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Supplementary Figures

A

B

Supplementary Figure 1: Monthly a priori and a posteriori CO2 fluxes (expressed as PgC/yr,
mid-2014 to 2017) from (A) Boreal North America and (B) and Temperature North America.
Each panel is comprised of three sub-panels: 1) a priori and a posteriori CO2 net fluxes
inferred from in situ data using three independent atmospheric transport models; 2) CO2 net
fluxes inferred from GOSAT XCO2 data, OCO-2 land nadir (LN) and land glint (LG) XCO2

data, or in situ data using the GEOS-Chem atmospheric transport model; and 3) CO2 net
fluxes inferred from OCO-2 LN and LG data using three independent atmospheric transport
models. The geographical regions are shown inset of each top sub-panel.
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Supplementary Figure 2: As Figure 1 but for (A) northern tropical South America, (B)
southern tropical South America, and (C) South America temperate.
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Supplementary Figure 3: As Figure 1 but for (A) northern extratropical Africa, (B) northern
Tropical Africa, (C) southern Tropical Africa, and (D) southern extratropical Africa.
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Supplementary Figure 4: As Figure 1 but for (A) Europe, (B) boreal Eurasia, and (C)
temperate Eurasia.
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Supplementary Figure 5: As Figure 1 but for (A) northern tropical Asia and (B) southern
tropical Asia.
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Supplementary Figure 6: As Figure 1 but for (A) tropical Australia and (B) temperate
Australia.
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Supplementary Figure 7: Summary of annual a priori and a posteriori net carbon flux esti-
mates (PgC/yr) from tropical geographical regions, 2010 to 2015.
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Supplementary Figure 8: Annual mean distribution of CO2 fluxes (gC/m2/yr) over tropical
continents inferred from GOSAT XCO2 data, 2010–2016. Hatching denotes regions where the
absolute value of the a posteriori flux estimate is larger than 1.25 times its corresponding
uncertainty.
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Supplementary Figure 9: Annual mean distribution of CO2 fluxes (gC/m2/yr) over tropical
continents inferred from OCO-2 XCO2 data, 2015–2016. Hatching denotes regions where the
absolute value of the a posteriori flux estimate is larger than 1.25 times its corresponding
uncertainty.
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DJF

MAM

Supplementary Figure 10: Seasonal DJF and MAM distributions of CO2 fluxes
(gC/m2/season) over tropical continents inferred from OCO-2 XCO2 data from 2015. Hatch-
ing denotes regions where the absolute value of the a posteriori flux estimate is larger than
1.25 times its corresponding uncertainty.
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JJA

SON

Supplementary Figure 11: As Figure 10 but for JJA and SON 2015.
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Supplementary Figure 12: (A) Annual distribution of CO2 mole fraction measurements col-
lected by CONTRAIL described on a 4◦×5◦ grid. Panels (B) and (C) compare CONTRAIL
zonal-mean mole fraction data from 2015–2016 with a posteriori CO2 fluxes inferred from
OCO-2 XCO2 and ground-based data, respectively.
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Supplementary Figure 13: Monthly a posteriori CO2 fluxes over tropical north Africa, ex-
pressed as PgC/yr, inferred from land nadir (LN) data from OCO-2 with (blue) and without
(red) coverage over the Sahara desert.
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Supplementary Figure 14: Synthetic monthly CO2 fluxes (PgC/yr) over (left) tropical South
America and (right) tropical North Africa inferred from OCO-2 XCO2 data. The true state is
denoted by the green line and the a priori is denoted by the black line. The a posteriori flux
estimates are denoted by blue, red, and cyan lines that correspond to the control calculation
and two perturbation calculations (± 1 ppm systematic error), respectively. The coloured
envelopes represent the 1-σ uncertainties on the a priori and a posteriori, respectively.
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Supplementary Figure 15: Monthly spatial distribution and value of XCO2 data, averaged on
a regular 1◦×1◦ grid, collected by OCO-2 for (top panel) March 2016 and (bottom panel)
September 2016.
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Supplementary Figure 16: (left) Geographical region for our example sampling bias calcula-
tion (denoted in red) and (right) the monthly flux error reduction associated with measure-
ments accumulated days since the flux being estimated.
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B

Supplementary Figure 17: Correlative data over (A) boreal North America and (B) temper-
ate North America. The panels are from left to right: surface temperature (K), precipita-
tion (mm/m2/day), water storage (cm), elevated vegetation index (unitless), HCHO columns
(molec/cm2) filtered for fire activity using MODIS fire counts, GOSAT solar induced fluo-
roscence (SIF, mW/m2/sr/nm), and dry matter (DM) burned (kg/DM/m2/month).
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Supplementary Figure 18: As Figure 17 but for (A) northern tropical South America, (B)
southern tropical South America, and (C) temperature South America.
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Supplementary Figure 19: As Figure 17 but for (A) northern extratropical Africa, (B) north-
ern Tropical Africa, (C) southern Tropical Africa, and (D) southern extratropical Africa.
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Supplementary Figure 20: As Figure 17 but for (A) Europe, (B) boreal Eurasia, and (C)
temperate Eurasia.

21



A

B

Supplementary Figure 21: As Figure 17 but for (A) northern tropical Asia and (B) southern
tropical Asia.
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Supplementary Figure 22: As Figure 17 but for (A) tropical Australia and (B) temperate
Australia.
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Supplementary Figure 23: Monthly SIF values (mW/m2/sr/nm) averaged over key tropical
regions.
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Supplementary Figure 24: Individual monthly carbon flux contributions over northern Tropi-
cal Africa (PgC/yr) taken from the ORCHIDEE model [18], 2015–2016: gross primary produc-
tion (GPP), autotrophic Ra and heterotrophic Rh respiration, fire flux, and the corresponding
net biospheric flux (GPP+Ra+Rh+fire). A positive value for GPP represents a loss of carbon
from the atmosphere and a negative carbon flux.
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Supplementary Figure 25: Scatterplot of a posteriori CO2 flux [gC/m2/day] inferred from
GOSAT and precipitation [mm/m2/day] for (left) western Ethiopia (4–14◦N, 33–38◦E) and
(right) the Amazon basin (0–20◦S, 50–80◦W). Larger red filled circles denote higher temper-
atures.
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Supplementary Figure 26: Timeseries of A) a posteriori CO2 flux [gC/m2/day], analyzed B)
surface temperature (K) and C) precipitation [mm/m2/day], and D) dry matter (DM) burned
[108kg/DM/m2/month] for western Ethiopia (4–14◦N, 33–38◦E).
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Supplementary Tables
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Supplementary Note 1

A posteriori regional CO2 fluxes

Figures 1 to 6 show monthly a posteriori CO2 net fluxes expressed as PgC/yr for TransCom
geographical regions [15]. These figures complement those shown in the main paper. Table 1
summarizes the annual CO2 flux estimates inferred from GOSAT (using GEOS-Chem) and
OCO-2 (all three transport and inverse method configurations) as described in the methods
sections of the main paper.

For much of the world, a posteriori CO2 fluxes inferred from GOSAT and OCO-2 track
each other during the 2015–2016 timeframe of the main study. At high latitudes (Figures 1
and 4), there is better agreement between a posteriori flux estimates during summer months
when there are more data available; during winter months flux estimates are determined by
lower latitude regions and by a priori estimates. This helps to explain variations in the net
annual fluxes for these regions (Table 1).

At temperate latitudes, we find generally larger annual mean sinks, e.g. over North
America and South America. All analyses of GOSAT and OCO-2 XCO2 are consistent with a
large land sink over temperate North America with OCO-2 data associated with a sink larger
than GOSAT data. XCO2 data are consistent with temperate South America being a large
sink in 2015 and 2016.

Ocean flux estimates typically do not deviate far from a priori values. This reflects tighter
constraints on ocean flux estimates and also that observed variations of XCO2 are more likely
to be determined by continental outflow than diffuse fluxes from the ocean.

Using the GEOS-Chem model we produced a self-consistent record of a posteriori CO2

flux estimates inferred from two independently retrieved GOSAT XCO2 data products (2009–
present) to explore how representative the 2015–2016 period is to past years. Figure 7 reports
a graphical summary of annual a priori and a posteriori net CO2 flux estimates 2010–2015
inferred from GOSAT XCO2 over tropical geographical regions. Availability of the ACOS
products defined the later time period. Northern tropical South America is in net carbon
balance, while southern tropical South America is a small sink that is close to net carbon
balance. The two GOSAT data products consistently produce a large net carbon source over
northern tropical Africa, albeit smaller than during 2015/2016. However, they diverge over
southern tropical Africa, where the UoL data are consistent with a large sink while the ACOS
product is close to carbon balance. GOSAT data products over tropical Asia are consistent
with net carbon balance. GOSAT data products diverge over Tropical Australia with UoL
data consistent with a net sink while the ACOS product is in net balance, close to the a priori
flux estimates.

Supplementary Note 2

Spatial distribution of CO2 fluxes over tropical continents

We show the spatial distributions of CO2 fluxes, corresponding to the line plots shown by
Figures 1 to 6, with the caveat that caution should be exercised when interpreting geographical
regions < 1000 km in length.

Figures 8 and 9 shows the annual distribution of a posteriori CO2 fluxes over the tropics,
incorporating all of our tropical study regions, from 2010 to 2016 for GOSAT and from 2015 to
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2016 for OCO-2. For GOSAT, these distributions correspond to values shown in Figure 7 and
Table 1. For all plots we have hatched regions where the absolute value of the a posteriori
flux estimate is larger than 1.25 times its corresponding uncertainty. We include the 25%
factor as an acknowledgement that a posteriori flux uncertainties are typically optimistic.

The two main observations from these figures are 1) both GOSAT and OCO-2 data infer
very similar distributions of a posteriori CO2 fluxes during their period of temporal overlap;
and 2) peak annual uptake regions are consistently over southern tropical South America and
over the Congo basin, as expected given the distribution of vegetation, and the peak annual
emissions vary with time but in recent years are located over semiarid western Ethiopia,
western tropical Africa, and Mozambique.

Figures 10 and 11 show seasonal distributions of CO2 fluxes inferred from OCO-2 during
2015. These complement Figures 1 to 6 and Figure 9. We are only beginning to understand
the size of the Congo basin net carbon sink [12, 31, 10], but the distribution and diversity of
ecosystems over this region is consistent with the size of the carbon sink we infer from OCO-
2 and GOSAT data. The large-scale seasonal CO2 flux distributions inferred from OCO-2
are similar to GOSAT and are not shown. The distribution of net emissions is consistent
with land-use change estimates inferred from microwave data, e.g. [7]. Recent work using
dynamical global vegetation models has suggested that historical emissions of CO2 from land-
use change has been underestimated [2], implying that, based on global mass balance, uptake
has also been underestimated. This is at least qualitatively consistent with our paper. In the
main paper we suggest that soil respiration could play a role in emissions particularly over
western Ethiopia [20, 4]. Extensive conversion from natural ecosystems to agricultural land
has been estimated to have resulted in a 20–50% reduction of soil carbon stocks [4], suggesting
large emissions, but these estimates have large uncertainties.

In an effort to test the robustness of this result over tropical North Africa, we evaluated our
a posteriori CO2 fluxes using aircraft data from the Comprehensive Observation Network for
TRace gases by AIrLiner (CONTRAIL, [21]). Figure 12 shows that CO2 fluxes inferred from
OCO-2 using GEOS-Chem are more consistent with CONTRAIL data than fluxes inferred
from ground-based data between 2015–2017. We have also inferred CO2 fluxes from these
sparse data (not shown). These data significantly increase emission estimates from tropical
North Africa, particularly after 2013 when data were collected over the Indian sub-continent
and over the western part of tropical Africa (Figure 12). Compared to OCO-2 and GOSAT,
CONTRAIL data places the elevated emissions over the northern part of the Congo basin.
These differences are likely due to the sparse coverage of CONTRAIL data and the increased
transport model errors associated with interpreting these upper tropospheric data.

Supplementary Note 3

Sensitivity of Tropical North African CO2 flux to potential sources of XCO2

retrieval systematic error

The unexpected large tropical north African CO2 seasonal cycle and annual mean net flux are
a robust feature inferred from GOSAT and OCO-2 data using a range of atmospheric transport
models and inverse methods. Our findings are also qualitatively consistent with a range of
correlative land-surface data and quantitatively consistent with the sparse atmospheric data
available to independently evaluate our results.

While there is no evidence to suggest that OCO-2 and GOSAT data have consistent
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systematic bias that affects only northern tropical Africa during a particular season, we have
used a series of numerical experiments to understand how contrived patterns of systematic
error would affect inferred CO2 fluxes and the size of bias necessary to remove the net emission.

First, we investigate whether the persistent bright surfaces over the Sahara, which can
result in erroneously low XCO2 retrievals, translate into erroneously large CO2 flux estimates
over northern tropical Africa.

Using the GEOS-Chem model and the same model/inverse method configuration used
throughout this study, we discard any observations over the Sahara desert, defined here
as 15◦W–25◦E and 16◦–25◦N, and calculate the corresponding CO2 flux estimates. These
typically represent 35% of all observations per month over North Africa throughout the year.
Figure 13 shows that removing measurements over the Sahara makes little difference to the
size of the seasonal cycle or the net flux. We find no evidence of seasonal dust transport over
western Ethiopia that would directly affect XCO2 retrievals during MAM.

Second, we use a closed-loop experiment that allows us to define the true surface fluxes
and the corresponding XCO2 distribution following OCO-2 data. We use ORCHIDEE CO2

fluxes [18] to determine the true XCO2 distribution. We use CASA CO2 fluxes to determine
our a priori XCO2 distribution to which we add a random error (1σ of 1 ppm). Figure
14 shows the results from three inversions: a control calculation (as described above) and
two inversions that correspond to a uniform systematic error of ±1 ppm imposed on the true
XCO2 distribution over northern tropical Africa (15◦W–50◦E and 0◦–32◦N). This is a contrived
scenario but it serves to illustrate the difficulty in reducing our flux estimates over northern
tropical Africa. Figure 14 shows that the control inversion reproduces the truth, as expected.
Including systematic error does not significantly affect the amplitude of the seasonal cycle but
increases/decreases net annual mean fluxes. The inversion that includes observations with a
+1 ppm systematic error results in an annual budget that is 1.35 PgC larger than the control
calculation. Using a -1 ppm systematic error results in an annual budget that is 1.47 PgC
smaller than the control calculation. With this brute force approach we would need a uniform
systematic XCO2 error 1.36–1.48 ppm to remove the significant annual mean net emissions of
2 PgC.

Figure 14 also shows that data with systematic errors of ±1 ppm do not significant in-
fluence a posteriori fluxes over Southern tropical South America. This results supports that
OCO-2 and GOSAT XCO2 can retrieve independent fluxes for tropical South America and
tropical North Africa.

Finally, we determine using an ad hoc approach the size of systematic error necessary to
remove net emissions over tropical north Africa if they were localized closer to the emission
foci (10◦W–50◦E and 0◦–15◦N). We find that a systematic error of 2.3 ppm is necessary to
achieve our goal. We anticipate that data with systematic errors of that magnitude would be
identified by other data.

Sensitivity of Tropical North African CO2 flux to potential seasonal sampling
bias

Figure 15 shows the global clear-sky OCO-2 data coverage for contrasting months in the
seasonal of CO2 fluxes over northern Tropical Africa. Gaps are generally due to clouds
and aerosols. The values of XCO2 are generally higher during March, as reflected in the
inferred fluxes, and there are a comparable number of observation available for both March
and September over northern tropical Africa. Caution should be exercised when interpreting
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spatial patterns of XCO2. Local variations of XCO2 do not directly equate to local changes
in CO2 fluxes. A CO2 column represents a weighted atmospheric column with contributions
from throughout the troposphere originating from many different geographical regions and
time periods, with local surface emissions and uptake representing only a small fraction of the
column amount. Consequently, a 3-D model of atmospheric transport is needed to interpret
the columns.

A temporal sampling bias is unlikely because there are clouds over many of these key re-
gions throughout the year, with biomass burning aerosols also playing a role in data removal.
A spatial sampling bias is possible with a large number of measurements over less cloudy
regions. However, a regional flux is not estimated exclusively using data immediately over-
head. There remains substantial information in columns observed at later times downwind
of a cloudy region [14]. This is true elsewhere in the tropics.

To illustrate this point we have included an additional calculation, based on the calcula-
tions shown in the main paper and SI, to evaluate the effectiveness of OCO-2 measurements
to estimate a monthly flux estimate. As an example we focus on a geographical region over
tropical Africa (Figure 16, left panel) and determine the error reduction associated with a
monthly flux estimate at time = 0 due to data collected on later days. We report calculations
for two contrasting months: September 2015 and March 2016. We take into account model
transport error.

In the Kalman Filter framework [14], the a posteriori flux error covariance (Pa) is deter-
mined by:

Pa = (1−PfHT [R + PfHHT ]−1H)Pf , (1)

where Pf represents the a priori error covariance, H is the Jacobian matrix that relates surface
fluxes from the target region to atmospheric measurements (XCO2). We use the GEOS-Chem
model to numerically calculate the Jacobian matrix by perturbing the a priori emission [14]
and to the solve the equation using a sequential approach. Figure 16 (right panel) shows

the error reduction metric γ = 1 −
√
Pa

i /P
f
i , where Pa

i and Pf
i denote the a posteriori and

a priori error covariance matrices determined by sequential assimilation approach from day
1 to day i. Our calculation shows that gamma only reaches 0.2 within a few days and
reaches 0.5 at 20 days and begins to converge to the final value of 0.8 at 40+ days. This
shows that our knowledge of regional CO2 fluxes is not determined exclusively from data
collected immediately over the study region at one time. Small differences between the error
reductions from September 2015 and March 2016 reflect differences in the distribution of
available data, and confirm that fluxes from these contrasting months (characterizing the
peaks of the seasonal cycle over this geographical region) are determined by observations.

Supplementary Note 4

Independent correlative data for geographical regions

Figures 17 to 22 show correlative data used to interpret temporal and spatial distributions of
CO2 flux estimates inferred from OCO-2 and GOSAT observations of XCO2. We have shown
these figures from 2009–2016, inclusive, for completeness sake. Data are described in the
methods section of the main paper.

Figure 23 shows a summary of monthly SIF values over key tropical regions. SIF values
over northern tropical Africa are smaller than values found over other tropical regions and
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with a muted seasonal cycle. This suggests that SIF, which is closely related to GPP [26], is
not responsible for the large seasonal cycle over northern Tropical Africa.

Supplementary Discussion

Carbon sources over northern Tropical Africa and western Ethiopia

Figure 3 shows our headline result of a larger than expected seasonal cycle of carbon fluxes
over northern tropical Africa, resulting in a net annual mean flux to the atmosphere. Figures
8–10 show that these net annual mean fluxes to the atmosphere result from a band of elevated
annual net emissions with foci over western Ethiopia and western tropical Africa. Here, we
discuss our headline result in the context of the ORCHIDEE land surface model that was
used by the LSCE group (Figures 1 and 2 from the main paper and Figures 1 to 6 from
the SI). The ORCHIDEE model generally performs well against independent correlative data
[19]. We then discuss in more detail possible carbon sources over western Ethiopia.

Carbon sources over northern Tropical Africa

Figure 24 shows that the ORCHIDEE land surface model describes the magnitude and ap-
proximate timing (peaking a month earlier) of the seasonal cycle over northern Tropical Africa
inferred from OCO-2 and GOSAT XCO2 data. Gross primary production (GPP) has a large
seasonal cycle that is weakest (smallest loss of carbon from the atmosphere) during Febru-
ary and March. Heterotrophic respiration is relatively constant throughout the year, while
autotrophic respiration has a shallow seasonal cycle that is anti-correlated to GPP. This is
reinforced by a small fire flux that peaks during February and March over the broad geo-
graphical region. The result is the net biospheric flux peaks in February and reduces rapidly
with GPP. Both observed and model net fluxes have net uptake later in the year, with a
larger model uptake during July and August that results in an approximate annual carbon
balance.

A significant net annual flux to the atmosphere (i.e. net emission) is possible as part of
year to year variations with decreasing (increasing) GPP (respiration terms or fire) but this
is generally considered unsustainable since we have to assume carbon is conserved on longer
times: carbon produced during photosynthesis is later lost (mostly) through respiration and
fires. However, if there exists a vulnerable carbon store that is being continually depleted,
that would effectively shift upwards the net biospheric flux, resulting in an annual net emission
that peaks in March and April. The timing of the peak in ORCHIDEE is determined mostly
by GPP (Figure 24). A carbon store that is vulnerable to warmer temperatures would exac-
erberate the situation by partly offsetting the seasonal cycle of GPP, and effectively further
weaken the period of net uptake.

The alternative hypothesis is more speculative, developed by deduction using available
data: an additional, unknown seasonal emission of carbon that peaks in spring months. The
large net emission of CO2 focused over western Ethiopia peaks broadly in the MAM season
when the surface environment is hottest and driest (Figure 25). Values found over western
Ethiopia during MAM are typically not found over other tropical environments, e.g. Amazon
basin. That observation appears to be consistent with a seasonal source, but as we argue
above a seasonal peak could result from a larger than expected aseasonal souce. Here, we
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provide an assessment of known fluxes and put forward a speculative seasonal source. In
practice, we do not preclude the possibility that our signal is some combination of sources.

Fire associated with agricultural practices follows the same seasonality as the observed
net CO2 fluxes.Elevated space-borne observations of atmospheric tracers of incomplete com-
bustion, e.g. carbon monoxide from the Measurement of Pollution In The Troposphere (not
shown) and formaldehyde from the Ozone Monitoring Instrument (main text and Figure 26),
and of data products derived from land surface properties, e.g. dry matter burned (main text)
cannot explain the observed carbon emission. Recent work has highlighted that burning over
this region is also a major source of ammonia [29].

Carbon sources over western Ethiopia

Western Ethiopia has some of the highest values of soil organic carbon anywhere in the world,
in excess of 150 Mg/hectare [13]. We cannot discount a role for elevated soil respiration as-
sociated with higher temperature, but previous studies have emphasized the importance of a
soil moisture with respiration following a bell curve based on soil moisture (e.g. [32]). Based
on satellite data and analyzed meteorology (Methods) we find that over western Ethiopia
monthly CO2 fluxes increase when temperature rises, and when precipitation and liquid wa-
ter equivalent thickness falls (Figure 26). Western Ethiopia has also experienced extensive
and persistent land use change [5] with significant reductions in above-ground biomass [3, 7]
and soil erosion (e.g. [27]). Soil degradation due to land-use change could exacerbate car-
bon loss but empirical evidence is inconclusive [30, 11, 6]. Continued land degradation and
warming temperatures could potentially result in a large diffuse CO2 emission source with a
temperature dependence. We acknowledge the influence of climate warming on net carbon
emissions from soil is non-trivial and subject to a number of confounding factors [22].

There are also arid and semi-arid ecosystems that neighbour western Ethiopia. Previous
studies have highlighted a possible role for CO2 fluxes from biological soil crusts that contain
myriad biological communities (e.g., cyanobacteria, lichens). These crusts can form material
that is resistance to wind and water erosion [24]. Mesocosm experiments appear to show
biocrusts can be a CO2 source during hot summer months but are linked with pulsed wetting
events [28]. It is unlikely they will play a major role (if any) in explaining the large source of
CO2 over western Ethiopia.

The east African rift is a dominant geological feature of Ethiopia (e.g. [16]). Deep carbon
emissions have been the subject of a number of studies (e.g. [23, 8], including diffuse volcanic
degassing, geothermal lakes and wells, faults, and fumaroles. These emissions have been the
subject to a number of studies that conclude emissions ranging between 4–104 TgCO2/yr
([16] and references therein). While they undoubtedly will play a role in CO2 emission over
Ethiopia, they will do not explain observations: they tend to be further east of where we
observe our largest emissions, there is no underlying reason why these emissions would peak
in MAM, and bottom-up estimates are an order of magnitude too small to explain fluxes
inferred from GOSAT and OCO-2.

A more speculative seasonal source over western Ethiopia, developed by linking previously
published data, is from inorganic carbon emissions that originate from karsts. Karsts are caves
formed from the dissolution of soluble rock [9], a process that occurs over thousands of years.
Here, we explore how the unique environment over western Ethiopia could in theory result in
karst carbonate chemistry producing a CO2 pulse at the beginning of the dry season. Over
Ethiopia more than 20% of the land includes lithology that is karstifiable, e.g. limestone,
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dolomite, marble, and sandstone [17], which are mainly located in the Mekele region, the
northeastern plateau close to Somalia, the Blue Nile gorge, and the Afar depression. Western
Ethiopia also has high values of soil organic carbon stores that are subject to precipitation
and high temperatures. We propose that during the rainy season, soil water originating from
precipitation results in large amounts of weak carbonic acid that eventually precipitates in
the underlying karst structures, building on [25] (and references therein). The carbonic acid
converts calcite into calcium bicarbonate when it seeps through joints and fissures of a karst
region: CO2 + H2O + CaCO3 → Ca(HCO3)2. When the water eventually reaches the roof of
the karst structure it forms a droplet that eventually drops to the floor. The water droplet will
contain a higher concentration of dissolved CO2 than the ambient air in the cave so some CO2

will be released to the air. To re-establish chemical equilibrium a small amount of the CaCO3

is deposited onto the cave roof. In a closed karst system the only way to vent this inorganic
atmospheric CO2 is from above. During the wet season, soils are wet and can significantly
impede the diffusion of gas to the overlying atmosphere [1]. Approaching the dry season,
as the soil becomes drier, the inorganic CO2 that slowly built up during the wet season can
begin to escape to the atmosphere, resulting in a pulse that peaks in MAM. This assumes a
vertical atmospheric temperature gradient that promotes the rising karst air through the soil
membrane towards the atmosphere. We acknowledge the magnitude of this pulse depends on
a number of factors, including, for example, a large karst cavity capacity, rainfall amounts,
and the biological productivity of the soils. We emphasize this is a speculative hypothesis
that builds on a range of published data.
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