹ 3089, 2952, 2926, 2267 (C=N), 1677 (C=O), 1611, 1577, 1561, 1502; HRMS (ESI-): m/z calculated for [C₁₇H₁₃N₃O - H]⁻ = 274.0986, observed 274.0976.

3-(1-((2-Methoxypyridin-3-yl)methyl)-1H-indol-6-yl)-3-oxopropanenitrile (55h).

n-Butyllithium (1.6 M in hexanes, 1.1 mL, 1.7 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (0.15 mL, 2.9 mmol) and THF (4 mL). The reaction mixture was stirred at -78 °C over 30 minutes. A solution of methyl 1-((2-methoxypyridin-3-yl)methyl)-

1H-indole-6-carboxylate **54h** (0.177 g, 0.579 mmol) in THF (1 mL) was added dropwise at -78 °C. The reaction mixture was stirred at -78 °C over 1 hour, then NH₄Cl solution (25 mL) was added dropwise at 0 °C. The product was extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 50% ethyl acetate in petroleum ether) afforded **55h** (0.134 g, 76% yield).

LCMS (ESI+): m/z 306.2 [M + H]⁺, (ESI-): m/z 304.1 [M - H]⁻, rt 1.94 minutes, >99%; ¹H NMR (400 MHz, CDCl₃) 8.09 (1H, dd, J = 5.0, 1.8 Hz), 8.02 (1H, s), 7.70 (1H, d, J = 8.3 Hz), 7.59 (1H, dd, J = 8.5, 1.5 Hz), 7.41 (1H, d, J = 3.1 Hz), 6.97-6.92 (1H, m), 6.76 (1H, dd, J = 7.3, 5.0 Hz), 6.63 (1H, dd, J = 3.1, 0.6 Hz), 5.35 (2H, s), 4.12 (2H, s), 4.04 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 187.1, 161.2, 146.5, 136.3, 135.9, 133.7, 133.6, 128.2, 121.4, 119.8, 119.5, 117.1, 114.4, 111.2, 102.7, 53.8, 45.3, 29.6; v_{max}/cm^{-1} 2953, 2261 (C=N), 1683 (C=O), 1589; HRMS (ESI)+: m/z calculated for [C₁₈H₁₅N₃O₂ + H]⁺ = 306.1237, observed 306.1237.

3-(1-((6-Methoxypyridin-3-yl)methyl)-1H-indol-6-yl)-3-oxopropanenitrile (55i).

n-Butyllithium (1.6 M in hexanes, 1.3 mL, 2.1 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (0.18 mL, 3.5 mmol) and THF (4 mL). The reaction mixture was stirred at -78 °C over 20 minutes. A solution of methyl 1-((6-methoxypyridin-3-yl)methyl)-1H-indole-6-carboxylate **54i** (0.206 g, 0.695 mmol) in THF (2 mL) was added dropwise at -78 °C over 20 minutes. The reaction mixture was stirred at -78 °C over 30 minutes. NH4Cl solution (25 mL) was added dropwise at 0 °C. The product was extracted into DCM (3 x 25

mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 - 50% ethyl acetate in petroleum ether) afforded **55i** (0.137 g, 62% yield).

LCMS (ESI+): m/z 306.2 [M + H]⁺, (ESI-): m/z 304.1 [M - H]⁻, rt 1.86 minutes, 96%; ¹H NMR (400 MHz, CDCl₃) 8.06-8.00 (2H, m), 7.69 (1H, d, J = 8.4 Hz), 7.58 (1H, dd, J = 8.3, 1.0 Hz), 7.36-7.30 (2H, m), 6.69 (1H, d, J = 8.6 Hz), 6.61 (1H, d, J = 3.0 Hz), 5.32 (2H, s), 4.11 (2H, s), 3.90 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 187.1, 164.3, 145.7, 137.8, 135.8, 133.9, 132.9, 128.2, 124.8, 121.4, 119.9, 114.5, 111.6, 111.0, 103.0, 53.7, 47.5, 29.6; v_{max}/cm^{-1} 2940, 2249 (C=N), 1676 (C=O), 1607, 1572; HRMS (ESI)+: m/z calculated for [C₁₈H₁₅N₃O₂ + H]⁺ = 306.1237, observed 306.1234.

3-Oxo-3-(1-(pyridin-4-ylmethyl)-1H-indol-6-yl)propanenitrile (55l).

n-Butyllithium (1.6 M in hexanes, 2.9 mL, 4.7 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (0.41 mL, 7.8 mmol) and THF (6 mL). The reaction mixture was stirred at -78 °C over 30 minutes. A solution of methyl 1-(pyridin-4-ylmethyl)-1H-indole-6-carboxylate **541** (0.454 g, 1.55 mmol) in THF (4 mL) was added dropwise at -78 °C over 30 minutes. The reaction mixture was stirred at -78 °C over 45 minutes. Water (20 mL) was added dropwise at 0 °C, and the reaction mixture adjusted to pH 7. The product was extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 4% methanol in DCM) afforded **551** (0.303 g, 71% yield).

LCMS (ESI+): m/z 276.2 [M + H]⁺, (ESI-): m/z 274.2 [M - H]⁻, rt 1.37 minutes, >99%; ¹H NMR (500 MHz, (CD₃)₂SO) 8.51-8.47 (2H, m), 8.15 (1H, s), 7.83 (1H, d, J = 3.1 Hz), 7.72 (1H, d, J = 8.4 Hz), 7.63 (1H, dd, J = 8.4, 1.4 Hz), 7.11-7.06 (2H, m), 6.68 (1H, d, J = 2.9 Hz), 5.63 (2H, s), 4.74 (2H, s); ¹³C NMR (125 MHz, (CD₃)₂SO) 189.2, 149.9, 146.9, 135.2, 134.1, 132.6, 128.3, 121.7, 120.7, 119.4, 116.2, 111.7, 102.3, 47.9, 29.8; v_{max}/cm^{-1} 3076, 2918, 2258 (C=N), 1664 (C=O), 1599, 1560; HRMS (ESI-): m/z calculated for [C₁₇H₁₃N₃O - H]⁻ = 274.0986, observed 274.0976.

3-Oxo-3-(1-(quinolin-4-ylmethyl)-1H-indol-6-yl)propanenitrile (55m).

n-Butyllithium (1.6 M in hexanes, 1.7 mL, 2.8 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (0.22 mL, 4.2 mmol) and toluene (3 mL). The reaction mixture was stirred at -78 °C over 30 minutes. A suspension of methyl 1-(quinolin-4-ylmethyl)-1H-indole-6-carboxylate **54m** (0.467 g, 1.39 mmol) in toluene/THF (3:1, 12 mL) was added dropwise at -78 °C. The reaction mixture was stirred at -78 °C over 30 minutes. Water (50 mL) was added dropwise at 0 °C, and the reaction mixture adjusted to pH 8. The product was extracted into ethyl acetate (50 mL) and DCM/methanol (9:1, 3 x 50 mL). The combined organic extracts were dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 60% ethyl acetate in petroleum ether) afforded **55m** (0.119 g, 26% yield).

LCMS (ESI+): m/z 326.2 [M + H]⁺, (ESI-): m/z 324.1 [M - H]⁻, rt 1.65 minutes, >99%; ¹H NMR (400 MHz, (CD₃)₂SO) 8.70 (1H, d, J = 4.4 Hz), 8.31 (1H, d, J = 8.2 Hz), 8.20 (1H, s), 8.09 (1H, d, J = 8.2 Hz), 7.90-7.71 (4H, m), 7.67 (1H, d, J = 8.3 Hz), 6.75 (1H, d, J = 2.7 Hz),

6.36 (1H, d, J = 4.4 Hz), 6.21 (2H, s), 4.70 (2H, s); ¹³C NMR (100 MHz, (CD₃)₂SO) 189.2, 150.5, 147.5, 144.0, 135.6, 134.3, 132.6, 129.66, 129.64, 128.4, 126.9, 125.4, 123.6, 120.8, 119.4, 117.4, 116.2, 111.9, 102.5, 46.3, 29.8; v_{max}/cm^{-1} 2948, 2845, 2252 (C=N), 1673 (C=O), 1610, 1597, 1570, 1560, 1504; HRMS (ESI)+: m/z calculated for [C₂₁H₁₅N₃O + Na]⁺ = 348.1107, observed 348.1106.

3-(1-((1-Methylpiperidin-2-yl)methyl)-1H-indol-6-yl)-3-oxopropanenitrile (55n).

n-Butyllithium (1.6 M in hexanes, 0.62 mL, 0.99 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (78 μ L, 1.5 mmol) and THF (3 mL). The reaction mixture was stirred at -78 °C over 30 minutes. A solution of methyl 1-((1-methylpiperidin-2-yl)methyl)-1H-indole-6-carboxylate **54n** (0.158 g, 0.497 mmol) in THF (3 mL) was added dropwise at -78 °C over 30 minutes. The reaction mixture was stirred at -78 °C over 1 hour. Water (50 mL) was added dropwise at 0 °C, and the reaction mixture adjusted to pH 10. The product was extracted into DCM/methanol (10:1, 4 x 50 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (50 – 100% ethyl acetate in petroleum ether, 0 – 5% methanol in DCM), followed by reverse phase chromatography (0 – 50% acetonitrile in water (+ 0.1% NH₃)), afforded **55n** (48 mg, 32% yield).

LCMS (ESI+): m/z 296.3 [M + H]⁺, (ESI-): m/z 294.2 [M - H]⁻, rt 1.21 minutes, 97%; ¹H NMR (400 MHz, CDCl₃) 8.02 (1H, s), 7.65 (1H, d, J = 8.5 Hz), 7.55 (1H, dd, J = 8.4, 1.1 Hz), 7.35 (1H, d, J = 3.1 Hz), 6.55 (1H, d, J = 2.7 Hz), 4.55 (1H, dd, J = 14.2, 4.3 Hz), 4.12 (2H, br s), 3.99 (1H, dd, J = 14.3, 8.7 Hz), 2.88 (1H, d, J = 11.6 Hz), 2.46 (3H, s), 2.42-2.32

S32

(1H, m), 2.15 (1H, td, J = 11.5, 3.2 Hz), 1.72-1.42 (3H, m), 1.31-1.01 (3H, m); ¹³C NMR (100 MHz, CDCl₃) 187.1, 136.1, 133.8, 133.4, 127.9, 121.1, 119.4, 114.6, 111.2, 102.2, 63.3, 57.2, 49.3, 43.6, 29.6, 29.4, 25.5, 23.5; v_{max}/cm^{-1} 2939, 2855, 2787, 2168 (C=N), 1676 (C=O), 1606, 1500; HRMS (ESI)+: m/z calculated for [C₁₈H₂₁N₃O + H]⁺ = 296.1757, observed 296.1747.

3-(1-((1-Methylpiperidin-3-yl)methyl)-1H-indol-6-yl)-3-oxopropanenitrile (550).

n-Butyllithium (1.6 M in hexanes, 1.4 mL, 2.2 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (0.17 mL, 3.3 mmol) and THF (3 mL). The reaction mixture was stirred at -78 °C over 30 minutes. A suspension of methyl 1-((1-methylpiperidin-3-yl)methyl)-1H-indole-6-carboxylate **540** (0.318 g, 1.11 mmol) in THF (10 mL) was added dropwise at -78 °C. The reaction mixture was stirred at -78 °C over 30 minutes. Water (50 mL) was added dropwise at 0 °C, and the reaction mixture adjusted to pH 8. The product was extracted into DCM/methanol (10:1, 4 x 50 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (50 – 100% ethyl acetate in petroleum ether, 0 – 10% methanol in DCM) afforded **550** (0.221 g, 67% yield).

LCMS (ESI+): m/z 296.3 $[M + H]^+$, (ESI-): m/z 294.2 $[M - H]^-$, rt 1.37 minutes, >99%; ¹H NMR (400 MHz, CDCl₃) 8.03 (1H, s), 7.66 (1H, d, J = 8.4 Hz), 7.57 (1H, d, J = 8.4 Hz), 7.31 (1H, d, J = 3.1 Hz), 6.56 (1H, d, J = 2.8 Hz), 4.34-3.96 (4H, m), 2.74-2.61 (1H, m), 2.55 (1H, d, J = 10.5 Hz), 2.31-2.14 (4H, m), 2.13-1.99 (1H, m), 1.83 (1H, t, J = 10.1 Hz), 1.78-1.68 (1H, m), 1.67-1.50 (2H, m), 1.15-1.01 (1H, m); ¹³C NMR (100 MHz, CDCl₃) 187.2, 136.0,

133.5, 133.4, 127.9, 121.2, 119.5, 114.6, 111.2, 102.2, 59.3, 56.1, 50.1, 46.6, 37.3, 29.7, 27.8, 24.4; v_{max}/cm^{-1} 2936, 2782, 2166 (C=N), 1675 (C=O), 1607, 1564; HRMS (ESI)+: m/z calculated for $[C_{18}H_{21}N_{3}O + H]^{+} = 296.1757$, observed 296.1753.

(6-Methoxypyridin-3-yl)methanol (57).

Lithium aluminium hydride (2.4 M in THF, 1.25 mL, 2.99 mmol) was added dropwise at 0 °C to a solution of methyl 6-methoxynicotinate **56** (1.00 g, 5.98 mmol) in THF (10 mL). The reaction mixture was stirred at 0 °C over 1 hour. Aqueous potassium sodium tartrate (1 M, 25 mL) was added dropwise at 0 °C to the reaction mixture. The product was extracted into ethyl acetate (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 5% methanol in DCM) afforded **57** (0.759 g, 91% yield).

¹H NMR (400 MHz, CDCl₃) 8.07 (1H, d, J = 2.3 Hz), 7.60 (1H, dd, J = 8.5, 2.3 Hz), 6.73 (1H, d, J = 8.5 Hz), 4.59 (2H, s), 3.91 (3H, s), 2.38 (1H, s); ¹³C NMR (100 MHz, CDCl₃) 164.0, 145.7, 138.7, 129.2, 111.1, 62.5, 53.7; spectroscopic data consistent with literature.⁸

5-(Chloromethyl)-2-methoxypyridine (58).

p-Toluenesulfonyl chloride (1.21 g, 6.37 mmol) and DMAP (6 mg, 0.05 mmol) were added to a solution of (6-methoxypyridin-3-yl)methanol **57** (0.739 g, 5.31 mmol) and triethylamine (1.48 mL, 10.6 mmol) in DCM (10 mL). The reaction mixture was stirred over 18 hours, then diluted with water (20 mL). The product was extracted into DCM (3 x 25 mL). The combined

organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 - 30% ethyl acetate in petroleum ether) afforded **58** (0.160 g, 17% yield).

LCMS (ESI+): m/z 158.2 [M + H]⁺, rt 1.71 minutes, 89%; ¹H NMR (400 MHz, CDCl₃) 8.15 (1H, d, J = 2.4 Hz), 7.62 (1H, dd, J = 8.6, 2.5 Hz), 6.75 (1H, d, J = 8.5 Hz), 4.55 (2H, s), 3.94 (3H, s); spectroscopic data consistent with literature.⁸

(2-Methoxypyridin-3-yl)methanol (60).

Sodium borohydride (1.02 g, 26.9 mmol) was added portionwise at 0 °C to a solution of methyl 2-methoxynicotinate **59** (1.50 g, 8.97 mmol) in ethanol (24 mL). The reaction mixture was warmed to room temperature and stirred over 24 hours, then diluted with NaHCO₃ solution (50 mL) and extracted into DCM (4 x 50 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 10% methanol in DCM) afforded **60** (0.840 g, 67% yield).

¹H NMR (400 MHz, CDCl₃) 8.09 (1H, dd, J = 5.1, 2.0 Hz), 7.62-7.55 (1H, m), 6.88 (1H, dd, J = 7.2, 5.1 Hz), 4.64 (2H, s), 3.99 (3H, s), 2.41 (1H, br s); ¹³C NMR (100 MHz, CDCl₃) 161.7, 145.8, 136.7, 123.5, 117.0, 61.1, 53.6; spectroscopic data consistent with literature.⁹

Quinolin-4-ylmethanol (62).¹⁰

Sodium borohydride (0.144 g, 3.82 mmol) was added at 0 °C to a solution of 4quinolinecarboxaldehyde **61** (0.500 g, 3.18 mmol) in methanol (10 mL). The reaction mixture was stirred at 0 °C over 90 minutes, then diluted with water (50 mL) and extracted into DCM (3 x 50 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 7% methanol in DCM) afforded **62** (0.398 g, 79% yield).

¹H NMR (400 MHz, CD₃OD) 8.82 (1H, d, J = 4.4 Hz), 8.11-7.99 (2H, m), 7.77 (1H, ddd, J = 8.4, 7.0, 1.4 Hz), 7.69-7.59 (2H, m), 5.17 (2H, s); ¹³C NMR (100 MHz, CD₃OD) 151.2, 150.0, 148.3, 130.8, 129.6, 128.0, 127.3, 124.4, 119.3, 61.5; spectroscopic data consistent with literature. ¹⁰

2-(Chloromethyl)-1-methylpiperidine (64).

Thionyl chloride (3 mL) was added dropwise to a solution of (1-methylpiperidin-2-yl)methanol **63** (1.02 mL, 7.74 mmol) in DCM (15 mL). The reaction mixture was heated under reflux for 7 hours, then diluted with NaHCO₃ solution (100 mL) and extracted into DCM (3 x 100 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo* to afford **64** (0.658 g, 58% yield).

¹H NMR (400 MHz, CDCl₃) 3.63 (1H, dd, J = 11.5, 5.2 Hz), 3.50 (1H, dd, J = 11.5, 2.6 Hz), 2.84 (1H, dtd, J = 11.5, 3.5, 1.5 Hz), 2.27 (3H, s), 2.14-2.02 (2H, m), 1.78-1.48 (5H, m), 1.34-1.18 (1H, m); ¹³C NMR (100 MHz, CDCl₃) 64.2, 57.0, 46.9, 43.0, 29.6, 25.8, 24.0; v_{max}/cm^{-1} 2936, 2855, 2780, 2712. (1-Methylpiperidin-3-yl)methyl 4-methylbenzenesulfonate (66).

DMAP (47 mg, 0.39 mmol), triethylamine (2.2 mL, 16 mmol) and *p*-toluenesulfonyl chloride (1.62 g, 8.51 mmol) were added to a solution of (1-methylpiperidin-3-yl)methanol **65** (0.987 mL, 7.74 mmol) in DCM (15 mL). The reaction mixture was stirred over 4 hours, then diluted with water (25 mL) and extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 20% methanol in DCM) afforded **66** (0.815 g, 36% yield).

LCMS (ESI+): m/z 284.2 [M + H]⁺, rt 1.36 minutes, 96%; ¹H NMR (500 MHz, CDCl₃) 7.80-7.75 (2H, m), 7.36-7.31 (2H, m), 3.91 (1H, dd, J = 9.7, 5.8 Hz), 3.86 (1H, dd, J = 9.6, 7.1 Hz), 2.74 (1H, d, J = 10.2 Hz), 2.68 (1H, d, J = 10.8 Hz), 2.44 (3H, s), 2.22 (3H, s), 2.02-1.93 (1H, m), 1.90 (1H, t, J = 11.3 Hz), 1.72 (1H, t, J = 10.5 Hz), 1.67-1.48 (3H, m), 1.03-0.90 (1H, m); ¹³C NMR (125 MHz, CDCl₃) 144.9, 133.1, 130.0, 128.0, 73.0, 58.3, 56.0, 46.6, 35.9, 26.1, 24.4, 21.8; v_{max}/cm^{-1} 2938, 2783, 1598; HRMS (ESI)+: m/z calculated for [C₁₄H₂₁NO₃S + H]⁺ = 284.1315, observed 284.1315.

4-(Piperidin-1-ylmethyl)benzonitrile (77b).

Sodium triacetoxyborohydride (2.59 g, 12.2 mmol) was added to a solution of 4formylbenzonitrile **76** (1.00 g, 7.63 mmol), piperidine (0.753 mL, 7.63 mmol) and acetic acid (0.524 mL, 9.15 mmol) in DCM (10 mL). The reaction mixture was stirred over 5 hours, then diluted with water (10 mL), adjusted to pH 14 and extracted into DCM (3 x 25 mL). The combined organic extracts were dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 25% ethyl acetate in petroleum ether) afforded **77b** (1.21 g, 79% yield).

¹H NMR (400 MHz, CDCl₃) 7.62-7.55 (2H, m), 7.44 (2H, d, J = 8.3 Hz), 3.49 (2H, s), 2.43-2.27 (4H, m), 1.57 (4H, quin, J = 5.6 Hz), 1.48-1.38 (2H, m); ¹³C NMR (100 MHz, CDCl₃) 145.0, 132.1, 129.6, 119.2, 110.7, 63.4, 54.7, 26.1, 24.3; spectroscopic data consistent with literature. ¹¹

4-(Morpholinomethyl)benzonitrile (77c).

Sodium triacetoxyborohydride (1.42 g, 6.71 mmol) was added to a solution of 4formylbenzonitrile **76** (0.550 g, 4.19 mmol), morpholine (0.367 mL, 4.19 mmol) and acetic acid (0.288 mL, 5.03 mmol) in DCM (6 mL). The reaction mixture was stirred over 90 minutes, then diluted with water (10 mL), adjusted to pH 14 and extracted into DCM (3 x 25 mL). The combined organic extracts were dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 60% ethyl acetate in petroleum ether) afforded **77c** (0.738 g, 77% yield).

¹H NMR (400 MHz, CDCl₃) 7.62-7.57 (2H, m), 7.45 (2H, d, J = 8.2 Hz), 3.70 (4H, t, J = 4.6 Hz), 3.53 (2H, s), 2.43 (4H, t, J = 4.6 Hz); ¹³C NMR (100 MHz, CDCl₃) 143.9, 132.3, 129.6, 119.0, 111.1, 67.0, 62.9, 53.7; spectroscopic data consistent with literature.¹²

4-(Piperidin-1-ylmethyl)benzaldehyde (78b).

Diisobutylaluminium hydride (1 M in THF, 5.9 mL, 5.9 mmol) was added dropwise at 0 °C to a solution of 4-(piperidin-1-ylmethyl)benzonitrile **77b** (1.19 g, 5.94 mmol) in THF (10 mL). The reaction mixture was warmed to room temperature and stirred over 90 minutes, then NaHCO₃ solution (50 mL) was added dropwise at 0 °C. The product was extracted into DCM/methanol (10:1, 3 x 50 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 18% ethyl acetate in petroleum ether) afforded **78b** (0.877 g, 58% yield).

¹H NMR (400 MHz, CDCl₃) 9.97 (1H, s), 7.80 (2H, d, J = 8.1 Hz), 7.48 (2H, d, J = 8.1 Hz), 3.53 (2H, s), 2.48-2.26 (4H, m), 1.64-1.51 (4H, m), 1.47-1.37 (2H, m); ¹³C NMR (100 MHz, CDCl₃) 192.1, 146.3, 135.5, 129.8, 129.6, 63.5, 54.6, 26.0, 24.3; spectroscopic data consistent with literature. ¹³

4-(Morpholinomethyl)benzaldehyde (78c).

Diisobutylaluminium hydride (1 M in THF, 3.1 mL, 3.1 mmol) was added dropwise at 0 °C to a solution of 4-(morpholinomethyl)benzonitrile **77c** (0.717 g, 3.12 mmol) in THF (6 mL). The reaction mixture was warmed to room temperature and stirred over 30 minutes, then further diisobutylaluminium hydride (1 M in THF, 3.1 mL, 3.1 mmol) was added dropwise at 0 °C. The reaction mixture was warmed to room temperature and stirred over 30 minutes, then NaHCO₃ solution (50 mL) was added dropwise at 0 °C. The product was extracted into

DCM/methanol (10:1, 3 x 50 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 - 50% ethyl acetate in petroleum ether) afforded **78c** (0.297 g, 46% yield).

¹H NMR (400 MHz, CDCl₃) 9.99 (1H, s), 7.87-7.81 (2H, m), 7.51 (2H, d, J = 8.1 Hz), 3.71 (4H, t, J = 4.6 Hz), 3.57 (2H, s), 2.45 (4H, t, J = 4.5 Hz); ¹³C NMR (100 MHz, CDCl₃) 192.1, 145.5, 135.7, 129.9, 129.6, 67.1, 63.2, 53.8; spectroscopic data consistent with literature. ¹³

Methyl 1-(4-(piperidin-1-ylmethyl)benzyl)-1H-indole-6-carboxylate (79b).

A solution of 4-(piperidin-1-ylmethyl)benzaldehyde **78b** (0.400 g, 1.57 mmol) in toluene (3 mL) was added to a mixture of methyl indoline-6-carboxylate **75** (0.360 g, 1.89 mmol) and benzoic acid (38 mg, 0.32 mmol). The reaction mixture was heated to 200 °C by microwave for 30 minutes, then diluted with ethyl acetate (25 mL), washed with NaHCO₃ solution (3 x 15 mL) and brine (15 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (20 – 41% ethyl acetate in petroleum ether) afforded **79b** (0.393 g, 67% yield).

LCMS (ESI+): m/z 363.4 [M + H]⁺, rt 1.50 minutes, 97%; ¹H NMR (400 MHz, CDCl₃) 8.10 (1H, s), 7.83-7.77 (1H, m), 7.65 (1H, d, J = 8.4 Hz), 7.29-7.22 (3H, m), 7.05 (2H, d, J = 7.6 Hz), 6.61-6.55 (1H, m), 5.36 (2H, s), 3.91 (3H, s), 3.42 (2H, s), 2.34 (4H, br s), 1.62-1.50 (4H, m), 1.46-1.36 (2H, m); ¹³C NMR (100 MHz, CDCl₃) 168.3, 138.6, 135.9, 135.6, 132.4, 131.5, 129.8, 126.8, 123.5, 120.72, 120.66, 112.2, 102.2, 63.6, 54.6, 52.1, 50.0, 26.1, 24.5; v_{max}/cm^{-1} 2933, 2851, 2793, 2754, 1707 (C=O), 1615, 1505; HRMS (ESI)+: m/z calculated for [C₂₃H₂₆N₂O₂ + H]⁺ = 363.2067, observed 363.2051.

Methyl 1-(4-(morpholinomethyl)benzyl)-1H-indole-6-carboxylate (79c).

Toluene (3 mL) was added to a mixture of 4-(morpholinomethyl)benzaldehyde **78c** (0.282 g, 1.37 mmol), methyl indoline-6-carboxylate **75** (0.325 g, 1.65 mmol) and benzoic acid (34 mg, 0.28 mmol). The reaction mixture was heated to 200 °C by microwave for 30 minutes, then diluted with ethyl acetate (25 mL), washed with NaHCO₃ solution (3 x 15 mL) and brine (15 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 55% ethyl acetate in petroleum ether) afforded **79c** (0.330 g, 59% yield).

LCMS (ESI+): m/z 365.3 [M + H]⁺, rt 1.45 minutes, >99%; ¹H NMR (400 MHz, CDCl₃) 8.10 (1H, s), 7.81 (1H, dd, J = 8.3, 1.4 Hz), 7.66 (1H, d, J = 8.3 Hz), 7.31-7.23 (3H, m), 7.06 (2H, d, J = 7.9 Hz), 6.59 (1H, dd, J = 3.1, 0.7 Hz), 5.37 (2H, s), 3.91 (3H, s), 3.69 (4H, t, J = 4.7 Hz), 3.45 (2H, s), 2.41 (4H, t, J = 4.4 Hz); ¹³C NMR (100 MHz, CDCl₃) 168.3, 137.7, 136.0, 135.9, 132.4, 131.5, 129.8, 126.9, 123.6, 120.73, 120.68, 112.1, 102.3, 67.1, 63.1, 53.7, 52.1, 50.0; v_{max}/cm^{-1} 2950, 2854, 2808, 1706 (C=O), 1615, 1504; HRMS (ESI)+: m/z calculated for [C₂₂H₂₄N₂O₃ + H]⁺ = 365.1860, observed 365.1848.

Methyl 1-(4-((4-isopropylpiperazin-1-yl)methyl)benzyl)-1H-indole-6-carboxylate (79e).

Methanesulfonyl chloride (0.126 mL, 1.63 mmol) was added dropwise at 0 °C to a solution of methyl 1-(4-(hydroxymethyl)benzyl)-1H-indole-6-carboxylate **82** (0.400 g, 1.35 mmol)

and triethylamine (0.245 mL, 1.76 mmol) in DCM (4 mL). The reaction mixture was warmed to room temperature and stirred over 90 minutes. Water (15 mL) was added dropwise at 0 °C. The intermediate was extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. The crude residue was dissolved in DMF (4 mL), then 1-isopropylpiperazine (0.233 mL, 1.63 mmol) and caesium carbonate (0.574 g, 1.76 mmol) were added. The reaction mixture was stirred over 11 hours, then further 1-isopropylpiperazine (0.233 mL, 1.63 mmol) and caesium carbonate (0.574 g, 1.76 mmol) were added. The reaction mixture was stirred over 11 hours, then further 1-isopropylpiperazine (0.233 mL, 1.63 mmol) and caesium carbonate (0.574 g, 1.76 mmol) were added. The reaction mixture was stirred over 1 hour, then diluted with ethyl acetate (100 mL), washed with water (3 x 100 mL) and brine (100 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (50 – 100% ethyl acetate in petroleum ether) afforded **79e** (0.254 g, 43% yield).

LCMS (ESI+): m/z 406.3 [M + H]⁺, rt 1.54 minutes, 92%; ¹H NMR (400 MHz, CDCl₃) 8.10 (1H, s), 7.80 (1H, dd, J = 8.4, 1.4 Hz), 7.65 (1H, d, J = 8.4 Hz), 7.29-7.22 (3H, m), 7.06 (2H, d, J = 8.1 Hz), 6.58 (1H, dd, J = 3.2, 0.8 Hz), 5.36 (2H, s), 3.91 (3H, s), 3.47 (2H, s), 2.62 (1H, sept, J = 6.5 Hz), 2.62-2.32 (8H, m), 1.03 (6H, d, J = 6.5 Hz); ¹³C NMR (100 MHz, CDCl₃) 168.3, 138.1, 135.9, 135.8, 132.4, 131.5, 129.8, 126.9, 123.6, 120.74, 120.67, 112.1, 102.3, 62.8, 54.6, 53.6, 52.1, 50.0, 48.8, 18.8; v_{max}/cm^{-1} 2964, 2929, 2875, 2808, 1709 (C=O), 1618, 1571, 1505; HRMS (ESI)+: m/z calculated for [C₂₅H₃₁N₃O₂ + H]⁺ = 406.2489, observed 406.2481.

(4-(((Tert-butyldiphenylsilyl)oxy)methyl)phenyl)methanol (81).

tert-Butyldiphenylchlorosilane (3.8 mL, 15 mmol) was added to a solution of 1,4benzenedimethanol **80** (4.02 g, 29.1 mmol) and imidazole (1.09 g, 16.0 mmol) in DMF (20 mL). The reaction mixture was stirred over 21 hours. The reaction was diluted with ethyl acetate (100 mL), washed with water (3 x 100 mL) and brine (100 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (0 – 20% ethyl acetate in petroleum ether) afforded **81** (4.14 g, 38% yield).

¹H NMR (400 MHz, CDCl₃) 7.73-7.68 (4H, m), 7.47-7.32 (10H, m), 4.78 (2H, s), 4.70 (2H, d, J = 5.7 Hz), 1.66 (1H, t, J = 5.9 Hz), 1.10 (9H, s); ¹³C NMR (100 MHz, CDCl₃) 140.8, 139.6, 135.7, 133.6, 129.8, 127.9, 127.2, 126.4, 65.5, 65.4, 27.0, 19.5; spectroscopic data consistent with literature. ¹⁴

Methyl 1-(4-(hydroxymethyl)benzyl)-1H-indole-6-carboxylate (82).

Methanesulfonyl chloride (1.0 mL, 13 mmol) was added dropwise at 0 °C to a solution of (4-(((*tert*-butyldiphenylsilyl)oxy)methyl)phenyl)methanol **81** (4.12 g, 11.0 mmol) and triethylamine (2.0 mL, 14 mmol) in DCM (20 mL). The reaction mixture was warmed to room temperature and stirred over 1 hour. Water (1 mL) was added dropwise at 0 °C. The mixture was diluted with DCM (30 mL), washed with water (3 x 50 mL) and brine (50 mL), dried (MgSO₄) and concentrated *in vacuo* to afford a crude residue. A solution of methyl 1Hindole-6-carboxylate **50** (1.88 g, 10.7 mmol) in DMF (6 mL) was added dropwise at 0 °C to a suspension of sodium hydride (60% in mineral oil, 0.514 g, 12.8 mmol) in DMF (4 mL). The reaction mixture was warmed to room temperature over 30 minutes. A solution of the crude residue in DMF (10 mL) was added dropwise at 0 °C to the reaction mixture. The reaction mixture was warmed to room temperature and stirred over 45 minutes. Water (10 mL) was added dropwise at 0 °C. The mixture was diluted with ethyl acetate (200 mL), washed with water (3 x 200 mL) and brine (200 mL), dried (MgSO₄) and concentrated *in vacuo*. Tetra-*n*-butylammonium fluoride (1 M in THF, 14 mL, 14 mmol) was added to the resultant residue. The mixture was stirred over 30 minutes, then water (50 mL) was added. The product was extracted into DCM (3 x 50 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (10 – 50% ethyl acetate in petroleum ether) afforded **82** (2.33 g, 72% yield).

LCMS (ESI+): m/z 296.2 [M + H]⁺, rt 1.96 minutes, 100%; ¹H NMR (400 MHz, CDCl₃) 8.08 (1H, s), 7.80 (1H, dd, J = 8.4, 1.4 Hz), 7.66 (1H, d, J = 8.4 Hz), 7.30 (2H, d, J = 8.2 Hz), 7.26 (1H, d, J = 3.2 Hz), 7.10 (2H, d, J = 8.2 Hz), 6.59 (1H, dd, J = 3.1, 0.8 Hz), 5.37 (2H, s), 4.65 (2H, d, J = 2.8 Hz), 3.90 (3H, s), 1.82-1.72 (1H, m); ¹³C NMR (100 MHz, CDCl₃) 168.3, 140.7, 136.5, 135.8, 132.5, 131.5, 127.6, 127.2, 123.6, 120.8, 120.7, 112.1, 102.4, 65.0, 52.1, 50.0; v_{max}/cm^{-1} 3295 (br, O-H), 2949, 1705 (C=O), 1618, 1500; HRMS (ESI)+: m/z calculated for [C₁₈H₁₇NO₃ + Na]⁺ = 318.1101, observed 318.1094.

3-Oxo-3-(1-(4-(piperidin-1-ylmethyl)benzyl)-1H-indol-6-yl)propanenitrile (83b).

n-Butyllithium (1.6 M in hexanes, 1.3 mL, 2.0 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (0.16 mL, 3.0 mmol) and THF (3 mL). The reaction mixture was stirred at -78 °C over 30 minutes. A solution of methyl 1-(4-(piperidin-1-ylmethyl)benzyl)-1H-indole-6-carboxylate **79b** (0.377 g, 1.01 mmol) in THF (3 mL) was added dropwise at -78 °C over 30 minutes. The reaction mixture was stirred at -78 °C over 1 hour. Water (20 mL)

was added dropwise at 0 °C, and the reaction mixture adjusted to pH 8. The product was extracted into DCM (4 x 50 mL). The combined organic extracts were dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (50 – 90% ethyl acetate in petroleum ether) afforded **83b** (0.289 g, 77% yield).

LCMS (ESI+): m/z 372.4 [M + H]⁺, rt 1.43 minutes, >99%; ¹H NMR (400 MHz, CDCl₃) 7.99 (1H, s), 7.70 (1H, d, J = 8.4 Hz), 7.60 (1H, dd, J = 8.3, 1.5 Hz), 7.37 (1H, d, J = 3.2 Hz), 7.27 (2H, d, J = 7.5 Hz), 7.06 (2H, d, J = 8.2 Hz), 6.62 (1H, d, J = 3.1 Hz), 5.38 (2H, s), 4.09 (2H, s), 3.43 (2H, s), 2.34 (4H, br s), 1.55 (4H, quin, J = 5.6 Hz), 1.47-1.36 (2H, m); ¹³C NMR (100 MHz, CDCl₃) 187.0, 138.9, 136.0, 135.1, 133.8, 133.4, 129.9, 128.1, 126.8, 121.3, 119.7, 114.5, 111.3, 102.6, 63.5, 54.6, 50.3, 29.6, 26.1, 24.5; v_{max}/cm^{-1} 2914, 2805, 2252 (C=N), 1682 (C=O), 1608, 1503; HRMS (ESI)+: m/z calculated for [C₂₄H₂₅N₃O + H]⁺ = 372.2070, observed 372.2053.

3-(1-(4-(Morpholinomethyl)benzyl)-1H-indol-6-yl)-3-oxopropanenitrile (83c).

n-Butyllithium (1.6 M in hexanes, 1.5 mL, 2.3 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (0.20 mL, 3.9 mmol) and THF (3 mL). The reaction mixture was stirred at -78 °C over 30 minutes. A solution of methyl 1-(4-(morpholinomethyl)benzyl)-1H-indole-6-carboxylate **79c** (0.315 g, 0.778 mmol) in THF (3 mL) was added dropwise at -78 °C over 30 minutes. The reaction mixture was stirred at -78 °C over 20 minutes. Water (10 mL) was added dropwise at 0 °C, and the reaction mixture adjusted to pH 8. The product was extracted into DCM (3 x 25 mL). The combined organic extracts were washed (brine), dried

(MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (20 - 80%) ethyl acetate in petroleum ether) afforded **83c** (0.272 g, 87% yield).

LCMS (ESI+): m/z 374.2 [M + H]⁺, rt 1.36 minutes, 93%; ¹H NMR (400 MHz, CDCl₃) 7.99 (1H, s), 7.70 (1H, d, J = 8.3 Hz), 7.59 (1H, dd, J = 8.4, 1.5 Hz), 7.37 (1H, d, J = 3.2 Hz), 7.28 (2H, d, J = 8.1 Hz), 7.07 (2H, d, J = 7.9 Hz), 6.62 (1H, d, J = 3.2 Hz), 5.38 (2H, s), 4.09 (2H, s), 3.68 (4H, t, J = 4.6 Hz), 3.45 (2H, s), 2.45-2.36 (4H, m); ¹³C NMR (100 MHz, CDCl₃) 187.1, 138.0, 136.0, 135.5, 133.9, 133.4, 129.9, 128.1, 126.9, 121.3, 119.8, 114.4, 111.3, 102.7, 67.1, 63.1, 53.7, 50.3, 29.6; v_{max}/cm^{-1} 2940, 2846, 2251 (C=N), 1681 (C=O), 1607, 1503; HRMS (ESI)-: m/z calculated for [C₂₃H₂₃N₃O₂ - H]⁻ = 372.1718, observed 372.1723.

3-(1-(4-((4-Isopropylpiperazin-1-yl)methyl)benzyl)-1H-indol-6-yl)-3-oxopropanenitrile (83e).

n-Butyllithium (1.6 M in hexanes, 1.0 mL, 1.6 mmol) was added dropwise at -78 °C to a mixture of acetonitrile (0.14 mL, 2.7 mmol) and THF (2 mL). The reaction mixture was stirred at -78 °C over 30 minutes. A solution of methyl 1-(4-((4-isopropylpiperazin-1-yl)methyl)benzyl)-1H-indole-6-carboxylate **79e** (0.241 g, 0.547 mmol) in THF (4 mL) was added dropwise at -78 °C over 30 minutes. The reaction mixture was stirred at -78 °C over 30 minutes. Water (15 mL) was added dropwise at 0 °C, and the reaction mixture adjusted to pH 8. The product was extracted into DCM/methanol (9:1, 3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (50 – 100% ethyl acetate in petroleum ether, 0 – 8% methanol in DCM) afforded **83e** (0.187 g, 83% yield).

LCMS (ESI+): m/z 415.3 [M + H]⁺, (ESI-): m/z 413.2 [M - H]⁻, rt 1.45 minutes, >99%; ¹H NMR (400 MHz, CDCl₃) 7.98 (1H, s), 7.70 (1H, d, J = 8.4 Hz), 7.59 (1H, dd, J = 8.4, 1.5 Hz), 7.37 (1H, d, J = 3.2 Hz), 7.26 (2H, d, J = 8.2 Hz), 7.06 (2H, d, J = 8.1 Hz), 6.62 (1H, d, J = 3.2 Hz), 5.38 (2H, s), 4.10 (2H, s), 3.48 (2H, s), 2.76-2.41 (9H, m), 1.06 (6H, d, J = 6.6 Hz); ¹³C NMR (100 MHz, CDCl₃) 187.0, 138.2, 136.0, 135.4, 133.9, 133.4, 130.0, 128.1, 126.9, 121.3, 119.7, 114.5, 111.3, 102.6, 62.6, 54.8, 53.1, 50.3, 48.7, 29.6, 18.6; v_{max}/cm^{-1} 2934, 2810, 2162 (C=N), 1681 (C=O), 1607, 1502; HRMS (ESI)+: m/z calculated for [C₂₆H₃₀N₄O + H]⁺ = 415.2492, observed 415.2479.

2-Methyl-3-oxo-3-(1-(4-(pyrrolidin-1-ylmethyl)benzyl)-1H-indol-6-yl)propanenitrile (84a).

n-Butyllithium (1.6 M in hexanes, 1.1 mL, 1.7 mmol) was added dropwise at -78 °C to a mixture of propionitrile (0.123 mL, 1.72 mmol) and toluene (4 mL). The reaction mixture was stirred at -78 °C over 30 minutes. A solution of methyl 1-(4-(pyrrolidin-1-ylmethyl)benzyl)-1H-indole-6-carboxylate **79a** (0.300 g, 0.861 mmol) in toluene (2 mL) was added dropwise at -78 °C over 30 minutes. The reaction mixture was stirred at -78 °C over 1 hour, then warmed to 0 °C and stirred over 1 hour. Water (15 mL) was added dropwise at 0 °C, and the reaction mixture adjusted to pH 8. The product was extracted into ethyl acetate (3 x 25 mL). The combined organic extracts were washed (brine), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (50 – 100% ethyl acetate in petroleum ether) afforded **84a** (0.140 g, 35% yield).

¹H NMR (400 MHz, CDCl₃) 8.03 (1H, s), 7.70 (2H, s), 7.36 (1H, d, J = 3.1 Hz), 7.29 (2H, d, J = 8.1 Hz), 7.09 (2H, d, J = 7.9 Hz), 6.61 (1H, d, J = 2.9 Hz), 5.38 (2H, s), 4.42 (1H, q, J = 7.2 Hz), 3.58 (2H, s), 2.54-2.40 (4H, m), 1.80-1.70 (4H, m), 1.64 (3H, d, J = 7.2 Hz).

References

- Comas-Barceló, J.; Foster, R. S.; Fiser, B.; Gomez-Bengoa, E.; Harrity, J. P. A. Cupromoted sydnone cycloadditions of alkynes: Scope and mechanism studies. *Chem. - Eur. J.* 2015, *21*, 3257-3263.
- Kalla, R. V.; Elzein, E.; Perry, T.; Li, X.; Palle, V.; Varkhedkar, V.; Gimbel, A.; Maa, T.; Zeng, D.; Zablocki, J. Novel 1,3-disubstituted 8-(1-benzyl-1H-pyrazol-4-yl) xanthines: High affinity and selective A2B adenosine receptor antagonists. *J. Med. Chem.* 2006, 49, 3682-3692.
- Padial, N. M.; Procopio, E. Q.; Montoro, C.; López, E.; Oltra, J. E.; Colombo, V.; Maspero, A.; Masciocchi, N.; Galli, S.; Senkovska, I.; Kaskel, S.; Barea, E.; Navarro, J. A. R. Highly hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds. *Angew. Chem., Int. Ed.* 2013, *52*, 8290-8294.
- 4. Joncour, A.; Liu, J.; Décor, A.; Thoret, S.; Wdzieczak-Bakala, J.; Bignon, J.; Baudoin, O. Synthesis of anti-microtubule biaryls and preliminary evaluation as vascular-disrupting agents. *ChemMedChem* **2008**, *3*, 1731-1739.
- 5. Khan, F. A.; Choudhury, S. An efficient synthesis of substituted meta-halophenols and their methyl ethers: Insight into the reaction mechanism. *Eur. J. Org. Chem.* **2010**, 2954-2970.
- Claudi, F.; Di Stefano, A.; Napolitani, F.; Cingolani, G. M.; Giorgioni, G.; Fontenla, J. A.; Montenegro, G. Y.; Rivas, M. E.; Rosa, E.; Michelotto, B.; Orlando, G.; Brunetti, L. Binding and preliminary evaluation of 5-hydroxy- and 10-hydroxy-2,3, 12,12a-tetrahydro-1H-[1]benzoxepino[2,3,4-ij]isoquinolines as dopamine receptor ligands. *J. Med. Chem.* 2000, *43*, 599-608.
- 7. Park, A.; Lee, S. Synthesis of benzoylacetonitriles from Pd-catalyzed carbonylation of aryl iodides and trimethylsilylacetonitrile. *Org. Lett.* **2012**, *14*, 1118-1121.
- Slowinski, F.; Ayad, O. B.; Vache, J.; Saady, M.; Leclerc, O.; Lochead, A. Synthesis of new bridgehead substituted azabicyclo-[2.2.1]heptane and -[3.3.1]nonane derivatives as potent and selective α7 nicotinic ligands. *Org. Lett.* **2010**, *12*, 5004-5007.
- 9. Yamamoto, T.; Furusawa, T.; Zhumagazin, A.; Yamakawa, T.; Oe, Y.; Ohta, T. Palladium-catalyzed arylation of aldehydes with bromo-substituted 1,3-diaryl-imidazoline

carbene ligand. Tetrahedron 2015, 19-26, 71.

- Wender, P. A.; Beckham, S.; O'Leary, J. G. A second generation photochemically activatable dynemicin analog: A concise synthesis and DNA cleavage studies. *Synthesis* 1994, 1278-1282.
- 11. Molander, G. A.; Sandrock, D. L. Aminomethylations via cross-coupling of potassium organotrifluoroborates with aryl bromides. *Org. Lett.* **2007**, *9*, 1597-1600.
- Lueng, S. C.; Gibbons, P.; Amewu, R.; Nixon, G. L.; Pidathala, C.; Hong, W. D.; Pacorel, B.; Berry, N. G.; Sharma, R.; Stocks, P. A.; Srivastava, A.; Shone, A. E.; Charoensutthivarakul, S.; Taylor, L.; Berger, O.; Mbekeani, A.; Hill, A.; Fisher, N. E.; Warman, A. J.; Biagini, G. A.; Ward, S. A.; O'Neill, P. M. Identification, design and biological evaluation of heterocyclic quinolones targeting Plasmodium falciparum type II NADH:quinone oxidoreductase (PfNDH2). *J. Med. Chem.* **2012**, *55*, 1844-1857.
- Prati, F.; Simone, A. D.; Armirotti, A.; Summa, M.; Pizzirani, D.; Scarpelli, R.; Bertozzi, S. M.; Perez, D. I.; Andrisano, V.; Perez-Castillo, A.; Monti, B.; Massenzio, F.; Polito, L.; Racchi, M.; Sabatino, P.; Bottegoni, G.; Martinez, A.; Cavalli, A.; Bolognesi, M. L. 3,4-Dihydro-1,3,5-triazin-2(1H)-ones as the first dual BACE-1/GSK-3β fragment hits against alzheimer's disease. *ACS Chem. Neurosci.* 2015, *6*, 1665-1682.
- 14. Saisaha, P.; Buettner, L.; van der Meer, M.; Hage, R.; Feringa, L.; Browne, W. R.; de Boer, J. W. Selective catalytic oxidation of alcohols, aldehydes, alkanes and alkenes employing manganese catalysts and hydrogen peroxide. *Adv. Synth. Catal.* 2013, 355, 2591-2603.

X-ray Crystallography

Figure S1: X-ray crystal structures of *Mab* TrmD in complex with a) 3 (PDB code 6QRF), b)8 (PDB code 6QRG), and c) 14 (PDB code 6QQQ), illustrating one of the active sites.

Figure S2: X-ray crystal structures of *Mab* TrmD in complex with a) 22 (PDB code 6QQR),
b) 24d (PDB code 6QQV), c) 26n (PDB code 6QR4), and d) 31b (PDB code 6QRA),
illustrating one of the active sites.

Table S1: X-ray crystallographic data collection and refinement statistics for crystal

 structures described in this study.

Ligand	3	7	8
PDB Codes	6QRF	6QRE	6QRG
Resolution range (Å)	45.44 - 1.86 (1.926 - 1.86)	57.92 - 1.926 (1.995 - 1.926)	38.93 - 1.838 (1.904 - 1.838)
Space group	P 21 21 21	P 21 21 21	P 21 21 21
Unit cell	73.82 78.61 84.83 90 90 90	73.7 79.2 84.918 90 90 90	74.273 77.867 86.49 90 90 90
Total reflections	84240 (8326)	68177 (6220)	88620 (8733)
Unique reflections	42137 (4164)	34257 (3168)	44337 (4369)
Multiplicity	2.0 (2.0)	2.0 (2.0)	2.0 (2.0)
Completeness (%)	99.98 (100.00)	89.41 (83.26)	99.96 (100.00)
Mean I/sigma(I)	18.67 (1.51)	23.24 (2.28)	21.81 (2.18)
Wilson B-factor	35.77	38.8	37.1
R-merge	0.01902 (0.5364)	0.01362 (0.2915)	0.01299 (0.2857)
R-meas	0.02689	0.01926	0.01838
CC1/2	1 (0.713)	1 (0.87)	1 (0.81)
CC*	1 (0.912)	1 (0.965)	1 (0.946)
R-work	0.1860 (0.3223)	0.1870 (0.2811)	0.1770 (0.2463)
R-free	0.2171 (0.3781)	0.2361 (0.3157)	0.1962 (0.2848)
Number of non-hydrogen atoms	3426	3382	3385
macromolecules	3184	3223	3215
ligands	65	68	47
water	177	91	123
Protein residues	417	425	426
RMS(bonds)	0.007	0.007	0.007
RMS(angles)	0.99	1.03	1.02
Ramachandran favored (%)	98	98	98
Ramachandran outliers (%)	0.72	0.71	0
Clashscore	1.57	3.27	1.41
Average B-factor	46.6	49.2	45.4
macromolecules	46.2	49	45
ligands	58.9	57.7	61.8
solvent	49.4	47.1	48.1
Ligand	14	22	24a
Ligand PDB Codes	14 6QQQ	22 6QQR	24a 6QQT
Ligand PDB Codes Resolution range (Å)	14 6QQQ 57.64 - 1.848 (1.914 - 1.848)	22 6QQR 58.17 - 1.559 (1.615 - 1.559)	24a 6QQT 45.74 - 1.673 (1.733 - 1.673)
Ligand PDB Codes Resolution range (Å) Space group	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21
Ligand PDB Codes Resolution range (Å) Space group Unit cell	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 90	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541)	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230)	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288)	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121)	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0)	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0)	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%)	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74)	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99)	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I)	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40)	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27)	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002)	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206)	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829)	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778)	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC*	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952)	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936)	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531)	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414)	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739)	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539)	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739) 3410	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539) 3547	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673) 3491
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739) 3410 3200	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539) 3547 3241	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673) 3491 3202
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739) 3410 3200 51	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539) 3547 3241 12	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673) 3491 3202 58
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739) 3410 3200 51 159	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539) 3547 3241 12 294	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673) 3491 3202 58 231 115
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739) 3410 3200 51 159 417	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539) 3547 3241 12 294 427 2.6.5 2.7 2.6.5 2.7 2.6.5 2.7.5 2.6.5	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673) 3491 3202 58 231 418 0.025
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds)	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739) 3410 3200 51 159 417 0.007 0.027	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539) 3547 3241 12 294 427 0.006	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673) 3491 3202 58 231 418 0.006
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles)	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739) 3410 3200 51 159 417 0.007 0.97 92	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539) 3547 3241 12 294 427 0.006 1.04 22	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673) 3491 3202 58 231 418 0.006 0.98
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%)	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739) 3410 3200 51 159 417 0.007 0.97 99 0.007	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539) 3547 3241 12 294 427 0.006 1.04 99 0.400	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673) 3491 3202 58 231 418 0.006 0.98 99 5
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%)	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739) 3410 3200 51 159 417 0.007 0.97 99 0 0 0	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539) 3547 3241 12 294 427 0.006 1.04 99 0.48 0.201	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673) 3491 3202 58 231 418 0.006 0.98 99 0 0 0
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%) Clashscore	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739) 3410 3200 51 159 417 0.007 0.97 99 0 1.88 0.92 (0.200	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539) 3547 3241 12 294 427 0.006 1.04 99 0.48 0.94 24.2 0.994 0.42 0.994 0.42 0.94	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673) 3491 3202 58 231 418 0.006 0.98 99 0 0.994
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%) Clashscore Average B-factor	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739) 3410 3200 51 159 417 0.007 0.97 99 0 1.88 38.6 8.4	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539) 3547 3241 12 294 427 0.006 1.04 99 0.48 0.94 34.2 32.3 3.4 3.4 3.4 3.2 3.4 3.2 3.4	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673) 3491 3202 58 231 418 0.006 0.98 99 0 0.94 38.7 28.1
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean J/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%) Clashscore Average B-factor macromolecules	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739) 3410 3200 51 159 417 0.007 0.97 99 0 1.88 38.6 38.4	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539) 3547 3241 12 294 427 0.0066 1.04 99 0.48 0.94 34.2 33.2 33.2 33.1	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673) 3491 3202 58 231 418 0.006 0.98 99 0 0.94 38.7 38.1 43.2
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean J/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%) Clashscore Average B-factor macromolecules ligands	14 6QQQ 57.64 - 1.848 (1.914 - 1.848) P 21 21 21 74.517 77.662 85.999 90 90 90 84133 (8541) 42260 (4288) 2.0 (2.0) 97.27 (99.74) 14.12 (2.40) 33.5 0.02202 (0.3002) 0.03114 0.999 (0.829) 1 (0.952) 0.1906 (0.2531) 0.2281 (0.2739) 3410 3200 51 159 417 0.007 0.97 99 0 1.88 38.6 38.4 37.5	22 6QQR 58.17 - 1.559 (1.615 - 1.559) P 21 21 21 73.78 78.711 86.357 90 90 90 144417 (14230) 72301 (7121) 2.0 (2.0) 99.93 (99.99) 27.04 (2.27) 26.37 0.01254 (0.3206) 0.01773 0.999 (0.778) 1 (0.936) 0.1812 (0.2414) 0.2030 (0.2539) 3547 3241 12 294 427 0.0066 1.04 99 0.48 0.94 34.2 33.2 33.2 33.2 32.1 45.2 32.1 45.2 32.1 45.2 32.1 45.2 32.1 45.2 32.1 35.2 32.1 32.1 35.2 32.1 32.1 35.2 32.1 32.1 35.2 32.1 32.1 35.2 32.1 32.1 35.2 32.1 32.1 35.2 32.1 32.1 35.2 32.1 32.1 35.2 32.1 32.1 35.2 32.1 35.2 32.1 33.2 32.1 33.2 32.1	24a 6QQT 45.74 - 1.673 (1.733 - 1.673) P 21 21 21 74.591 77.862 86.636 90 90 90 117821 (11682) 58926 (5841) 2.0 (2.0) 99.99 (100.00) 21.36 (2.18) 30.4 0.01445 (0.323) 0.02043 1 (0.764) 1 (0.931) 0.1712 (0.2422) 0.2052 (0.2673) 3491 3202 58 231 418 0.006 0.98 99 0 0.94 38.7 38.1 42.2 47

Ligand	24b	24c	24d
PDB Codes	6QRC	6QQW	6QQV
Resolution range (Å)	57.73 - 1.73 (1.792 - 1.73)	31.34 - 1.8 (1.864 - 1.8)	57.73 - 1.712 (1.773 - 1.712)
Space group	P 21 21 21	P 21 21 21	P 21 21 21
Unit cell	74.459 77.412 86.648 90 90 90	74.52 77.97 86.5 90 90 90	74.556 77.749 86.182 90 90 90
Total reflections	105878 (10419)	94652 (9297)	109252 (10769)
Unique reflections	52953 (5211)	47361 (4652)	54642 (5391)
Multiplicity	2.0 (2.0)	2.0 (2.0)	2.0 (2.0)
Completeness (%)	99.99 (100.00)	99.98 (100.00)	99.99 (100.00)
Mean I/sigma(I)	15.71 (2.46)	18.22 (1.35)	15.20 (2.53)
Wilson B-factor	31.09	33.98	28 71
R-merge	0.02128 (0.2311)	0 02003 (0 5149)	0.02158 (0.2462)
R-meas	0.03009	0.02833	0.03053
CC1/2	0,999 (0,89)	1 (0 593)	0,999 (0,864)
CC*	1 (0.97)	1 (0.863)	1 (0.963)
B-work	0 1876 (0 2529)	0.1774(0.3011)	0 1758 (0 2486)
R-free	0.2136 (0.2835)	0.2109 (0.3489)	0.2019 (0.2881)
Number of non-hydrogen stoms	3545	3417	3530
macromolecules	3251	3168	3206
ligonds	5251	40	5200
water	241	200	275
water Dustsin ussidnes	421	200	275
Protein residues	421	411	420
	1.02	0.007	1.02
Rivis(aligies)	1.05	1	1.05
Ramachandran tavored (%)	99	99	99
Ramachandran outners (%)	1.02	0.25	0
Clashscore	1.08	0.95	1.25
Average B-factor	35	40	33.7
macromolecules	34.5	39.6	32.9
ligands	34.5	40.5	34.3
solvent	41.4	45.9	42.7
Ligand	25	26g	26j
Ligand PDB Codes	25 6QQU	26g 6QQZ	26j 6QR2
Ligand PDB Codes Resolution range (Å)	25 6QQU 54.06 - 1.59 (1.647 - 1.59)	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702)	26j 6QR2 38.36 - 1.545 (1.6 - 1.545)
Ligand PDB Codes Resolution range (Å) Space group	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21
Ligand PDB Codes Resolution range (Å) Space group Unit cell	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512)	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037)	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759)	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2 0 0 0	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0)	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0)	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%)	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00)	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00)	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I)	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44)	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20)	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Vision B-factor	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995)	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218)	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618)	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776)	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC*	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.874)	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935)	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.874) 0.1801 (0.2660)	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312)	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1687 (0.2349)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.874) 0.1801 (0.2660) 0.1992 (0.2959)	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809)	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1687 (0.2349) 0.1821 (0.2626)
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.874) 0.1801 (0.2660) 0.1992 (0.2959) 3490	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809) 3433	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1687 (0.2349) 0.1821 (0.2626) 3537
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.618) 1 (0.874) 0.1801 (0.2660) 0.1992 (0.2959) 3490 3207	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809) 3433 3146	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1687 (0.2349) 0.1821 (0.2626) 3537 3172
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.618) 1 (0.874) 0.1801 (0.2660) 0.1992 (0.2959) 3490 3207 34	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809) 3433 3146 53	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1821 (0.2626) 3537 3172 65
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.618) 1 (0.874) 0.1801 (0.2660) 0.1992 (0.2959) 3490 3207 34 249	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809) 3433 3146 53 234	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.947) 0.1687 (0.2349) 0.1821 (0.2626) 3537 3172 65 300
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.618) 1 (0.874) 0.1801 (0.2660) 0.1992 (0.2959) 3490 3207 34 249 420	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809) 3433 3146 53 234 412	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1687 (0.2349) 0.1821 (0.2626) 3537 3172 65 300 413
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds)	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.618) 1 (0.874) 0.1801 (0.2660) 0.1992 (0.2959) 3490 3207 34 249 420 0.007	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809) 3433 3146 53 234 412 0.007	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1687 (0.2349) 0.1821 (0.2626) 3537 3172 65 300 413 0.006
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles)	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.618) 1 (0.874) 0.1801 (0.2660) 0.1992 (0.2959) 3490 3207 34 249 420 0.007 1.07	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809) 3433 3146 53 234 412 0.007 1.04	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1687 (0.2349) 0.1821 (0.2626) 3537 3172 65 300 413 0.006 1.05
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%)	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.618) 1 (0.618) 1 (0.874) 0.1801 (0.2660) 0.1992 (0.2959) 3490 3207 34 249 420 0.007 1.07 99	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809) 3433 3146 53 234 412 0.007 1.04 99	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1687 (0.2349) 0.1821 (0.2626) 3537 3172 65 300 413 0.006 1.05 99
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%)	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.618) 1 (0.874) 0.1801 (0.2660) 0.1992 (0.2959) 3490 3207 34 249 420 0.007 1.07 99 0	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809) 3433 3146 53 234 412 0.007 1.04 99 0	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1687 (0.2349) 0.1821 (0.2626) 3537 3172 65 300 413 0.006 1.05 99 0
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%) Clashscore	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.618) 1 (0.618) 1 (0.618) 1 (0.2660) 0.1992 (0.2959) 3490 3207 34 249 420 0.007 1.07 99 0 1.57	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809) 3433 3146 53 234 412 0.007 1.04 99 0 1.43	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1687 (0.2349) 0.1821 (0.2626) 3537 3172 65 300 413 0.006 1.05 99 0 2.2
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%) Clashscore Average B-factor	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.618) 1 (0.618) 1 (0.618) 1 (0.2660) 0.1992 (0.2959) 3490 3207 34 249 420 0.007 1.07 99 0 1.57 34.7	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809) 3433 3146 53 234 412 0.007 1.04 99 0 1.43 35.8	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1687 (0.2349) 0.1821 (0.2626) 3537 3172 65 300 413 0.006 1.05 99 0 2.2 34.4
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%) Clashscore Average B-factor macromolecules	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.874) 0.1801 (0.2660) 0.1992 (0.2959) 3490 3207 34 249 420 0.007 1.07 99 0 1.57 34.7 34.1	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809) 3433 3146 53 234 412 0.007 1.04 99 0 1.43 35.8 35.2	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1687 (0.2349) 0.1821 (0.2626) 3537 3172 65 300 413 0.006 1.05 99 0 2.2 34.4 33.1
Ligand PDB Codes Resolution range (Å) Space group Unit cell Total reflections Unique reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%) Clashscore Average B-factor macromolecules ligands	25 6QQU 54.06 - 1.59 (1.647 - 1.59) P 21 21 21 74.41 78.66 85.91 90 90 90 136750 (13512) 68402 (6759) 2.0 (2.0) 99.99 (100.00) 19.53 (1.44) 27.51 0.01701 (0.4995) 0.02405 1 (0.618) 1 (0.618) 1 (0.874) 0.1801 (0.2660) 0.1992 (0.2959) 3490 3207 34 249 420 0.007 1.07 99 0 1.57 34.7 34.1 24.4	26g 6QQZ 45.74 - 1.702 (1.763 - 1.702) P 21 21 21 74.779 77.775 86.438 90 90 90 102804 (11037) 51585 (5520) 2.0 (2.0) 92.27 (100.00) 23.54 (2.20) 29.12 0.01437 (0.3218) 0.02032 0.999 (0.776) 1 (0.935) 0.1730 (0.2312) 0.1961 (0.2809) 3433 3146 53 234 412 0.007 1.04 99 0 1.43 35.8 35.2 32.4	26j 6QR2 38.36 - 1.545 (1.6 - 1.545) P 21 21 21 74.881 76.728 86.588 90 90 90 146213 (14565) 73212 (7285) 2.0 (2.0) 99.36 (99.97) 22.72 (2.33) 26.83 0.01326 (0.2743) 0.01875 1 (0.812) 1 (0.947) 0.1687 (0.2349) 0.1821 (0.2626) 3537 3172 65 300 413 0.006 1.05 99 0 2.2 34.4 33.1 40.3

Ligand	261	26n	260
PDB Codes	6QR0	6QR4	6QR3
Resolution range (Å)	56.81 - 1.59 (1.647 - 1.59)	57.89 - 1.517 (1.571 - 1.517)	57.61 - 1.614 (1.671 - 1.614)
Space group	P 21 21 21	P 21 21 21	P 21 21 21
Unit cell	74.92 77.17 87.15 90 90 90	74.79 77.652 86.845 90 90 90	74.87 77.106 86.663 90 90 90
Total reflections	136698 (13510)	157659 (15579)	130143 (12828)
Unique reflections	68515 (6762)	78858 (7791)	65146 (6417)
Multiplicity	2.0 (2.0)	2.0 (2.0)	2.0 (2.0)
Completeness (%)	99.96 (100.00)	99.98 (100.00)	99.98 (99.95)
Mean I/sigma(I)	19.62 (1.46)	23.67 (2.43)	13.17 (2.33)
Wilson B-factor	27.22	26.85	22.64
R-merge	0.01669 (0.5086)	0.01434 (0.272)	0.02737 (0.3382)
R-meas	0.0236	0.02028	0.03871
CC1/2	1 (0.619)	0.999 (0.832)	0.997 (0.754)
CC*	1 (0.875)	1 (0.953)	0.999 (0.927)
R-work	0.1737 (0.2815)	0.1852 (0.2344)	0.1801 (0.2446)
R-free	0.1987 (0.2809)	0.2060 (0.2563)	0.2060 (0.2979)
Number of non-hydrogen atoms	3553	3531	3558
macromolecules	3198	3211	3178
ligands	53	50	60
water	302	270	320
Protein residues	416	421	412
RMS(bonds)	0.006	0.006	0.006
RMS(angles)	1.05	1.05	1.07
Ramachandran favored (%)	99	99	99
Ramachandran outliers (%)	0	0	0
Clashscore	1.72	3.13	2.2
Average B-factor	34.6	32.9	28.7
macromolecules	33.8	32.3	27.4
ligands	27	27.2	28.2
solvent	44.6	41.2	41
Ligand	27g	29b	29c
PDB Codes	6QR1	6QR7	6QR9
Resolution range (Å)	56.48 - 1.669 (1.728 - 1.669)	57.97 - 2.028 (2.101 - 2.028)	54.04 - 2.417 (2.503 - 2.417)
Space group	P 21 21 21	P 21 21 21	P 21 21 21
	74 432 77 484 86 716 90 90 90	75.011 77.787 86.943 90 90 90	75 679 77 179 87 556 90 90 90
Unit cell	/4.452 //.404 00./10 50 50 50		15.015 11.115 01.550 50 50 50
Unit cell Total reflections	521348 (53444)	66985 (6531)	170262 (16902)
Unit cell Total reflections Unique reflections	521348 (53444) 59008 (5843)	66985 (6531) 33528 (3268)	170262 (16902) 20227 (2006)
Unit cell Total reflections Unique reflections Multiplicity	521348 (53444) 59008 (5843) 8.8 (9.1)	66985 (6531) 33528 (3268) 2.0 (2.0)	170262 (16902) 20227 (2006) 8.4 (8.4)
Unit cell Total reflections Unique reflections Multiplicity Completeness (%)	521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00)	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58)	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00)
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I)	521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00) 24.79 (2.40)	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99)	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21)
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor	521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00) 24.79 (2.40) 29.99	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge	521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00) 24.79 (2.40) 29.99 0.04071 (0.8134)	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302)	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712)
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas	521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00) 24.79 (2.40) 29.99 0.04071 (0.8134) 0.04327	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2	11.162 11.163	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482)	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626)
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC*	14.162 11.163 11.163 11.163 521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00) 24.79 (2.40) 29.99 0.04071 0.04071 (0.8134) 0.04327 1 1 (0.945)	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807)	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877)
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work	11.102 11.103 10.50 50 521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00) 24.79 (2.40) 29.99 0.04071 0.04327 1 1 (0.807) 1 (0.945) 0.1797 (0.2375)	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550)	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296)
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free	11.102 11.103 10.50 50 521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00) 24.79 (2.40) 29.99 0.04071 0.04327 1 1 (0.807) 1 (0.945) 0.1797 (0.2375) 0.2051 (0.2573)	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018)	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030)
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms	11.102 11.105 10.505 10.505 521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00) 24.79 (2.40) 29.99 0.04071 0.04327 1 1 (0.807) 1 (0.945) 0.1797 (0.2375) 0.2051 (0.2573) 3484	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018) 3413	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030) 3299
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules	11.102 11.103 10.505 505 521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00) 24.79 (2.40) 29.99 0.04071 (0.8134) 0.04327 1 (0.807) 1 (0.945) 0.1797 (0.2375) 0.2051 (0.2573) 3484 3164 3164	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018) 3413 3174	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030) 3299 3174
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands	11.102 11.103 10.505 505 521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00) 24.79 (2.40) 29.99 0.04071 (0.8134) 0.04327 1 (0.807) 1 (0.945) 0.1797 (0.2375) 0.2051 (0.2573) 3484 3164 50	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018) 3413 3174 62	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030) 3299 3174 62
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water	11.102 11.103 10.50 50 521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00) 24.79 (2.40) 29.99 0.04071 (0.8134) 0.04327 1 (0.807) 1 (0.945) 0.1797 (0.2375) 0.2051 (0.2573) 3484 3164 50 270	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018) 3413 3174 62 177	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030) 3299 3174 62 63
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues	11.102 11.103 11.103 10.103	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018) 3413 3174 62 177 417	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030) 3299 3174 62 63 417
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds)	11.102 11.103 11.103 10.103	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018) 3413 3174 62 177 417 0.007	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030) 3299 3174 62 63 417 0.008
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles)	11.102 11.103 10.505 505 521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00) 24.79 (2.40) 29.99 0.04071 (0.8134) 0.04327 1 (0.807) 1 (0.945) 0.1797 (0.2375) 0.2051 (0.2573) 3484 3164 50 270 414 0.006 1.02 0.02	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018) 3413 3174 62 177 417 0.007 1.07	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030) 3299 3174 62 63 417 0.008 1.15
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%)	11.102 11.103 10.505 505 521348 (53444) 59008 (5843) 8.8 (9.1) 99.97 (100.00) 24.79 (2.40) 29.99 0.04071 0.04327 1 1 (0.807) 1 (0.945) 0.1797 (0.2375) 0.2051 (0.2573) 3484 3164 50 270 414 0.006 1.02 99	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018) 3413 3174 62 177 417 0.007 1.07 99	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030) 3299 3174 62 63 417 0.008 1.15 98
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%)	11.102 11.103 11.103 10.103	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018) 3413 3174 62 177 417 0.007 1.07 99 0.24	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030) 3299 3174 62 63 417 0.008 1.15 98 0
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%)	11.102 11.103 11.103 10.103	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018) 3413 3174 62 177 417 0.007 1.07 99 0.24 2.21	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030) 3299 3174 62 63 417 0.008 1.15 98 0 3.8
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%) Clashscore Average B-factor	11.102 11.102 11.102 10.102	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018) 3413 3174 62 177 417 0.007 1.07 99 0.24 2.21 31.7	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030) 3299 3174 62 63 4117 0.008 1.15 98 0 3.8 42.2
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%) Clashscore Average B-factor macromolecules	11.102 11.102 11.102 10.102	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018) 3413 3174 62 177 417 0.007 1.07 99 0.24 2.21 31.7 31.3	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030) 3299 3174 62 63 4117 0.008 1.15 98 0 3.8 42.2 42.2
Unit cell Total reflections Unique reflections Multiplicity Completeness (%) Mean I/sigma(I) Wilson B-factor R-merge R-meas CC1/2 CC* R-work R-free Number of non-hydrogen atoms macromolecules ligands water Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%) Clashscore Average B-factor macromolecules ligands	11.102 11.103 11.103 10.102 10.102	66985 (6531) 33528 (3268) 2.0 (2.0) 99.69 (98.58) 9.25 (1.99) 28.46 0.06422 (0.5302) 0.09082 0.995 (0.482) 0.999 (0.807) 0.1882 (0.2550) 0.2258 (0.3018) 3413 3174 62 177 417 0.007 1.07 99 0.24 2.21 31.7 31.3 31.8	170262 (16902) 20227 (2006) 8.4 (8.4) 99.94 (100.00) 8.81 (2.21) 37.7 0.2269 (1.712) 0.2418 0.993 (0.626) 0.998 (0.877) 0.1818 (0.2296) 0.2461 (0.3030) 3299 3174 62 63 4117 0.008 1.15 98 0 3.8 42.2 42.2 41.6

Ligand	29e	31b
PDB Codes	6QRD	6QRA
Resolution range (Å)	53.51 - 1.749 (1.812 - 1.749)	37.67 - 1.705 (1.766 - 1.705)
Space group	P 21 21 21	P 21 21 21
Unit cell	74.532 76.876 86.787 90 90 90	74.134 79.218 85.635 90 90 90
Total reflections	102001 (10020)	111220 (11036)
Unique reflections	51013 (5017)	55632 (5519)
Multiplicity	2.0 (2.0)	2.0 (2.0)
Completeness (%)	99.97 (99.78)	99.96 (99.95)
Mean I/sigma(I)	28.07 (4.09)	16.93 (2.39)
Wilson B-factor	28.29	28.77
R-merge	0.01128 (0.1372)	0.01907 (0.2622)
R-meas	0.01595	0.02697
CC1/2	1 (0.953)	0.999 (0.869)
CC*	1 (0.988)	1 (0.964)
R-work	0.1687 (0.1854)	0.1836 (0.2263)
R-free	0.2062 (0.2245)	0.2133 (0.2782)
Number of non-hydrogen atoms	3535	3501
macromolecules	3186	3183
ligands	83	63
water	266	255
Protein residues	414	418
RMS(bonds)	0.007	0.006
RMS(angles)	1.09	1.04
Ramachandran favored (%)	99	99
Ramachandran outliers (%)	0	0
Clashscore	0.78	2.04
Average B-factor	34.6	33.3
macromolecules	33.6	32.6
ligands	45.3	35
solvent	43.3	40.9

Isothermal Titration Calorimetry (ITC)

Figure S3: ITC traces with *Mab* TrmD (n = 1) for a) 1, b) 3, c) 6, and d) 7.

Figure S4: ITC traces with *Mab* TrmD (n = 1) for a) 8, b) 10, c) 12, and d) 13.

Figure S5: ITC traces with *Mab* TrmD (n = 1) for a) 14, b) 15, c) 24a, and d) 24b.

Figure S6: ITC traces with *Mab* TrmD for a) 24c (n = 1), b) 24d (n = 1), c) 25 (n = 2), and d) 26g (n = 3).

a) b) Time (min) Time (min) 0 10 30 0 10 20 40 50 20 30 0.00 0.00 -0.05 -0.10 -0.20 pcal/sec pcal/sec -0.15 -0.40 -0.20 -0.25 -0.60 -0.30 -0.35 -0.80 -0.40 0.0 0.0 kcal mol⁻¹ of injectant kcal mol⁻¹ of injectant -2.0 -4.0 Data: 10% DMSO, 33uM TrmD -400uM Compound 26k Model: OneSites Chr/2D0F = 3.310E4 N 0.929 ±0.00873 Sites K 7.46E5 ±7.37E4 M¹ AH -1.027E4 ±145.8 cal/mol ΔS -7.58 cal/mol/deg Data: 2% DMSO, 33uM TrmD -500uM Compound 26j Model: OneSites Chi^2/DoF = 5699 -6.0 0.866 ±0.0127 Sites 3.14E5 ±2.68E4 M⁻¹ -5626 ±111.0 cal/mol -8.0 6.28 cal/mol/deg -10.0 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 2.0 2.5 Molar Ratio Molar Ratio d) c) Time (min) Time (min) 0 10 20 30 40 50 0 10 20 30 40 0.00 0.00 -0.10 -0.20 pcal/sec pcal/sec -0.20 -0.40 -0.30 -0.60 -0.40 -0.80
 Data: 5% DMSO, 33uM TrmD -330uM Compound 261

 Model: OneSites

 Ch*2/DoF = 2.041E4

 N
 1.01
 ±0.00332 Sites

 K
 9.46E6 ±1.23E6 M⁻¹

 AH
 +868 ±68.98 cal/mol

 ΔS
 2.17 cal/mol/deg
 0.0 0.0 kcal mol⁻¹ of injectant -2.0

Figure S7: ITC traces with Mab TrmD for a) 26j (n = 1), b) 26k (n = 1), c) 26l (n = 3), and d) **26n** (n = 2).

0.0

0.5

1.0

Molar Ratio

1.5

2.0

-4.0

-6.0 -8.0

-10.0

0.0

0.5

Data: 2% DMSO, 33uM TrmD -

1.5

2.0

ΔH

ΔS

1.0

Molar Ratio

ka: 2% DMSO, 33uM TrmD -330uM Compound 26n del: OneSites ⁶²/DoF = 4.961E4 0.797 ±0.00863 Sites 1.33E6 ±1.68E5 M⁻¹ -1.014E4 ±151.0 cal/mol -5.98 cal/mol/deg

Figure S8: ITC traces with *Mab* TrmD for a) **260** (n = 3), b) **260** (Reverse titration, n = 1), c) **27g** (n = 1), and d) **29b** (n = 3).

Figure S9: ITC traces with *Mab* TrmD for a) **29c** (n = 1), b) **29e** (n = 3), c) **30a** (n = 1), and d) **31b** (n = 2).

