The BBSome in POMC and AgRP Neurons is Necessary for Body Weight Regulation and Sorting of Metabolic Receptors

Deng-Fu Guo¹, Zhihong Lin¹, Yuanming Wu², Charles Searby³, Daniel R. Thedens⁴, George B. Richerson², Yuriy M. Usachev^{1,7}, Justin L. Grobe^{1,6,7}, Val C. Sheffield^{3,6,7} and Kamal Rahmouni^{1,5,6,7,*} Department of Pharmacology¹, Department of Neurology², Department of Pediatrics³, Department of

Radiology⁴, Department of Internal Medicine⁵, Obesity Education and Research Initiative⁶ and Fraternal Order of Eagles Diabetes Research Center⁷, University of Iowa, Iowa City, Iowa

Short title: Neuronal BBSome and Energy Homeostasis.

Contain:

Supplemental figures 1-8

Supplemental table 1

*Corresponding author: Kamal Rahmouni, Ph.D. Department of Pharmacology University of Iowa Carver College of Medicine Iowa City, IA, 52242, USA e-mail: kamal-rahmouni@uiowa.edu Tel: 319 353 5256 Fax: 319 353 5350

Supplementary Figure S1. Expression of BBS genes in POMC and AgRP neurons is modulated by energy status. (A-B) In silico reanalysis of available data (ref 23) showing BBS gene expression in POMC and AgRP neurons in fed versus fasted mice (cells obtained from 6 fed mice and 5 fasted mice were used for single-cell RNA sequencing). (C) Co-localization of Bbs1 mRNA and POMC mRNA by RNAscope. *P < 0.05, vs. the fed group.

Supplementary Figure S2. Evidence of Cre recombinase (presence of td-Tomado) (A) and its co-localization with POMC (B) in the arcuate nucleus of POMC^{cre}/Td-Tomato mice. (C) Intraperitoneal leptin increased p-Stat3 in POMC neurons of control mice, but not $POMC^{Cre}/Bbs1^{fl/fl}$ mice.(D-E) Weight of fat pads of $POMC^{Cre}/Bbs1^{fl/fl}$ mice compared to control littermates (n=6-8 per group: 7 males and 7 females for controls and 8 males and 6 females for POMC^{cre}/Bbs1^{fl/fl} mice). (F-G) Insulin tolerance test (n=10-12/group: 5 males and 5 females for controls and 6 males and 6 females for POMC^{cre}/Bbs1^{fl/fl} mice). BAT: brown adipose tissue, RP: retroperitoneal fat, Ing: inguinal fat, PG: perigonaldal fat. ***P<0.001 and ****P<0.0001 vs. control group.

©2019 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-1088/-/DC1

Supplementary Figure S3. BBSome disruption in AgRP neurons causes obesity. (A) Evidence of Cre recombinase (presence of td-Tomato) in the arcuate nucleus of the hypothalamus (where AgRP neurons reside) in AgRP^{Cre}/ td-Tomato mice. (B-C) Weight of fat pads in female (B) and male (C) AgRP^{cre}/Bbs1^{fl/fl} mice compared to control littermates (n=6-8 per group: 7 males and 9 females for control and 7 males and 8 females for AgRP^{Cre}/Bbs1^{fl/fl} mice). **P< 0.01 and ***P<0.001 vs. control group. Scale bar: 100 mm.

Supplementary Figure S4. Validation of 5-HT_{2C}R antibody. (A) The anti-5-HT_{2C}R antibody detects monomer, dimer and oligomer forms of the Flag-tagged 5-HT_{2C}R in HEK 293 cells. (B) Staining with the anti-5-HT_{2C}R antibody co-localized with GFP in HEK 293 cells transfected with GFP tagged 5-HT_{2C} R (C) The anti-5-HT_{2C} R antibody detects the endogenous 5-HT_{2C} R in the hypothalamic arcuate nucleus of control mice. This staining is absent in the arcuate nucleus of 5-HT_{2C} R knockout mice. Scale bar: 10 mm

Supplementary Figure S5. The BBSome is required for the ciliary localization of NPY₂R in POMC neurons. (A-B) Loss of NPY₂R in cilia of td-Tomato⁺ (red, arrow head), but not in td-Tomato⁻ (non-red, arrow), cells in the arcuate nucleus of POMC^{Cre}/Bbs1^{fl/fl} mice (n=3) vs controls (n=4). (C) Presence of cilia in td-Tomato⁺ (arrow head) and td-Tomato⁻ (arrow) cells of POMC^{Cre}/Bbs1^{fl/fl} mice. *P<0.05 vs Control. Scale bar: 10 μ m.

Supplementary Figure S6. The BBSome is required for the ciliary localization of NPY₂R and SSTR₃. (A-B) Loss of localization in cilia (stained with Acetylated α -Tub) of NPY₂R (A) and SSTR₃ (B) in IMCD3-*Bbs1*^{-/-} cells. Scale bar: 10 µm.

Supplementary Figure S7. Representative tracings showing reduced [Ca²⁺]i response to leptin in control and Bbs1^{-/-} IMCD3 cells stably expressing the LepRb.

Supplementary Figure S8. BBSome proteins interacts with 5-HT_{2C}R in the late endosome. (A) BBS7 (red) colocalizes with markers of the late endosome: CD63 (green) or Rab7-GTP (green). (B) Silencing *Bbs2* gene expression promotes BBS7 (red) and 5-HT_{2C}R (green) interaction in late endosome marked with CD63 (blue) in HEK 293 cells. Scale bar: 10 μ m.

Supplementary Table S1. Primer sequences used.

Name	Sense (5'-3')	Anti-sense (5'-3')
Genotyping		
Cre	ACCTGAAGATGTTCGCGATTATCT	ACCGTCAGTACGTGAGATATCTT
Bbs1	ACATCCACACCTTCTCCTCCT	GCCTACCTTGTACTCCCCATC
Hypothalamic gene expression		
S18	ACTGCCATTAAGGGCGTGG	CCATCCTTCACATCCTTCTG
AgRP	CAGAAGCTTTGGCGGAGGT	AGGACTCGTGCAGCCTTACAC
NPY	TCAGACCTCTTAATGAAGGAAAGCA	GAGAACAAGTTTCATTTCCCATCA
POMC	CTGCTTCAGACCTCCATAGATGTG	CAGCGAGAGGTCGAGTTTGC
Generation of Bbs1 knock-out cells		
sgRNA	CCTTTGAGCACCTTCAGGCG	
Bbs1	ACTGCCATTAAGGGTGTGG	CCATCCTTTACATCCTTCTG