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Figure S1. Optimization of lysis and IP conditions. (A) Western blots of Hdac4 and Hdac4
soluble (S) and insoluble (I) fractions following solubilization from cryoground tissue in different
lysis buffers. (B) Efficiency Hdac solubilization of dounce based lysis. (C) Effect of different lysis
buffer compositions on antibody capture and background binding. B19 exhibited the most efficient
antibody capture with the lowest overall background.
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Figure S2. HDAC4 interactions in CEM-T cells. The same lysis and IP conditions used in whole
brain IPs was used in HDAC4-GFP expressing CEM-T cells with both a GFP IP and an IP using
anti-HDAC4. The Venn diagrams illustrate the overall numbers of identified proteins, without
specificity filtering. The proteins detected as common between the two IPs included known nuclear
HDACA4 interactions. The differences in the proteins co-isolated by either the anti-endogenous
HDACA4 or anti-GFP antibody can derive from the binding of the antibodies to different epitopes, as
well as different antibody affinities and cross-reactivity. The interaction network shows well-
established HDAC4 interactions from previous studies in cells with known nuclear localization for
HDACA.
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Age and Q-dependent effects
on Hdac4 interactions
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Figure S3. Age and Q-dependent effects on Hdac4 interactions at an alternate threshold.
When a uniform SAINT score threshold of 20.8 is used across all Hdac4 IPs in whole brain, similar
overall trends to Fig 3A are observed.
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Figure S4. Hdac5 specificity filtered network in whole brain. Comparison of endogenous
Hdac5 interactions in Q20 and Q140 mice at 2 and 10 months of age. Each interacting protein is
shown as a ring plot with the relative median MS1 abundance levels in each isolation condition
depicted as indicated on the Hdac5 ring at the center of the network. Gene names shown in red
are Hdac5 specific interactions that are also reported Htt interactions. Edges represent known
protein-protein interactions and other associations present in the STRING database. Protein
interactions have been functionally grouped and labelled in blue text. Inset boxplot shows overall
Hdac5 interaction distribution in whole brain IPs.
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Figure S5. Striata IP efficiency blots. Western blots showing efficiency of Hdac4 and Hdac5 IP

from HD mouse striata.
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Figure S6. Additional specificity-filtered Hdac4 interactions in dissected striata. Hdac4
interactions in Q20 and Q140 mice at 2 and 10 months of age with SAINT specificity scores
between 0.95 and 0.97. Each interacting protein is shown as a ring plot with the relative median
MS1 abundance levels in each isolation condition depicted as indicated on the Hdac4 ring at the
center of the network. Gene names shown in red are Hdac4 specific interactions that are also
reported Htt interactions. Edges represent known protein-protein interactions and other

associations present in the STRING database.
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Figure S7. Hdac5 specificity filtered network in dissected striata. Comparison of endogenous
Hdac5 interactions in Q20 and Q140 mice at 2 and 10 months of age. Each interacting protein is
shown as a ring plot with the relative median MS1 abundance levels in each isolation condition
depicted as indicated on the Hdac5 ring at the center of the network. Gene names shown in red
are Hdac5 specific interactions that are also reported Htt interactions. Edges represent known
protein-protein interactions and other associations present in the STRING database. Protein
interactions have been functionally grouped and labelled in blue text. Inset boxplot shows overall
Hdac5 interaction distribution in whole brain IPs. S-8
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Figure S8. Comparison of whole brain and striata IPs. (A) Overlap of specificity-filtered Hdac4
interactions in whole brain and striata. (B) Overlap of specificity-filtered Hdac5 interactions in
whole brain and striata. (C) Overlap of Q20 unique specificity-filtered Hdac4 interactions in whole
brain and striata. (B) Overlap of Q20 unigue specificity-filtered Hdac5 interactions in whole brain

and striata. (E) Profile of known Htt-interacting proteins in Hdac IPs in whole brain. (F) Profile of
known Htt-interacting proteins in Hdac IPs in striata.
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Figure S9. Reciprocal IPs of Wash1 and Washc5. Reciprocal isolations of FLAG-tagged
Wash1 and Washc5 in HEK-293T cells did not co-purify HDAC4-GFP.
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Figure S10. Examination of striatal proteome. (A) PCA reveals Q-dependent effects on striatal
proteome. Age-dependent effects can also be seen in the Q140 mice. (B) Comparison of
differential proteins at each age. (C) ClueGO analysis of up-regulated proteins reveals shared and

enriched functional changes at each age.
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Figure S11. Comparison of concerted differentially expressed genes to previous data.
Proteins and mRNA with concerted differential expression were compared to CAG-dependent

MRNA modules defined in the Langfelder et. al. study. Previously defined modules that had more
than 5 members in the 10 month proteome and transcriptome are shown. Modules with functions
listed in italics were found to be significantly associated with CAG length in Langfelder et. al. S-12
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Figure S12. Multiomic analysis of HD striata. (A) Reactome analysis of genes with concerted

protein and RNA changes. (B) GO molecular function analysis of genes with concerted protein and
RNA changes. (C) Scatterplot of mMRNA and protein abundance data shows Pearson correlation of
0.448. (D) Venn diagram of GO biological process enrichments in proteome and transcriptome up-
regulated genes. v
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Figure S14. Proteome unique enriched GO terms. Treemap of proteome unique GO terms. Functionally related
categories are grouped by color and boxes are sized by adjusted p-value.




Figure S15. Transcriptome unique enriched GO terms. Treemap of transcriptome unique GO terms. Functionally
related categories are grouped by color and boxes are sized by adjusted p-value.
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Figure S16. Downregulated transcriptome unique enriched GO terms. Treemap of transcriptome unique GO terms for genes

that were significantly decreased in expression in Q140 10 month mice. Functionally related categories are grouped by color and
boxes are sized by adjusted p-value.
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