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SI Appendix

1 Synchronous burst detection algorithm

First stages of burst detection are performed post-recording using the software MC Rack (Multichannel
Systems). Spikes are detected from local field potentials at each electrode using a threshold-based
detector as downward excursions beyond the estimated standard deviation (calculated across a time interval
of 500ms). Individual bursts are then recorded for each electrode using the MaxInterval Method [1]
implemented in MC Rack with parameters Max. interval to start burst: S0ms; Max. interval to end burst:
50ms; Min. interval between bursts: 100ms; Min. duration of burst: 10ms; Min. number of spikes in
burst: 10. The MC Rack implementation of the MaxInterval Method is as follows:

1. Scan the spike train until an interspike interval is found that is less than or equal to Max. in-
terval to start burst

2. While the interspike intervals are less than Max. interval to end burst, they are included in the
burst

3. If the interspike interval is more than Max. interval to end burst, the burst ends
4. Merge all the bursts that are less than Min. interval between bursts apart

5. Remove the bursts that have duration less than Min. duration of burst or have fewer spikes than Min.
number of spikes



Individual bursts are recorded per electrode as a list of individual burst timestamps and lengths, and the
MC Rack output file is converted to ASCII format using the software MC Tools (Multichannel Systems).

The ASCII file output from MC Tools is used as an input for a custom-built synchronous burst detection
algorithm written in the R programming language. Electrodes are pre-processed to detect outliers, which
are identified and excluded from further analysis if they have a number of recorded individual bursts falling
more than 1.5 times the interquartile range above the third quartile or below the first quartile, or zero. Time
is binned into 100ms intervals and a logical vector spanning the length of the entire recording is initialized
for each remaining electrode, containing value TRUE if an individual burst is recorded for that electrode
during the given time interval and FALSE otherwise. An integer-valued burst profile vector, also spanning
the length of the recording, is then constructed by summing the total number of electrodes individually
bursting at each time interval. Run-length encoding of consecutive intervals within the burst profile vector
where four or more electrodes are individually bursting simultaneously is used to mark the start and end of
synchronous bursts, which at their peak typically involve 35-45 electrodes. Typical synchronous bursts
last 600-800ms whilst individual bursts at electrodes usually have a length of 80-500ms. The total count
of synchronous bursts over the course of a recording is divided by length of that recording (in mins) to
calculate SBPM for further analysis. SBPM is capped at a maximum of 10 to avoid over-counting in
hyper-active cultures.

2 Computational model

2.1 Network and neural model

We employ the same models for the neural network and the neural dynamics as in the work of [2], which
we recapitulate in this section, but modify the model of synaptic dynamics as described in the following
section. As in the original paper, we simulate a network of 400 neurons, organized on a physical grid of
20x20, where the probability of connection is a decaying function of distance. The connectivity between
neurons is defined by the binary connectivity matrix W, where W(i, i) = 0,

P (Wi; = 1) = exp [-d(, j)*/20%], Vi#j, (S1)

d(i, j) returns the distance between the two units, and o represents the connectivity decay length.

The neural model consists of a simplified Hodgkin-Huxley model described by:
CV = Lypp = Ing — Ix — I + Lsyn + 0%€, (S2)

where V is the neuron’s membrane potential, C is the membrane capacitance, and 1,,,, Ina, Ik, I1, Lsyn

represent the external, sodium, potassium, leak, and total synaptic currents, respectively. & denotes a
Wiener process, and o represents the standard deviation of the noise. In this simplified version of the
model, only the dynamics of the potassium activation variable n are computed via:

i 1 0,-V V +65
n=ay(V)(1-—n)=B(V)n, an(V)= 0 Z ; s Ba(V) =mnpexp (— ) (S3)
T exp (%) -1 n
while the sodium activation variable m is assumed to instantaneously adapt to:
Meo(V) = ,oam(V) = — s Bm(V) =npmexp (— ) (S4)
(V) + (V) Tm exp (O,Z;V) -1 m
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The currents, are then calculated via:

Ing = gnam, (0.089 — 1.1n) (V — Eng)
Ix = ggn* (V — Eg)
Ip =g (V-Ep)

All parameter are presented in Table S1. No external current is applied, but frozen noise (constant in
time but variable across units) of zero mean is provided to simulate heterogeneity in the neurons resting
potentials (—65 + 0.2mV). The calculation of the total synaptic current is presented after the introduction
of the synaptic dynamics.

2.2 Metabolic-dependent synaptic dynamics
As in [2], we consider synapses endowed with synaptic facilitation, captured by facilitation variable x,
whose dynamics evolve according to:

X —x

X = +k(1-x)H(V -T), (S5)
where x increases after every action potential of the presynaptic neuron, when V' is above the threshold T’
in the Heaviside function H, and decays to resting value X with time constant 7,. Beyond the use as a
facilitation variable, functionally, x is generically employed in the model as a proxy for the level of recent
neural activity, which becomes useful to evaluate both refractoriness and metabolic consumption, as we
later describe.

In the original work of [2], three synaptic vesicle pools are simulated, representing the fraction of
available free, docked, and recovering vesicles. Here we simulate only the fraction of docked vesicles,
assuming that their recovery is simply modulated by the ratio of metabolic flux to neural activity. We have
shown that, in absence of this metabolic coupling, by setting the other vesicle pools to a constant in the
original model, the bursting behaviour remains unchanged, showing that the simulation of the dynamics
of these two additional pools is not relevant for the purposes of the present work, and justifying this
simplification. The docked vesicle pool (represented by yg,ck ), €volves according to:

1 x—X 1 x—X
Ydock = ﬁ (ydmjc);( - ydock) M(X) I+ H (V - T) - lydock H(V - T)’ (86)
where
M) = reg exp (~x/my) (S7)

represents the metabolic modulation function. We note here that we do not intend to capture the exact
functional form of this coupling in nature (which is currently unknown), but simply to present a simplified
model with the desired properties: the exponential ensures the sign of the function remains positive,
becoming smaller as the ratio of recent past energy consumption to resource availability decreases. This
ratio is here expressed as the proxy for recent neural activity x over the metabolic flux my, which we
assume to be a function of glucose availability. High recent activity means here a larger resource depletion,
and reduced capacity for y .. to recover, while a higher metabolic flux results in an increased capacity for
vesicle recovery.
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Finally, as in [2] we consider synapses to become refractory after persistent firing of the presynaptic
neuron, when yg,.x reaches a minimal depletion variable yzlnoi?k, and stays refractory until this value has
recovered above this minimal value and x has has also reached a reference value x,.r. We note that the
equations for x and for the synaptic pools in this work and in the original model are only expressed in
terms of global properties of the presynaptic neuron. All synapses of the same presynaptic neuron follow
the same dynamics and can be simulated as one. In particular, all synapses corresponding to the same
presynaptic neuron will become refractory at the same time. Refractory synapses do not contribute to the
total synaptic current each postsynaptic neuron receives. If a spike arrives at time #y to a non-refractory

synapse j, it produces a current given by:

i5(1) = K1 Odock() = Yook (10)) H (V(1) = T) H (yaoer (1) = v ) (58)

which integrates the number of depleted docked vesicles and includes a proportionality constant K;. The
two Heaviside functions ensure that currents are only produced during spikes and only if the fraction of
docked vesicles has not dropped below a minimal value. The total current is then computed as:

L= > it = taa), (S9)

j (non-ref)

where a delay time #4,; = 1ms is employed.

2.3 Simulations

Simulations were performed in python, employing an adaptation of the original matlab code of [2]. The full
code for the simulations here presented can be found at https://github.com/r-echeveste/meta_
reg_net.

Network dynamics were simulated for 100s, after an initial 5s transient. The evolution of the system
was computed using a fourth-order Runge-Kutta method, with dt = 0.05ms. Simulations were conducted
in two different metabolic flux conditions: a high metabolic flux case, corresponding to high levels of
extracellular glucose, and a low metabolic flux case, corresponding to low levels of extracellular glucose.
The parameters for both simulations are found in Table S1.
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Parameter Description Value
Network
N Number of neurons 400
o Connectivity scale 0.9
w Connectivity matrix random binary
Neural model
C Membrane capacitance 1uF cm™
gNa Conductance of Na2* current 120mS cm™2
8K Conductance of K* current 36mS cm™>
gL Conductance of the leak current 0.3mS cm™
En, Equilibrium potential of Na* current 50mV
Ex Equilibrium potential of K* current -7TmV
Ep Equilibrium potential of the leak current -54.4mV
Tm Parameter of the m activation variable 10ms
T Parameter of the n activation variable 10ms
0, Parameter of the m activation variable -40mV
0, Parameter of the n activation variable -55mV
Mm Parameter of the m activation variable 4
Mn Parameter of the n activation variable 0.125
Om Parameter of the m activation variable 18
o Parameter of the n activation variable 80
o Membrane noise size 0.89A ms™!/2 cm™2
T Spiking threshold -58mV
Synaptic dynamics
X Facilitation equilibrium value 0.3
Ty Facilitation time constant 700ms
k Facilitation increase constant 0.08
Xref Refractoriness threshold 0.31
Yook Max. docked pool size 0.18
Yoo Min. docked pool size 0.04
Tdock Docking time constant 738ms
Trel Release time constant 47ms
K; Synaptic strength 2666
tdel Synaptic delay Ims
Metabolic coupling
Yref Recovery reference value 0.32
mg Metabolic flux (high glucose) 1.0
mg Metabolic flux (low glucose) 0.1
Simulation
dt Time step 0.05ms

Table S1. List of parameter values.
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