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Supplementary Methods 

MOGSA algorithm 

Input data and gene-set annotation matrix 

The inputs to MOGSA are pairs of multiple matrices (XK, GK). XK, denotes a set of K matrices X1, ..., Xk, … 

XK, are input matrices of omics data, where rows are features (e.g. genes, proteins) and columns are 

observations (e.g. cell lines, disease tissue samples). Matrix Xk have pk rows and all omics data have the 

sample number of n columns. Each of the omics matrices X1, …, XK has a corresponding gene-set 

annotation matrix, G1, ..., Gk, …, GK. The gene-set annotation matrix Gk is a pk×m binary incidence matrix 

of gene to gene-set membership associations, where m is the number of gene-sets. The element gk[i,j] in Gk 

has the value 1 if the ith feature is a member of the gene-set j and 0 otherwise. Gk is constructed using 

predefined gene-set information such as the Gene Ontology [1, 2], GeneSigDb [3] or MSigDB [4].  

MOGSA step 1 multivariate integration 

The first step of the MOGSA involves data integration with a multiple table MF method. In this study, we 

use multiple factorial analysis (MFA) because of its simplicity and computational efficiency. MFA can be 

viewed as a generalization of principal component analysis (PCA) for a multi-table problem [5]. The first 

step of MFA is to normalize each individual data set so that variance of their first principal components has 

the same. Next, the normalized individual matrices are concatenate to a grand matrix. Finally, a regular 

PCA is used to decompose the grand matrix to derive components that represent the most prominent 

structure in multiple input matrices. We describe MFA using the nomenclature used in [5].  

When integrating multiple data matrices, one must decide if all datasets should have equal weight, or if 

some data are “more important”, for example those with higher quality, fewer features, higher variance, etc. 

Simple tensor decomposition approaches, or PCA on a concatenated matrix, give every dataset equal weight 

and results are often dominated by the matrix (or matrices) with the large variance or most features. To 

correct for this, MFA weights datasets by dividing each by their first eigenvalue. The weight of each matrix 

is expressed as 
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1k， is the first singular value of data matrix Xk. For convenience, the weights of matrices are stored 

in a diagonal matrix A, whose diagonal elements are  
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The transpose of a matrix is denoted by superscript T. 1k
T is a vector of 1 in the length of pk. As a result, A 

is a p×p diagonal matrix, the diagonal elements of A representing the weight of features in X1, ..., Xk. 

Similarly, the weight of each observation is an n×n diagonal matrix, M. In the present study, we use mii=1/n, 

namely, all observations are equally weighted.  

We then transpose and concatenate all Xk to a complete p×n matrix ( ): 
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After deriving the matrix weights, observation weights and the concatenated matrix, MFA is reduced to an 

analysis of the triplet (X, A, M). The solution of the problem is given by generalized singular value 

decomposition (GSVD): 

TT
QPX = with the constraint that IAQQMPP == TT  (4) 

 X is transpose so that P is an n×r matrix, Q is a p×r matrix, Δ is an r×r square matrix. The maximum 

number of r is the rank of X. The matrix storing components of MFA, F, are given by 

PΔF =  (5) 

where F has the same dimension as P. In the PCA framework, the matrix P contains the PCs or latent 

variables. We also call it sample space in this paper because every row in P corresponds to a sample in X. 

The matrix Q is the loading matrix or feature space as every row in P corresponds to a feature. Because X 

is a concatenation of multiple matrices, the feature space matrices Q is also a concatenation of multiple Qk 

matrices, namely,  
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MOGSA step 2 project gene-set annotation matrix as supplementary data 

Different gene-sets have different candidate genes, therefore, in order to facilitate the comparison of gene-

set score across gene-sets, we normalized the gene-set annotation matrix so that the sum of each column in 

G, where G = [G1
T|…|Gk

T|…|GK
T]T, equals 1, that is, 
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where 
],[

ˆ
jig  is the elements on the ith row and jth column in the normalized gene-set annotation matrix Ĝ

(p×m), where
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Kk GGGG = . The gene-set score can be calculated using either un-

normalized or normalized gene-set annotation, but we will use the normalized version to describe the 

method. 

Next, we project the annotation matrix as supplementary data to generate the gene-set space matrix Wk 

(m×r) [6], which is calculated as a product of the normalized gene annotation matrix and loading matrix. 
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The overall gene-set space W (m×r matrix) could also be expressed as the sum of individual 𝑾̂𝑘, that is, 
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MOGSA step 3 reconstruction of gene-set-observation matrix 

The main output of MOGSA is a gene-set score (GSS) matrix, denoted by Y, whose rows are m gene-sets 

and columns are n observations. It is calculated as 
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where Q[R] and P[R] are the gene space and observation space within top R components. 
][ RΔ  is the diagonal 

matrix containing top R singular values. As a result, X[R] is the reconstruction of X using top R components.  

In practice, it is interesting to know which dataset or component contribute more to the overall gene-set 

score. Therefore, we decompose gene-set scores with respect to data sets and components. The GSS matrix 

for dataset Xk and component r is calculated as 
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we use superscript r to indicate the rth component and the subscript k to indicate the kth matrix (Xk). 

Similarly, 
r

kW denotes the rth dimension of gene-set space of matrix Xk, 
r

kF is the rth component of the 

sample space. The outer product of the two vectors results in a GSS matrix for a specific components and 

dataset. Consequently, the overall gene-set score for component r (i.e. component-wise decomposed gene-

set scores) is the sum of the gene-set score matrix of the components across all datasets, that is, 
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Similarly, the overall gene-set score matrix by a single dataset (i.e. data-wise decomposed gene-set scores) 

is the sum of the matrices by all the components retained. 
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Therefore, the contribution of an individual dataset and/or component may be calculated.  

Finally, the total gene-set score could be calculated by summing up individual data-wise decomposed gene 

set scores (Yk), or individual component-wise decomposed gene set scores (Yr), i.e. 
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In practice, only the components with greatest variances (highest eigenvalues) should be retained in the 

analysis. If all components are retained, the result would be similar or exactly the same as naïve matrix 

multiplication (NMM; see later).  

Evaluation of the significance of gene-set scores (calculating p-values) 

The p-value associated with each GSS could be calculated used central limited theorem (CLT). The 

expression (7) and (10) say that, for each observation, a gene-set score could be viewed as the weighted 

mean of gene expression (in the reconstructed expression values X[R]) of genes in a particular gene-set.  

If the candidate genes in a gene-set are randomly drawn from all features in X[R] (null hypothesis), the 

distribution of the means of selected genes given by CTL is, 
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Where 𝜇 is the mean of a column (observation) in X[R], 
x  is the sampling standard deviation of means,   

is the standard deviation of the column in X[R]
, h is the number of candidate genes mapped to X in a gene-

set and )/()( hphpc −−=  is the finite population correction factor (p is the number of features in X). The 

finite population correction factor is used as each gene was only selected once in one gene-set. Of note, 

CLT only states that the mean of “selected genes” follows a normal distribution but does not rely on a 

normality assumption in input data sets. Therefore, it can be used with categorical or count data, where the 

categorical values are normalized as in correspondence analysis, resulting in a chi-square distribution [7].  

Gene influential score 

Gene-sets are composed of genes, therefore, it is also important to evaluate the contribution of each feature 

to the GSS. The genes with large contribution could be view as “driver” genes in a gene-set. In MOGSA, 

feature contribution, denoted by gene influential score (GIS), is calculated via a leave-one-out procedure. 

The GSS of gene-set i, , for all the observations are  ][iY
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iG  is the gene-set annotation vector for gene-set i. Correspondingly, the gene-set score for ith gene-

set excluding gene g is  
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][Ĝ  is the gene-set annotation vector for gene-set i but without gene g. The influence of the gene 
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where )(sd  stands for the function of calculating standard deviation. For convenience, the feature 

influential score then is rescaled, such that the gene with maximum influence always equals 1. In general, 

a positive
g

iE ][ suggests that gene g tends to have a positive correlation with gene-set score of gene-set [i], 

whereas a gene with a negative value tends to have a negative correlation.  

Other GSA methods and Naïve Matrix multiplication (NMM) 

Single gene-set method, including GSVA and ssGSEA methods were implemented using the 

R/Bioconductor package GSVA [8]. Default settings were used for these methods. Naïve gene-set score 

Ynaive was calculated through matrix multiplication (NMM).   

XGY
Tˆ=naive  (21) 

Therefore, the result of NMM is exactly the same as MOGSA if all of the axes are retained. 



Stability analysis of MOGSA components 

The stability of MOGSA components was evaluated based on the NCI-60 and BLCA datasets in a sample- 

and feature-wise fashion. In the sample-wise stability analysis of the NCI-60 dataset, we used a leave-one-

out procedure. In each analysis, one cell line was excluded from the panel and MOGSA was applied to the 

reduced dataset. The resulting components were compared with the ones calculated from the complete 

dataset using the absolute value of Pearson correlation coefficients. The resulting correlation matrix can be 

found in Table S1.  

We also observed that the highly correlated components may be ordered differently when excluding a cell 

line. For example, when the ovarian cell line OVCAR-4 was excluded, component 6 and 7 were swapped 

(Figure S17). In addition, a high score of a sample in a component does not mean the component calculated 

from excluding that sample will have a worse correlation with original component (Figure S17).   

The feature-wise stability analysis was conducted by applying MOGSA on feature-wise reduced matrix. In 

these analyses, we randomly excluded 10%, 20%, 30%, 40% and 50% of all features in both transcriptomic 

and proteomic datasets. The resulting components were compared with the ones calculated from the 

complete dataset. The correlation coefficients were not lower than 0.94 until component 14, which 

confirmed the components calculated based on less features are extremely stable.  

In the sample-wise stability analysis of the BLCA dataset, all 308 patients were divided into 22 groups (14 

in each) and one group was excluded each time. In the feature-wise analysis, 10% to 50% of features from 

both datasets were excluded. The components resulting from the sample- or feature-wise reduced datasets 

were evaluated in the same way as for the NCI-60 dataset. We observed that the top 5 components do not 

change much (absolute value of correlation coefficient > 0.99) upon exclusion of samples or features. 
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Supplementary figures 

 

Figure S1 – A diagram showing the data simulation data.  

One dataset contains a matrix triplet (data 1, data 2 and data 3). Each triplet contains 1,000 features and 30 

observations. The 30 observations were divided into six clusters, 5 observations in each cluster.  The 1,000 

features are assigned to 20 gene-sets (each gene-set had 50 genes), coded in the gene set annotation matrix. 

100 triplets were simulated in this analysis.  

  



 

Figure S2 – Determining the number of components that capture the correlated structure between 

NCI60 transcriptome and proteome data 

A random sampling method was used to determine the number of components capturing significant 

correlated structure and between transcriptome and proteome. To this end, the cell lines labels were 

randomly shuffled in both transcriptomic and proteomic data and the variance of components were 

calculated from the randomly labels data. We preformed this process 20 times in order to estimate the null 

distribution of variances associated with each component and found that the variance of top three 

components are significantly higher than the null distribution.  In Figure S12, we show that component 1 

was significantly correlated with cell doubling time. 

 

 



 

Figure S3 – Distribution of iPS ES datasets before and after filtering  

In mRNA data set, most of the genes with RPKM values were removed, resulting in a distribution closer to 

a normal distribution. Whereas filtering protein and phospho-site data almost have not changed the 

distribution, because only the low intensity proteins that exclusively detected in a small number of samples 

were excluded. Left column: distribution before filtering. Right column: distribution after filtering. 

  



 

 

 

Figure S4 – PCA of transcriptomic, proteomic and phosphoproteomic data of  iPS/ES cell lines   

Most of the variances are captured by the first component which reflect the difference between the fibroblast 

foreskin cells (NFF) and the other cell lines.  

  



 

Figure S5 – Distribution of BLCA datasets before and after filtering  

In CNV dataset, the sharp peak centered as 0 indicates most of genes have very small copy number changes. 

Filtering out gene has low median absolute deviations (MADs) results in a distribution having lower density 

in the center, i.e. less genes with unchanged CNV. The low abundant mRNAs were filtered. Left column: 

distribution before filtering. Right column: distribution after filtering. 

 

  



 

Figure S6 – PCA of (A) CNV and (B) transcriptomic data of BLCA tumors (n=308) 

Each panel shows a scree plot of the variance captured by the first 10 components and a plot of the first two 

components (PC1, PC2).  Tumors are colored by molecular subtype; C1 (red), C2 (green) and C3 (blue).   

The first two components of the CNV decomposition distinguishes these 3 subtypes. The first eigenvalue 

(square of singular value) of transcriptomic and CNV data were 0.0004 and 0.0003 respectively, which 

values were used to calculate the weight of each dataset in MFA. 

  



 

Figure S7 – Five components identifies robust top-ranking gene sets  

Gene set scores (GSS) were calculated when 1 to 12 components were included. In every cases (1-12 

components), gene sets were ranked from high to low according to the number of patients in which their 

GSSs was significant. Next, top N (N=10, 20, 40, 100, 500, 1000) gene sets were selected. The figure shows 

how the union of gene sets increases when additional components are examined. Using the top left panel 

as an example,  with one component we extracted 10 gene sets, when we add a second components in the 

calculation of GSSs, we extracted another 10 gene sets which are completely different with ones identified 

using a single component, results in total 20 gene sets.  In general, the figure shows that 5 component is an 

elbow point at which number including more component does not result in distinct top-ranking gene sets.  

  



 

Figure S8 - Stability of consensus clustering result when different resampling size is used  

where C1 (red) C2 (green) C3 (blue) are indicated by color bars.  

  



 

Figure S9 – Clustering of MFA latent variables identify three BLCA subtypes 

MFA of mRNA and CNV of BLCA patients was performed. (A) shows the eigenvalues of each of the latent 

variables and top five PCs are marked. Five latent variables were used in consensus clustering and (B) the 

relative change area under the CDF curve (y-axis) over different pre-defined number of clusters (x-axis), 

which is used to determine the number of clusters.  For both 2 and 3 clusters, the relative change in area 

under the CDF cure is high, indicating that the BLCA tumors may contain either 2 or 3 subtypes.  

Hierarchical of the consensus matrix for (C)  2  or (D) 3 subtypes. (E) silhouette analysis of three clusters.  



 

Figure S10 – Determining the number of K in KNN algorithm (Use in calculating prediction 

Strength)  

Cross-validation were used to optimize the optimal number of K in the KNN classifier. We evaluated odd 

numbers K from 1 to 17. The performance of classifier were measured with prediction accuracy (y-axis). 

There is not a K clearly better than the others. 

  



 

Figure S11 – Prediction strength using different K in KNN classifier.  

All K suggest that three subtype is the robust number of subtype in the integrated BLCA datasets.  

  



 

Figure S12 – Comparison of MOGSA with NMM, GSVA and ssGSEA using simulated data with 

overlapping gene-sets.  

The performance of each method was accessed by their ability to identify differentially expressed gene-

sets over 100 simulations in every condition (as indicated by the area under the ROC curve; AUC). (A) 

Comparison of GSA methods using data with different signal-to-noise ratios. (B) Comparison of data 

with different number of differentially expressed (DE) genes in each of the DE gene-set. From left to 

right, 5, 10 and 25 of total 50 genes are differentially expressed in each of the three simulated data 

matrices if a gene-set is defined as DE gene-sets. (C) Scree plots show representative eigenvalues in each 

of the conditions in (D). (D) AUCs with different proportion of variance are capture by the top 5 

components. From left to right, 25%, 30% and 50% of total variance are captured. The darker bars 

represent the top 5 components 



 

Figure S13 – Simple concatenation of multiple data sets did not improve the performance of GSVA 

and ssGSEA 

The plots show area under the curve (AUC) of performance of GSVA and ssGSEA analysis of a single 

dataset (referred as 1 data set) and concatenated data sets (referred as 3 data sets).  Methods, data and 

evaluation are the same those in Figure 2.  

  



 

Figure S14 – MOGSA outperforms GSVA and ssGSEA using weighted matrices and p-value of null 

model 

(A) Because MOGSA weights input matrices according to their first singular value, we weighted the 

matrices in a triplet by their first singular value before concatenation, MOGSA still outperforms others. 

The analyses are the same as described in Figure 2. (B) Distribution of p-values from MOGSA when applied 

to null model where no DE gene-set was introduced in all three simulated matrices. The results suggested 

that MOGSA results in p-values conforms to the expected distribution of p-values. 

 



 

Figure S15 – Component 1 of the NCI60 data set is significantly correlated with cell doubling time.  

(A) Among the top 3 components, only the first component is significantly correlated with cell doubling 

time. (B) The second component is driven by tumor types where Leukemia cell lines are on the positive 

end and melanoma cell lines are projected on the negative end. 

  



 

Figure S16 – the component-wise decomposed gene set score of cycle checkpoint pathway in MCF7 

and MDA_MB_231 cell line. 

Component 1 is the driving force of significant level of cell cycle related gene-sets in these two cell lines.  

  



 

Figure S17 – Sample-wise stability analysis of NCI60 cell line. 
(A) The top 50 components were calculated from NCI60 data set including and excluding OVCAR-4 cell 

lines, respectively. The similarity of components from the two calculations were quantified using pairwise 

correlation coefficient as shown in the heatmap. The rows of heatmap are components calculated using 

data including OVCAR-4 and columns are components calculated using data excluding OVCAR-4. 

Values in the heatmap are correlation coefficients. The top five components in the two scenarios are 

highly similar, whereas the component 6 and 7 were swapped. (B) shows how the correlation between 

components changes when a cell line with a specific score (in MFA component) is excluded from the data 

set. Every point in (B) is a cell lines, y-axis shows the correlation coefficients between components from 

all cell lines and excluding a cell lines. The x-axis shows the score of the cell line to be excluded on 

component 1 (top) and 2 (bottom). The figure suggests that, for component 1, when a cell line with higher 

score is excluded, it is more likely the resulting component is less correlated with the one calculated from 

the complete data set. However, this is not the case for component 2, where the correlation between 

components decreases most when cell line with a score between 0.1 and 0.2 is excluded.  

  



 

 

Figure S18 – MOGSA of the iPS ES 4-plex data 

(A) A scree plot of the eigenvalues of the MFA. Grayscale shades represent the contribution of each 

individual dataset. Each data set contributes roughly equally to the total variance of a component. Similar 

to PCA of the individual datasets, the first component captures most of the variance in the data. (B) shows 

that the first component captures the difference between NFF and pluripotent cell lines and (C) shows the 

third component represents the difference between iPSC (DF19.7) and ESC lines.  

  



 

Figure S19 - The number of significant gene set scores (GSS) per patient 

Number of genesets with either positive or negative significant GSS scores in BLCA subtypes  



 

Figure S20 – Gene sets that are significantly up or down regulated in more than 200 patients in 

BLCA  

The rows (gene sets) of the heatmaps are clustered so that the gene sets with similar GSS scores across 

patients are grouped. Columns are ordered according to BLCA tumor molecular subtype (C1, C2 and C3).  

Gene sets formed three broad clusters (those significant in C1, C1 and C2 or C3 and other tumors). 

Significant gene sets in C1 were associated with apoptosis, G protein coupled proteins, extracellular 

function, muscle development and Immune response. Gene sets significant in both C1 and C2 were mostly 

associated with the cell cycle, DNA repair and replication. Gene sets significant in C3 patients were 

associated with the mitochondria.  

  



 

Figure S21 – Characteristics of the BLCA molecular subtypes.  

(A) There was strong concordance between the integrative subtypes and molecular subtypes previously 

reported by the TCGA, Damrauer et al. and Sjodhl et al.  C1 was enriched with III and IV for TCGA subtype, 

Basal subtype in Damrauer subtype and the SCCL and Infiltrated subtypes in Sjodahl subtype. C2 and C3 

is comparable to the luminal subtype in Damrauer subtype model. C3 also enriched with UroA subtype in 

Sjodahl subtype and type I in TCGA subtype model. (B) Enrichment of clinical/phenotype factors including 

smoking gender, new tumor events, etc  ib subtypes was studies.  Grade was significantly correlated with 

the subtypes (χ2 test, FDR BH corrected p value < 0.01). 

  



 

Figure S22– BLCA subtype C2 has more instability and higher numbers of mutation events 

The figure shows the numbers of homozygous or heterozygous deletions, low and high level  gains in 

addition to total CNV events in the genome of BLCA patients (n=308).  



 

Figure S23 – The distribution of gene set scores in different BLCA molecular subtypes 

Boxplot of gene sets scores in figure 5 C and D. Immune processes, Regulation of apoptosis, and cytosketal 

gene sets were upregulated in C1. C2 was characterized by downregulation of ETS1 and IRF targets, G-

protein coupled receptors pathways and increased DNA related pathway (possibly associated with increased 

genome instability). C3  had lower expression of cell cycle and DNA replication genes compared to C1 and 

C2. 

  



 

Figure S24 –EMT related gene sets are highly activated in the C1 subtype. 

Heatmap displays GSS for three mesenchymal related gene sets downloaed from MSigDB C2 curated 

signatures. The original names as annotated in the MSigDB are: 

“GOTZMANN_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_UP”,“JECHLINGER_EPITHEL

IAL_TO_MESENCHYMAL_TRANSITION_UP” ,“ANASTASSIOU_CANCER_MESENCHYMAL_T

RANSITION_SIGNATURE”. 

 

 

 

Figure S25 – Gene sets scores of transcription factor (TF) target gene sets were highly correlated 

with the mRNA expression of their transcript factors in tumors   

Scatter plots show gene set score and mRNA expression levels of transcription factors (A) SRF and (B) 

ETS1 in the 308 BLCA tumors.  

  



 

Figure S26 – Non-normalized gene set scores of gene sets that were significant in BLCA tumors 

(related to Figure 5C)  

Plots are labelled with the gene set name and the number features (genes) in each gene set which is shown 

in parenthesis. The raw GSS is sum of the contributions of genes in a gene set. Therefore, the scale of non-

normalized gene set scores (y-axis) are different. Gene sets with more genes will have higher scores so that 

GSS will not be comparable within a study.  To solve this problem, MOGSA normalizes raw GSS by gene 

set size.  Normalized GSS are reported throughout this article.  

  



 

Figure S27 – Computational efficiency of MOGSA 

Computational time to perform ssGSA using MOGSA, GSVA, ssGSEA on different size datat sets; NCI60 

cell line transcriptomic datasets (58 cell lines, 17967 genes, 50 Hallmark genesets), mRNA and GISTIC 

copy number datasets of Breast cancer TCGA samples (1078 tumors, 17088 genes, 50 Hallmark genesets) 

or all TCGA samples (10459 tumors, 17446 genes, 50 Hallmark gene sets).  

 


