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Figure S1. Optimization of lysis and IP conditions. (A) Western blots of Hdac4 and Hdac4 

soluble (S) and insoluble (I) fractions following solubilization from cryoground tissue in different 

lysis buffers. (B) Efficiency Hdac solubilization of dounce based lysis. (C) Effect of different lysis 

buffer compositions on antibody capture and background binding. B19 exhibited the most efficient 

antibody capture with the lowest overall background.
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Figure S2. HDAC4 interactions in CEM-T cells.  The same lysis and IP conditions used in whole 

brain IPs was used in HDAC4-GFP expressing CEM-T cells with both a GFP IP and an IP using 

anti-HDAC4.  The Venn diagrams illustrate the overall numbers of identified proteins, without 

specificity filtering. The proteins detected as common between the two IPs included known nuclear 

HDAC4 interactions. The differences in the proteins co-isolated by either the anti-endogenous 

HDAC4 or anti-GFP antibody can derive from the binding of the antibodies to different epitopes, as 

well as different antibody affinities and cross-reactivity. The interaction network shows well-

established HDAC4 interactions from previous studies in cells with known nuclear localization for 

HDAC4.
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Age and Q-dependent effects 

on Hdac4 interactions
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Figure S3. Age and Q-dependent effects on Hdac4 interactions at an alternate threshold.

When a uniform SAINT score threshold of ≥0.8 is used across all Hdac4 IPs in whole brain, similar 

overall trends to Fig 3A are observed.
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Figure S4. Hdac5 specificity filtered network in whole brain. Comparison of endogenous 

Hdac5 interactions in Q20 and Q140 mice at 2 and 10 months of age. Each interacting protein is 

shown as a ring plot with the relative median MS1 abundance levels in each isolation condition 

depicted as indicated on the Hdac5 ring at the center of the network.  Gene names shown in red 

are Hdac5 specific interactions that are also reported Htt interactions. Edges represent known 

protein-protein interactions and other associations present in the STRING database. Protein 

interactions have been functionally grouped and labelled in blue text. Inset boxplot shows overall 

Hdac5 interaction distribution in whole brain IPs.
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Figure S5. Striata IP efficiency blots.  Western blots showing efficiency of Hdac4 and Hdac5 IP 

from HD mouse striata.
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Figure S6. Additional specificity-filtered Hdac4 interactions in dissected striata. Hdac4 

interactions in Q20 and Q140 mice at 2 and 10 months of age with SAINT specificity scores 

between 0.95 and 0.97. Each interacting protein is shown as a ring plot with the relative median 

MS1 abundance levels in each isolation condition depicted as indicated on the Hdac4 ring at the 

center of the network.  Gene names shown in red are Hdac4 specific interactions that are also 

reported Htt interactions. Edges represent known protein-protein interactions and other 

associations present in the STRING database. 
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Figure S7. Hdac5 specificity filtered network in dissected striata. Comparison of endogenous 

Hdac5 interactions in Q20 and Q140 mice at 2 and 10 months of age. Each interacting protein is 

shown as a ring plot with the relative median MS1 abundance levels in each isolation condition 

depicted as indicated on the Hdac5 ring at the center of the network.  Gene names shown in red 

are Hdac5 specific interactions that are also reported Htt interactions. Edges represent known 

protein-protein interactions and other associations present in the STRING database. Protein 

interactions have been functionally grouped and labelled in blue text. Inset boxplot shows overall 

Hdac5 interaction distribution in whole brain IPs. S-8



Hdac4 specificity-filtered interactions

Figure S8. Comparison of whole brain and striata IPs. (A) Overlap of specificity-filtered Hdac4 

interactions in whole brain and striata. (B) Overlap of specificity-filtered Hdac5 interactions in 

whole brain and striata. (C) Overlap of Q20 unique specificity-filtered Hdac4 interactions in whole 

brain and striata. (B) Overlap of Q20 unique specificity-filtered Hdac5 interactions in whole brain 

and striata. (E) Profile of known Htt-interacting proteins in Hdac IPs in whole brain. (F) Profile of 

known Htt-interacting proteins in Hdac IPs in striata.
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Figure S9. Reciprocal IPs of Wash1 and Washc5. Reciprocal isolations of FLAG-tagged 

Wash1 and Washc5 in HEK-293T cells did not co-purify HDAC4-GFP.
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Figure S10. Examination of striatal proteome. (A) PCA reveals Q-dependent effects on striatal 

proteome. Age-dependent effects can also be seen in the Q140 mice. (B) Comparison of 

differential proteins at each age. (C) ClueGO analysis of up-regulated proteins reveals shared and 

enriched functional changes at each age.
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Figure S11. Comparison of concerted differentially expressed genes to previous data. 

Proteins and mRNA with concerted differential expression were compared to CAG-dependent 

mRNA modules defined in the Langfelder et. al. study. Previously defined modules that had more 

than 5 members in the 10 month proteome and transcriptome are shown. Modules with functions 

listed in italics were found to be significantly associated with CAG length in Langfelder et. al.

Module 5 Module 9
Mitochondria

Module 20

p53 signaling 

& cell division

Module 22

Module 43

Mitochondria

mRNA Module: M2 M5 M9 M20 M22

(35) (11) (17) (15) (17)

Concerted Differential Gene Expression

Number of DEGs:

M43

(6)

Module 2

Striatal genes

S-12



Figure S12. Multiomic analysis of HD striata. (A) Reactome analysis of genes with concerted 

protein and RNA changes. (B) GO molecular function analysis of genes with concerted protein and 

RNA changes. (C) Scatterplot of mRNA and protein abundance data shows Pearson correlation of 

0.448. (D) Venn diagram of GO biological process enrichments in proteome and transcriptome up-

regulated genes. v
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