NMR Characterization of Solvent Accessibility and Transient Structure in Intrinsically Disordered Proteins

Christoph Hartlmüller^{1,#}, Emil Spreitzer^{2,#}, Christoph Göbl³, Fabio Falsone⁴, Tobias Madl^{1,5,*}

Supporting Information

Supporting Figure 1: Experimentally-determined (red) and predicted (blue) solvent PRE values using CBCA(CO)NH as readout spectrum, of assigned H^{β} peaks of FOXO4^{TAD}. Experimental sPRE values are calculated by fitting the data with a linear regression equation. Errors of the measured ¹H-R₁ rates were calculated using a Monte Carlo-type resampling strategy and are shown in the diagram as error bars.

Supporting Figure 2: Comparison of experimental sPRE values of H α protons (red) and bulkiness (grey) of FOXO4 (**A**), p53^{TAD} (**B**) and α -synuclein (**C**). Bulkyness was calculated using the ProtScale web server (<u>https://web.expasy.org/protscale/</u>, 01.04.2019) using a window size of five residues and standard parameters. To compare bulkiness and sPRE the bulkiness was inverted, a linear fit calculated and the bulkiness shifted and scaled to the predicted sPRE data.

Supporting Figure 3: (A) Overlay of ¹H,¹⁵N HSQC spectra, with full recovery time of a 300 μ M ¹³C,¹⁵N labeled p53^{TAD} sample in the absence (black) and presence of 3.25 mM Gd(DTPA-BMA) (orange). (B) Overlay of ¹H, ¹⁵N HSQC spectra, with full recovery time of 100 μ M ¹³C,¹⁵N labeled α -synuclein in absence (violet) and presence of 5 mM Gd(DTPA-BMA) (orange).

Supporting Figure 4: Comparison of predicted and measured ¹H^N solvent PREs of p53^{TAD} (A) and α -synuclein (B). Predicted (red) and experimentally determined (blue) sPRE values from ¹H, ¹⁵N HSQC read-out spectra are shown. Regions binding to co-factors (TAD1, TAD2) and the proline rich region are labeled (p53^{TAD}). Regions of strong variations between predicted and measured sPRE values are highlighted by grey boxes and reproduce the shielding observed for the ¹H^{α} sPRE data (α -synuclein). Experimental sPRE values are calculated by fitting the data with a linear regression equation. Predicted sPRE values are based on the previously described ensemble approach. Residues with bulky side chains (Phe, Trp, Tyr) are labeled with #, and exposed glycine residues are labeled with * (see Supporting Figure 2 for bulkiness profiles). Errors of the measured ¹H-R₁ rates were calculated using a Monte Carlotype resampling strategy and are shown in the diagram as error bars.

Supporting Figure 5: p53^{TAD} {¹H}-¹⁵N heteronuclear NOE (A) and secondary chemical shifts (B). {¹H}-¹⁵N heteronuclear NOEs were recorded on an Avance Neo 600 MHz spectrometer using the same conditions as described in materials and methods. Secondary chemical shifts were calculated from ¹³C^{α} and ¹³C^{β} chemical shifts obtained from backbone resonance assignment.