Supplementary Tables

Supplementary Table S1. List of mitocans and non-mitocans used for bioinformatics analysis.

Mitocans	Non-mitocans
Cytarabine	Hydroxyurea
Doxorubicin	Fludarabine
Paclitaxel	BN-2629
Etoposide	E-7820
Rapamycin	Fulvestrant
Vinorelbine	Dasatinib
Temsirolimus	Pazopanib
Arsenic trioxide	Afatinib
Obatoclax	Dolastatin 10
Salinomycin	Estramustine
Staurosporine	Midostaurin
Simvastatin	Testolactone
Mitoxanthrone	Valrubicin
L-Asparaginase	Fostamatinib

Cell line	Cell line origin	Disease	Age	Sex	Prior treatment	Ploidy	Genetic mutations / rearrangements
MV-4-11	Peripheral blood	Acute myeloid leukemia	10	М	NA	2n=48 (hyperdiploid)	FLT3-ITD ¹ , t(4;11) ² [PMID: 12529668]
OCI-AML2	Peripheral blood	Acute myeloid leukemia	65	М	NA	Hyperdiploid 48(43-49)	<i>DNMT3A</i> [PMID: 21904384]
THP-1	Peripheral blood	Acute myeloid leukemia	1	М	NA	Near-diploid (46, XY)	<i>MLL-AF9</i> fusion, deletions in <i>CDKN2A, PTEN</i> [PMID: 11066077, 19635138]
MOLM-13	Peripheral blood	Acute myeloid leukemia	20	М	NA	Hyperdiploid 51(48-52)	FLT3-ITD, CBL deltaExon8 mutant, <i>MLL-AF9</i> fusion [PMID: 12529668; 9305600]
U251	Central nervous system	Glioblastoma	75	М	NA	2n=46	<i>CDKN2A,</i> <i>C9orf53, PTEN,</i> <i>TP53</i> [PMID: 24810477; 17088437]
SKOV3	Ovary	Adeno- carcinoma	64	F	Thiotepa	Hypodiploid (42-45)	<i>TP53, CDKN2A,</i> <i>PIK3CA, APC</i> [PMID: 26585234; 17088437]
OVCAR3	Ovary	Adeno- carcinoma	60	F	CyPh/CsPt/ Adr	Aneuploid, near-triploid 69+/-	<i>TP53</i> [PMID: 17088437]

Supplementary Table S2. List of cell lines included in the study.

¹ internal tandem duplication ² chromosomal translocation

Supplementary Table S3. Basic characteristics of the patients, enrolled in the study.

N	PB/BM ¹	age	sex	WBC	% blast	Pretreatment	Mutation status: gene mutations/genetic rearrangements	Karyotype
1.	РВ	29	F	4.6	36	Decitabine, Venetoclax, Dasatinib	PTPN11, CSF3R	48,XX,- 11,del(17)(p12),+r,+2mar[2]/49,idem,+8[12]/48~ 50,XX, t(7;11)(q22;q24),+8,del(9)(q13q22),- 11,del(17)(p12),+r,+2~3mar[cp6]
2.	РВ	83	М	15.6	30	ONC201, Cytarabine	TERT, CSF3R, TP53, GATA2	45,XY,t(3;8)(q25;q22),- 5,del(7)(q22q34),add(8)(q24.1), del(12)(p11.2),16,+mar[18]/46~49,idem,+del(7)(q 22q34)[cp2]
3.	PB	35	F	23.2	62	Decitabine	ASXL1, ASXL2, NRAS, RUNX1, FLT3 ITD, PHF6	46, XX
4.	PB	53	М	2.1	63	DCLL9718S	KMT2A, U2AF1	46,XY,add(1)(p36.1),del(7)(q22q34),del(20)(q11. 2q13.3)[19]/47,idem,+del(7)(q22q34)[1]
5.	РВ	41	F	13.5	92	Hydroxyurea, Crenolanib, Decitabine, Venetoclax, Gilteritinib	TET2, FLT3 ITD	49,XX,+4,t(6;9)(p22;q34),+8,+15,del(15)(q11.2q 21)x2[14]/48~50,idem,+13[cp6]
6.	РВ	77	М	4.9	57	Azacitidine, Cytarabine, Cladribine, Venetoclax	TET2, SRSF2, RUNX1, CBL, IL7R	46, XY
7.	PB	32	F	12.7	5.5	No treatment	FLT3 ITD, NPM1, DNMT3A	46, XX
8.	PB	57	М	37.2	15	Hydroxyurea. Cytarabine	ASXL1, NRAS, TET2, RUNX1T1	47,XY,+19[1]/47,idem,der(22)t(8;22)(q21.2;p11. 2)[11]/46,XY[8]
9.	РВ	79	F	5.4	6	IMGN622	ASXL, BCOR, DNMT3A	46,XX,t(2;17)(p14;q12),add(10)(q24),del(21)(q22 q22)[19]/46,XX[1]
10.	BM	80	М	128	89	Hydroxyurea	FLT3 ITD, RUNX1 ISH2, PIGA, DNMT3A, ZRSR2	46, XY
11.	BM	57	М	9.3	86	No treatment	SMC1A, SRSF2, IDH1, ASXL2, FLT3 ITD	47,XY,+8[3]/46,XY,add(5)(q35)[2]/48,XY,+8,+m ar[7]/47,XY,add(5)(q35),+8[6]/48,XY,add(5)(q35),+8,+mar[1]/49,XY,+8,+2mar[1]
12.	PB	64	М	3.1	67	Decitabine	TET2, TP53, EZH2, CBL	41~45,Y,der(X)t(X;1)(q24;p13),- 2,add(3)(p13),del(5)(q13q35),-8,psu dic(9;10)(p22;p11.2),-15,-17,add(17)(p11.2), add(21)(p11.2),del(22)(q11.2),+2~6mar[cp19]/46, XY[1]
13	PB	58	М	38	31	No treatment	ETV6, EZH2, NRAS, SETBP1, DNMT3A	46, XY
14.	РВ	70	М	8.2	48	No treatment	KDM6A, RUNX1, TP53	46~47,XY,+1,der(1;10)(q10;q10),der(1;12)(p10;q 10),del(5)(q11.2),del(6) (q15q25),-14,-16,add(16)(p11.2),-17,- 21,+3~6mar[cp15]/46,XY[4]
15.	BM	89	М	95.8	65	No treatment	ASXL1, CBL, CREBBP, PHF6, TET2	50,XY,+der(1;11)(q10;q10),+8,+8,+8[10]/47~51, XY,+add(1)(p13),+8,+8,+8,der(9)t(1;9)(q21;p24)[cp10]
16.	BM	58	М	38	31	No treatment	ETV6, EZH2, NRAS, SETBP1, DNMT3A	46, XY
17.	PB	64	М	9.2	23	Dasatinib, Decitabine, Venetoclax	ASXL1	46,XY,add(2)(q12),t(4;12)(q12;q24.1),ins(12;?)(p 13;?)[18]/46,XY[2]

18.	PB	72	М	5.2	90	AMG 330, Tocilizumab, Hydrea	BCOR, U2AF1, DNMT3A	46, XY
19.	PB	21	М	4.8	86	Decitabine, Venetoclax,	NPM1, IDH2	46,XY,t(2;4)(p23;q21)[3]/46,XY,t(5;17)(q13;q25) [2]/46,XY[15]
20.	PB	30	М	2.3	61	Mitoxantrone, Etoposide, Cytarabine	BCOR, PTPN11	45,XX,t(3;3)(q21;q26.2),del(6)(q12),-7[16]
21.	PB	72	М	1.4	38	Hydroxyurea, Quizartinib, Decitabine	CEBPA, FLT3 ITD, KRAS, PTPN11, WT1	46, XY

¹ Source of primary AML cells: PB (peripheral blood) / BM (bone marrow).

Locus	Forward (5'-3')	Reverse (5'-3')	PCR protocol
Primers 1	I. 95 ^o C for 30 s;		
GAPDH	TCTGACTTCAACAGCGACAC	CAGCCACATACCAGGAAATG	II.
B2M	TGTAAGCAGCATCATGGAGG	CTCCACATAGTGAGGGTTATC	1. 95 °C for
TBP	GAGAGTTCTGGGATTGTACC	CCATCTGAAAACAGAGCAGG	10 s; 2 55 ^{0}C for
ACTB	AAAGACCTGTACGCCAACAC	GGAAAGACACCCACCTTGAT	2. 35×101
ND1	GTATTATACCCACACCCACC	GTACAATGAGGAGTAGGAGG	+Plate read
ND4	CACATATGGCCTAGACTACG	GTGGGTGGTTGTTGTTGATTC	(40 cycles)
Primers 1	used for gene expression studies		III. Melt Curve
MFN1	TCTCCGCCTTTAACTTCTCG	TTATGCTAAGTCTCCGCTCC	65 to 95 0 C,
MFN2	GCAGGACATGATAGATGGCT	ATAGTTGAGGGAGAAGCACTG	increment 0.5 °C
OPA1	GTCAGTCAAATGGACCCTCA	ATCTGCTGAATCCTGCTTGG	tor 5 s
DNML1	GAACAGCGAGATTGTGAGGTT	TGCATTACTGCCTTTGGCAC	+Plate read
FIS1	ATCCGTAAAGGCATCGTGCT	AGAAGACGTAATCCCGCTGT	END
MFF	ACCTGACTGTTGTAGATGCAG	AGCACGTTCTTTGTTCTCCTC	
MID49	GTGAAGCGGTTCATTGACAG	TTGAGCAGGCTCAGTTCCTT	
MID51	ATGTACTTGAGTGGCAGCCT	GGGCACAATGAGTTGGATGT	
ACTB	GATCAAGATCATTGCTCCTCCTG	ATACTCCTGCTTGCTGATCCA	

Supplementary Table S4. Primer sequences used for qPCR studies.

Supplementary Table S5. Results of multiple linear regression: association of cancer type with the sensitivity to mitocan treatment.

Dependent variable ¹	B-coefficient	SE(B)	<i>p</i> -value			
After adjustment for age, gender and prior treatment of the cell line donor						
Mitocan activity Z-scores	0.382	0.168	0.031			
Non-mitocan activity Z-scores	0.346	0.171	0.054			

¹ With cancer type as an independent predictor p < 0.05 are highlighted in bold

Supplementary	Table S	S6. Fold	changes	(positive	– increase;	negative -	decrease) of
mitochondrial a	nd bioer	nergetic p	arameters	s after dox	orubicin trea	tment (DOX	/untreated).

Cell line	mtDNA	MTG	JC-1,	ATP	Basal	ATP-	Proton	Spare	Coupling	ECAR	WB	LD50
	content	fluore-	red/	content	OCR	linked	leak	capacity	efficiency		(ATP	(DOX),
		scence	green			OCR			-		syn ß)	μΜ
MV-4-11	-1.49			-19.71	-2.19	-2.84	-1.94	-1.10	-1.43	1.22		1.634
OCI-	1 44			26.80	2.02	2.26	1.29	1.26	-2.22	1.02		21.67
AML2	-1.44			-20.00	-2.02	-3.20	-1.20	-4.20		-1.05		21.07
MOLM-13	-1.77	-32.03	-63.96	-9.57	-3.11	-6.29	-1.23	-5.95	-2.16	-1.10	1.118	26.75
THP-1	-1.40			-5.66	-5.32	-9.26	-3.30	-3.80	-2.36	-1.92		68.70
PBMC	1.40	-13.97	-4.71	-8.76	-1.55	-1.61	-1.41	-2.23	-1.20	-1.52	3.772	40.85
U251	5.51			-1.05								122.22
SKOV3	2.37	-29.19	-15.34	1.07	-1.28	-1.26	-1.03	-1.90	-1.07	1.09	1.002	110.82
OVCAR3	5.59			1.05								93.87

Cases with p<0.05 are in **bold**.

Gene		Fusion				Fission		
	MFN1	MFN2	OPA1	DNM1L	FIS1	MFF	MID49	MID51
Cell line								
MV-4-11	0.83 (0.50-	2.13	1.35	2.06	3.06	1.99	5.71 (3.52-	2.86
	1.37)*	(1.34-	(0.84-	(1.26-	(1.88-	(1.19-	9.27)	(1.69-
		3.39)	2.18)	3.36)	4.99)	3.34)		4.85)
MOLM-13	1.09 (0.53-	2.19	0.51	0.58	0.80	0.53	16.82	1.41
	2.26)	(0.76-	(0.25-	(0.24-	(0.30-	(0.28-	(4.96-	(0.42-
		6.32)	1.03)	1.38)	2.12)	1.01)	56.95)	4.71)
THP-1	5.43 (3.71-	6.95	0.71	0.36	1.84	0.66	32.98	3.14
	7.95)	(3.61-	(0.52-	(0.13-	(1.26-	(0.48-	(15.96-	(1.78-
		13.37)	0.98)	0.99)	2.69)	0.92)	68.15)	5.54)
PBMC	3.09 (1.11-	4.82	1.29	0.91	1.52	2.24	13.67	4.72
	8.63)	(1.18-	(0.47-	(0.45-	(0.74-	(1.04-	(2.79-	(1.08-
		19.67)	3.59)	1.84)	3.10)	4.84)	67.09)	20.68)
SKOV3	0.33 (0.11-	0.67	0.46	0.52	0.93	0.63	0.58 (0.37-	0.25
	0.95)	(0.51-	(0.17-	(0.18-	(0.72-	(0.35-	0.89)	(0.21-
		0.86)	1.21)	1.51)	1.21)	1.12)		0.30)

Supplementary Table S7. Fold change differences in expression of fusion and fission genes in DOX-treated (LD50, 8 h) cells compared to untreated cells.

 * Fold changes were calculated using the comparative $\Delta\Delta C_t$ method

Supplementary Table S8. Relative potency of drugs used for combination studies (single-ray design) in cell lines and primary AML samples.

Cell line/Patient	$LD25_{1st drug} / LD25_{2nd drug} =$	Fixed ratio (50:50) concentrations
sample	Relative potency	of the 1^{st} drug, 2^{nd} drug
•	2-DG (1 st drug) / CCC	P (2 nd drug)
MV-4-11	$7500 \mu\text{M} / 2.07 \mu\text{M} = 3623$	10.7 mM, 3 μM; 7.5 mM, 2.1 μM;
		3.6 mM, 1 μM
OCI-AML2	$16240 \ \mu M / 15.63 \ \mu M = 1039$	16.2 mM, 15.6 μM; 8.1 mM, 7.8 μM;
		6.55 mM, 6.3 μM
MOLM-13	51600 μM / 6.3 μM = 8190	51.6 mM, 6.3 μM; 41 mM, 5 μM.
THP-1	$74800 \mu\text{M} / 4.06 \mu\text{M} = 18424$	74.8 mM, 4.1 μM; 36.8 mM, 2 μM;
		18.4 mM, 1 µM
PBMC	$106000 \ \mu M / 45.41 \ \mu M = 2334$	106 mM, 45.41 μM; 70 mM, 30 μM;
		46.7 mM, 20 μM; 23.3 mM, 10 μM
U251	616150 μM / 92.3 μM = 6676	616.15 mM, 92.3 μM; 467.3 mM, 70 μM;
		333.8 mM, 50 μM
SKOV3	737000 μM / 133.4 μM = 5525	800 mM, 139 μM; 737 mM, 133.4 μM;
		688.9 mM, 120 μM
OVCAR3	390748 μM / 130.3 μM = 2999	450 mM, 150 μM; 390.7 mM, 130.3 μM;
		300 mM, 100 μM; 150 mM, 50 μM;
		30 mM, 10 µM
AML 1	8660 μ M / 12.33 μ M = 702	8.66 mM, 12.33 μM; 5.77 mM, 8.22 μM;
		2.87 mM, 4.11 μM
AML 2	$79100 \ \mu M \ / \ 16.07 \ \mu M = 4922$	79 mM, 16.07 μM; 50 mM, 10 μM;
		24.5 mM, 5 μM
AML 3	$80700 \ \mu M \ / \ 11.4 \ \mu M = 7079$	80.7 mM, 11.4 μM; 53 mM, 7.5 μM;
		25 mM, 3.5 μM
AML 4	$66200 \ \mu M \ / \ 7.7 \ \mu M = 8597$	66.2 mM, 7.7 μM; 43 mM, 5 μM;
		21.5 mM, 2.5 μM
AML 5	$80900 \ \mu M / 8.3 \ \mu M = 9747$	80.9 mM, 8.3 μM; 57.8 mM, 6 μM;
		40.5 mM, 4 μM; 19.5 mM, 2 μM
AML 6	$3700 \ \mu M / 2.6 \ \mu M = 1423$	3.7 mM, 2.6 μM; 2.9 mM, 2 μM;
		1.4 mM, 1 μM
AML 7	23800 μM / 17.4 μM = 1368	23.8 mM, 17.4 μM; 13.7 mM, 10 μM;
		6.8 mM, 5 μM
AML 8	58900 μ M / 23.8 μ M = 2475	58.9 mM, 23.8 μM; 36.8 mM, 15 μM;
		24.5 mM, 10 μM; 12.3 mM, 5 μM
AML 9	$268000 \ \mu\text{M} / 13.5 \ \mu\text{M} = 19852$	268 mM, 13.5 μM; 198.5 mM, 10 μM;
		99.3 mM, 5 μM; 19.9 mM, 1 μM
AML 10	$58800 \ \mu M / 2.23 \ \mu M = 26368$	58.8 mM, 2.23 μ M; 26.4 mM, 1 μ M;
43.07.11	4000 26/14/5 26 201	13.2 mM, 0.5 μM
AML 11	$4800 \ \mu M / 14.5 \ \mu M = 331$	4.8 mM, 14.5 μ M; 2.4 mM, 7.25 μ M;
43.07.12	5(100) (/ 10 00) (5401	1.2 mM, 3.6 μM
AML 12	$56100 \mu\text{M} / 10.33 \mu\text{M} = 5431$	56.1 mM, 10.3 μ M; 28.1 mM, 5.2 μ M;
	200700 N(55.1 N(2612	14 mN, 2.6 μ M; / mM, 1.3 μ M
AML 13	$200/00 \mu\text{M} / 55.1 \mu\text{M} = 3642$	$200 \text{ mM}, 55.1 \mu\text{M}; 100 \text{ mM}, 27.6 \mu\text{M};$
	42200 M / 20 C M 1001	$50 \text{ mW}, 13.8 \mu\text{M}$
AML 14	$43200 \mu\text{M} / 39.6 \mu\text{M} = 1091$	45.2 mN, 39.6 μM; 21.6 mM, 19.8 μM;

		10.8 mM, 9.9 µM
AML 15	$7950 \ \mu M / 70.2 \ \mu M = 113$	8 mM, 70 μM; 4 mM, 35 μM;
		2 mM, 17.5 μM; 1 mM, 8.75 μM
AML 16	95700 μM / 17 μM = 5629	95.7 mM, 17 μM; 47.9 mM, 8.5 μM;
		23.9 mM, 4.25 μM; 12 mM, 2.13 μM
AML 17	81000 μM / 16.7 μM =4850	81 mM, 16.7 μM; 40.5 mM, 8.35 μM;
		20.25 mM, 4.18 μM; 10.1 mM, 2.1 μM
AML 18	$10300 \ \mu M / 4 \ \mu M = 2575$	10.3 mM, 4 μM; 2.6 mM, 1 μM;
		1.3 mM, 0.5 μM
AML 19	$18200 \ \mu M / 0.55 \ \mu M = 33091$	18.2 mM, 0.55 μM; 12.1 mM, 0.37 μM;
		9.1 mM, 0.28 μM; 4.55 mM, 0.13 μM;
		2.28 mM, 0.07 μM
AML 20	$850 \ \mu M / 2.18 \ \mu M = 390$	0.85 mM, 2.2 μM; 0.425 mM, 1.1 μM;
		0.2 mM, 0.55 μM; 0.1 mM, 0.27 μM
AML 21	$105300 \ \mu M / 22.8 \ \mu M = 4618$	105.3 mM, 22.8 μM; 52.7 mM, 11.4 μM;
		26.3 mM, 5.7 μM
	CCCP (1 st drug) / ABT-	199 (2 nd drug)
OCI-AML2	$15.63 \ \mu M / 0.177 \ \mu M = 88$	15.63 μM, 0.177 μM; 10 μM, 0.113 μM;
		5 μM, 0.06 μM; 1 μM, 0.0113 μM
PBMC	$45.41 \ \mu M / 0.6 \ \mu M = 76$	45.1 μM, 0.6 μM; 30 μM, 0.4 μM;
		20 μM, 0.26 μM; 10 μM, 0.13 μM
	2-DG (1 st drug) / ABT-1	99 (2 nd drug)
OCI-AML2	$16240 \ \mu M / 0.177 \ \mu M = 91751$	16.24 mM, 0.177 μM; 13.8 mM, 0.15 μM;
		9.2 mM, 0.1 μM; 1.8 mM, 0.02 μM
PBMC	$106000 \ \mu M / 0.6 \ \mu M = 176667$	106 mM, 0.6 μM; 53 mM, 0.3 μM;
		26.5 mM, 0.15 μM; 10.6 mM, 0.06 μM
	2-DG (1 st drug) / ara-	C (2 nd drug)
OCI-AML2	$16240 \ \mu M / 77.8 \ \mu M = 209$	16.2 mM, 77.8 μM; 8.1 mM, 38.9 μM;
		4.1 mM, 19.5 μM; 2 mM, 9.7 μM
AML 11 ¹	$4800 \ \mu M / 53.4 \ \mu M = 90$	4.8 mM, 53.4 μM; 2.4 mM, 26.7 μM;
		1.2 mM, 13.4 μM
AML 13	$200700 \ \mu M / 131.8 \ \mu M = 1523$	200 mM, 131.8 μM; 100 mM, 69.1 μM;
		50 mM, 34.5 μM
AML 14	$43150 \ \mu M / 400 \ \mu M = 108$	43.2 mM, 400 μM; 21.6 mM, 200 μM;
		10.8 mM, 100 μM
AML 15	7950 μ M / 50.4 μ M = 158	8 mM, 50 μM; 4 mM, 25 μM;
		2 mM, 12.5 μM; 1 mM, 6.25 μM
AML 20	$850 \ \mu M / 141.2 \ \mu M = 6$	0.85 mM, 141.2 μM; 0.425 mM, 70.6 μM;
		0.2 mM, 35.3 μM; 0.1 mM, 17.7 μM

¹ Only primary AML samples, not resistant to ara-C (LD25 < 400 μ M corresponding to 0.4% DMSO), have been treated with combination of ara-C and 2-DG.

Supplementary Table S9. Results of multiple linear regression: no association of pretreatment of the patients (n = 21) with mean combination indices of CCCP/2-DG.

Dependent variable ¹	B-coefficient	SE(B)	<i>p</i> -value
Before adjustment for age, gender,	source of primary cel	ls and % blast cells	
Mean combination index based on	-0.085	0.118	0.481
LD25, 50, 75 of the mixture			
CCCP/2DG			
After adjustment for age, gender, so	ource of primary cells	and % blast cells	
Mean combination index based on	0.002	0.153	0.988
LD25, 50, 75 of the mixture			
CCCP/2DG			

¹ With pretreatment (0 / 1) as an independent predictor

Supplementary Table S10. Correlations between mitochondrial parameters across untreated AML cells, healthy blood cells and SKOV3 cell line¹.

		Max OCR	ATP- linked OCR	Spare capacity	Coupling efficiency	LD25, CCCP	LD25, 2- DG	CI based on LD50 of the mixture	Mean CI based on LD25,50,75
Basal OCR	r	0.915	0.975	0.790	0.189	0.345	0.565	0.521	0.283
	p	0.011	0.001	0.061	0.719	0.500	0.243	0.289	0.587
Max OCR	r		0.966	0.969	0.477	0.463	0.644	0.579	0.397
	p		0.002	0.001	0.338	0.355	0.168	0.229	0.436
ATP-linked	r			0.888	0.376	0.500	0.694	0.639	0.424
OCR	p			0.018	0.463	0.312	0.126	0.172	0.402
Spare	r				0.651	0.550	0.687	0.61	0.481
capacity	p				0.161	0.258	0.132	0.199	0.335
Coupling efficiency	r					0.840	0.784	0.749	0.821
	p					0.036	0.065	0.087	0.045
LD25, CCCP	r						0.969	0.907	0.893
	p						0.001	0.012	0.017
LD25, 2-DG	r							0.943	0.869
	p							0.005	0.025
CI based on LD50 of the mixture	r								0.960
	р								0.002

¹ Correlations defined by two-tailed Pierson correlation coefficient r; p defines p-value. Significant correlations (p<0.05) are in bold.

Supplementary Table S11. Changes in mitochondrial bioenergetic parameters after treatment with mitocans (CCCP, DOX, LD50), glycolysis inhibitor (2-DG, LD50), or their combination (CCCP and 2-DG, LD25) in a panel of cells.

Drug	Bioenergetic parameter	MV-4-11	OCI-AML2	MOLM-13	THP-1	PBMC	SKOV3
CCCP, LD50	Basal OCR	<i>p</i> < 0.0001 -74%	<i>p</i> < 0.0001 -92%	<i>p</i> < 0.0001 - 89%	<i>p</i> < 0.0001 -96%	NS	<i>p</i> < 0.0001 -79%
	Maximal OCR	<i>p</i> < 0.0001 -67%	<i>p</i> < 0.0001 -96%	<i>p</i> < 0.0001 -96%	<i>p</i> < 0.0001 -98%	<i>p</i> < 0.0001 -88%	<i>p</i> < 0.0001 - 88%
	ATP-linked OCR	<i>p</i> < 0.0001 -101%	<i>p</i> < 0.0001 -97%	<i>p</i> < 0.0001 -96%	<i>p</i> < 0.0001 -95%	<i>p</i> = 0.0020 -71%	<i>p</i> < 0.0001 -100%
	Proton leak	NS	<i>p</i> < 0.0001 - 85%	<i>p</i> < 0.0001 -68%	<i>p</i> < 0.0001 -100%	<i>p</i> = 0.0034 + 147%	NS
	Spare capacity	<i>p</i> = 0.0211 -64%	<i>p</i> < 0.0001 -100%	<i>p</i> < 0.0001 -100%	<i>p</i> < 0.0001 -100%	<i>p</i> < 0.0001 -105%	<i>p</i> < 0.0001 -96%
	Coupling efficiency	<i>p</i> < 0.0001 -116%	<i>p</i> = 0.0161 -31%	<i>p</i> = 0.0017 -19%	<i>p</i> < 0.0001 -45%	<i>p</i> = 0.0002 -105%	<i>p</i> < 0.0001 -129%
	ECAR	NS	<i>p</i> < 0.0047 -19%	<i>p</i> = 0.0001 -49%	<i>p</i> = 0.0004 -57%	NS	NS
DOX, LD50	Basal OCR	<i>p</i> < 0.0001 -54%	<i>p</i> = 0.0006 - 51%	<i>p</i> < 0.0001 -68%	<i>p</i> = 0.0002 -81%	<i>p</i> = 0.0021 -35%	NS
	Maximal OCR	<i>p</i> = 0.0108 -30%	<i>p</i> = 0.0007 -62%	<i>p</i> < 0.0001 -77%	<i>p</i> < 0.0001 -77%	<i>p</i> = 0.0097 -52%	NS
	ATP-linked OCR	<i>p</i> < 0.0001 -65%	<i>p</i> = 0.0012 -69%	<i>p</i> = 0.0002 -84%	<i>p</i> = 0.0010 -89%	<i>p</i> = 0.0340 -38%	NS
	Proton leak	NS	NS	NS	<i>p</i> = 0.0090 -70%	NS	NS
	Spare capacity	NS	<i>p</i> = 0.0051 -77%	<i>p</i> = 0.0034 -83%	<i>p</i> = 0.0074 -74%	<i>p</i> = 0.0194 -55%	<i>p</i> = 0.0175 -47%
	Coupling efficiency	<i>p</i> = 0.0062 -30%	<i>p</i> = 0.0119 -55%	NS	<i>p</i> = 0.0157 -58%	NS	NS
	ECAR	NS	NS	NS	<i>p</i> = 0.0087 -48%	<i>p</i> = 0.0020 - 34%	NS
2-DG, LD50	Basal OCR	<i>p</i> < 0.0001 -62%	<i>p</i> = 0.0047 -38%	<i>p</i> < 0.0001 -52%	<i>p</i> = 0.0020 -76%	NS	<i>p</i> < 0.0001 -47%
	Maximal OCR	NS	NS	<i>p</i> = 0.0017 -27%	<i>p</i> < 0.0001 -53%	NS	<i>p</i> = 0.0242 -52%
	ATP-linked OCR	<i>p</i> < 0.0001 -63%	<i>p</i> = 0.0270 -50%	NS	NS	NS	<i>p</i> < 0.0001 -71%
	Proton leak	<i>p</i> = 0.0076 -65%	NS	<i>p</i> = 0.0188 -35%	<i>p</i> = 0.0068 -63%	NS	<i>p</i> = 0.0004 + 97%
	Spare capacity	<i>p</i> = 0.0017 + 86%	NS	NS	NS	NS	NS
	Coupling efficiency	NS	NS	NS	NS	NS	<i>p</i> < 0.0001 -57%
	ECAR	NS	<i>p</i> < 0.0001 - 37%	<i>p</i> = 0.0017 -47%	<i>p</i> = 0.0014 -56%	<i>p</i> < 0.0001 -60%	NS
CCCP,	Basal OCR	<i>p</i> < 0.0001 -81%	<i>p</i> = 0.0066 -42%	<i>p</i> < 0.0001 -83%	NS	<i>p</i> < 0.0001 -70%	<i>p</i> < 0.0001 -95%
LD25 + 2-DG,	Maximal OCR	<i>p</i> < 0.0001 - 52%	<i>p</i> < 0.0001 -72%	<i>p</i> < 0.0001 - 89%	<i>p</i> < 0.0001 -61%	<i>p</i> < 0.0001 -94%	<i>p</i> < 0.0001 -96%
LD25	ATP-linked OCR	<i>p</i> < 0.0001 -95%	<i>p</i> < 0.0001 -88%	<i>p</i> < 0.0001 -96%	<i>p</i> = 0.0103 -87%	<i>p</i> < 0.0001 -100%	<i>p</i> < 0.0001 -101%

Proton leak	<i>p</i> = 0.0056 -67%	NS	<i>p</i> = 0.0038 -42%	NS	NS	NS
Spare capacity	NS	<i>p</i> < 0.0001 -107%	<i>p</i> < 0.0001 -92%	NS	<i>p</i> < 0.0001 -99%	<i>p</i> < 0.0001 -98%
Coupling efficiency	<i>p</i> = 0.0003 -72%	<i>p</i> < 0.0001 -80%	<i>p</i> < 0.0001 -67%	<i>p</i> = 0.0005 -64%	<i>p</i> = 0.0016 -85%	<i>p</i> < 0.0001 -121%
ECAR	NS	NS	<i>p</i> < 0.0001 -58%	NS	<i>p</i> < 0.0001 -88%	<i>p</i> = 0.0095 -41%

ANOVA with subsequent Dunn's or Fisher LSD test was used. Significant changes (p<0.05) are in bold.