1	Supplemental materials
2	Continuous PTH in Male Mice Causes Bone Loss Because It Induces Serum Amyloid A
3	(SAA)
4	
5	Shilpa Choudhary, ^{1,2} Elizabeth Santone, ³ Yee Sui-Pok, ^{4,5} Joseph Lorenzo, ^{1,2} Douglas J. Adams, ¹
6	Alexandra Goetjen, ³ Mary Beth McCarthy, ¹ Augustus D. Mazzocca, ¹ and Carol Pilbeam ^{1,2}
7	¹ Musculoskeletal Institute, ² Department of Medicine, ³ School of Medicine, ⁴ Department of Cell
8	Biology and ⁵ Center for Mouse Genome Modification, UConn Health, Farmington, Connecticut,
9	USA
10	
11	Supplemental Figure legends (Fig. 1 to Fig. 4); Supplemental Table 1 and 2; and
12	Supplemental Figure 1 to Figure 4.
13	
14	Legends for Supplemental figures
15	
16	Supplemental Figure 1. Generation of SAA3 KO mice. (A) SAA3 mice were generated by
17	CRISPR/Cas9. The Saa3 single-guided RNA (Saa3gRNA), Cas9 mRNA and the targeting
18	single-stranded oligo-directed nucleotides (ssODN) bearing two in-frame tandem termination
19	codons (TAA and TGA) and a Sal1 restriction enzyme digestion site were microinjected into the
20	pro-nucleus of CD-1 one-cell embryos. Through specific CRISPR/Cas9 editing and homology-
21	directed repair, the termination codons and the Sal1 point mutation were knockin into the first
22	coding exon of Saa3 gene, which resulted into a founder mouse with one WT allele and one
23	knockin allele. (B and C) The heterozygous (HET) founder mouse was first identified by PCR

24	followed by Sall digestion and then confirmed by sequencing of PCR product. (D) The HET
25	founder mouse was bred with WT CD-1 mice to generate more HET mice, which were
26	genotyped by PCR, using allele specific primers as listed in the Methods section. For
27	experiments, WT and SAA3 KO mice were generated by HET x HET mating.
28	
29	Supplemental Figure 2. RANKL increased SAA3 protein expression and its secretion from WT
30	BMMs. Continuous PTH increased gene expression for <i>Tnfsf11</i> (RANKL) and <i>Tnfrsf11b</i> (OPG)
31	similarly in WT and SAA3 KO BMSC cultures. Continuous PTH increased osteoclast-like cells
32	similarly in WT and SAA3 KO bone marrow cultures. (A) Immunofluorescence for SAA3
33	protein in BMMs and ELISA of SAA3 protein in the medium of BMMs. WT and SAA3 KO
34	BMMs were treated with M-CSF+RANKL (30 ng/ml each) for 1 day. BMMs were labeled for
35	SAA3 (red) and DAPI (blue) proteins. Representative 200x magnification (scale bars: 50 $\mu m)$
36	merged microscopic images. Und= Undetectable. (B) Osteoclast-like cells in PTH-stimulated
37	WT and SAA3 KO BMSCs cultured with vehicle (VEH) or PTH (10 nM) for 7 days.
38	Representative image of TRAP+ cells, marked by blue arrow, showing partial coverage by
39	canopy of cells, at 40x magnification (scale bars: 500 μ m). Expression of genes for <i>Tnfsf11</i> and
40	<i>Tnfrsf11b</i> measured on day 7 by qPCR and reported as relative quantification (RQ) values. (C)
41	Bone marrow cultures were treated with PTH (10 nM). Representative TRAP stained 100x
42	magnification (scale bars: 200 μ m) microscopic images. Data are means \pm SEM for <i>n</i> =3
43	independent samples. ** $P < 0.01$, determined by 2-way ANOVA, post-hoc Bonferroni pairwise
44	multiple comparisons.
45	

46	Supplemental Figure 3. Continuous PTH stimulated prostaglandinE ₂ (PGE ₂) in hBMSCs.
47	Human BMSCs were cultured in osteoblast differentiation medium in the presence of vehicle
48	(VEH) or PTH (10 nM) \pm NS398 (100 nM), a selective inhibitor of COX2 activity. At each
49	medium change, the medium was collected and assessed for PGE ₂ by ELISA. Nd=Not
50	detectable. In this dataset, the data are from the same experiment as Figure 6A but expanded to
51	show that NS398 blocked all PGE ₂ production. Bars are means \pm SEM for <i>n</i> =3 independent
52	samples. ** $P < 0.01$, determined by 1-way ANOVA, post-hoc Bonferroni pairwise multiple
53	comparisons.
54	
55	Supplemental Figure 4. Addition of conditioned medium (CM) from RANKL-treated hBMMs,
56	but not from RANKL + NS398 treated hBMMs, inhibited PTH-stimulated osteoblast
57	differentiation in hBMSC cultures. BGLAP mRNA expression in hBMSC cultures at day 21.
58	hBMSCs were cultured in the presence of OPG (100 ng/ml), vehicle (VEH) or PTH (10 nM) \pm
59	CM from hBMMs. hBMMs were treated with M-CSF+RANKL (30 ng/ml each) in the absence
60	or presence of NS398 (100 nM) for 8 days. CM from days 4-6 of hBMM cultures were pooled
61	and added to hBMSCs as 3 parts CM and 1 part osteoblast differentiation medium. Bars are
62	means \pm SEM for <i>n</i> =3 independent samples. ** <i>P</i> < 0.01, determined by 1-way ANOVA, post-
63	hoc Bonferroni pairwise multiple comparisons.

68 Supplemental Table 1. Primers used for quantitative real-time PCR (qPCR)

Gene Name	Taqman [®] probe	Gene Name	Taqman [®] probe	
	number		number	
Bmp2	Mm01340178_m1	BMP2	Hs00154192_m1	
Dkk1	Mm00438422_m1	DKK1	Hs00183740_m1	
Gapdh	Mm999999915_g1	GAPDH	Hs02758991_g1	
Igfl	Mm00439560_m1	IGF1	Hs01547656_m1	
Runx2	Mm00501584_m1	RUNX2	Hs01047973_m1	
Saa1	Mm00656927_g1	SAA1	Hs00761940_s1	
Saa2/Saa1 [*]	Mm04208126_mH	SAA2	Hs01667582_m1	
Tnfsf11 (RANKL)	Mm00441908_m1	TNFSF11 (RANKL)	Hs00243522_m1	
Wnt10b	Mm00442104_m1	WNT10B	Hs00559664_m1	
Ctnnb1 (catenin, beta 1)	Mm00483039_m1	ALPL (alkaline phosphatase)	Hs01029144_m1	
Ptgs2 (COX2)	Mm00478374_m1	BGLAP (osteocalcin)	Hs01587814_g1	
Pthlh (Pthrp)	Mm00436057_m1			
Ramp3	Mm00840142_m1			
Saa3	Mm00441203_m1			
Sost	Mm00470479_m1			
Tnfrsf11b (OPG)	Mm01205928_m1			
Wnt4	Mm01194003_m1			
Wnt7b	Mm01301717_m1			
Gene Name	SYBR Green valida			
Ralan (astao aslain)	Reverse TGG TCT GAT AGC TCG TCA CAA G			
	Forward CTG ACC			
A ath (actin bata)	Reverse CCA GTT GGT AAC AAT GCC ATG T			
Acio (actin, deta)	Forward GGC TGT	ATT CCC CTC CAT CG		

*The gene assay ID Mm04208126_mH for Saa2 detected both Saa2 (RefSeq NM_011314.2) and

Saa1 (RefSeq NM_009117.3) transcripts.

	Males (368)		Females (360)	
Genotype	Number	Ratio	Number	Ratio
Wild type (WT)	88	0.96	90	1.00
SAA3 knockout (KO)	90	0.98	92	1.02
SAA3 heterozygous (HET)	190	2.06	178	1.98

Supplemental Table 2. Mendelian ratios of WT and SAA3 KO mice

All experimental SAA3 KO and WT mice were obtained by HET x HET mating. All three

genotypes were obtained in the expected Mendelian ratios.

Wild type allele Exon 2 TCCTCCACCCCACGAAATGGCATGCTCATCTTTGTTTTCCTGGCCCTATAGCAGGATGAAGCCTTCCAT M K P S I TGCCATCATTCTTTGCATCTTGATCCTGGGAGTTGACAGCCAAAGATGGGGTCCAGTTCATGAAAGAAGC A I I L C I L I L G V D S Q R W V Q F M K E A Homology-directed Saa3gRNA + Cas9mRNA Pronuclear injection repair + targeting ssODN Knockin allele Exon 2 TCCTCCACCCCACGAAATGGCATGCTCATCTTTGTTTTCCTGGCCCTATAGCAGGATGAAGCCTTCCAT M K P S I TGCCATCATTCTTTGCATCTTGA CTAATGAGIcG CAGCCAAAGATGGGTCCAGTTCATGAAAGAAGC IILCIL • V S Q Q MKEA А ٠ RWV F В

PCR followed by Sal1 digestion

7

