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Supplementary Method 1 

Discovery sample  2 

This study included two discovery samples. The first discovery sample was used to 3 

calculate the PRSMDD, including 9240 MDD patients and 9519 controls provided by 4 

the Psychiatric Genomics Consortium (PGC) (Sullivan, 2010). All patients met the 5 

criteria for a lifetime history of MDD based on the Diagnostic and Statistical Manual 6 

of Mental Disorders, 4th edition (DSM-IV). The genetic summary data from this 7 

sample were used to identify the MDD risk variants, reference allele, P values, and 8 

odd ratios (OR) (http://www.med.unc.edu/pgc/results-and-downloads) (Ripke et al., 9 

2013).  10 

The second discovery sample was used for calculating PRSAD. The International 11 

Genomics of Alzheimer’s Project (IGAP) (Lambert et al., 2013) is a large, two-stage 12 

study based on the GWAS of individuals with European ancestry. In this study, we 13 

only used the results of stage 1, which has been used the genotyped and imputed data 14 

of 7,055,881 SNPs to meta-analyze four previously published GWAS datasets 15 

consisting of 17,008 AD cases and 37,154 controls. The summary meta-GWAS 16 

statistics from the IGAP (stage 1) were used to identify the information of SNPs that 17 

are associated with the risk for AD 18 

(http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php).  19 

Target sample 20 

The target sample included 398 patients with aMCI provided by the first stage of 21 

Alzheimer’s disease Neuroimaging Initiative (ADNI-1) (http://www.adni-info.org). 22 

http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
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Diagnosis of aMCI was made according to the criteria by Petersen (Petersen et al., 1 

1999). After excluding 14 patients only with the baseline data and 9 patients who 2 

were diagnosed as normal during the follow-up evaluation, the remaindering 375 3 

aMCI patients were included in the following analysis. According to the follow-up 4 

results in July 2015 released by ADNI, aMCI subjects were divided into the 5 

conversion (aMCI-C, N= 205) and stable (aMCI-S, N=170) groups. Here, the final 6 

diagnosis for patients with follow-up loss was based on the last clinical evaluation. 7 

The sample was used to test whether PRS could predict the conversion from aMCI to 8 

AD (up to 108 months follow up). 9 

Quality control for individual level 10 

For the 757 subjects from ADNI-1, the quality control was performed using the 11 

PLINK version 1.90 beta3 (http://www.cog-genomics.org/plink2/) (Purcell et al., 2007; 12 

Chang et al., 2015). We firstly removed 1 subject with a missing genotype rate of 13 

greater than 0.05. Then we removed 2 subjects with sex inconsistency based on the X 14 

chromosome information. After that, we identified individuals with possible relative 15 

relationships by using the estimate of pairwise identity-by-descent (IBD) to find pairs 16 

of individuals who had more similar genotypes than we would have expected by 17 

chance in a random sample and removed the one of each pair who had the greater 18 

missing genotype rate (3 subjects were excluded). The resulting SNP sets was then 19 

used to calculate multidimensional scaling (MDS) to assess the population 20 

stratification with HapMap phase 3 genetic data as the reference set, 54 participants 21 

were excluded from the sample as European population outliers. The first 4 22 

http://www.cog-genomics.org/plink2/
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components of MDS analysis were controlled in the subsequent analysis.  1 

Quality control at SNP level 2 

We applied SNP-level filtering to remove SNPs with missing call rates greater than 3 

0.05, a minor allele frequency (MAF) less than 0.01, and significant deviation from 4 

Hardy-Weinberg Equilibrium (P < 5.00e-6). Strand ambiguous SNPs were also 5 

removed. After individual- and SNP-level quality control, we retained 697 individuals 6 

with European ancestry (419 males) with a genotyping rate of 99.66% for 521,695 7 

SNPs.  8 

Imputation 9 

The MaCH (Li et al., 2010) (http://www.sph.umich.edu/csg/abecasis/MACH) was 10 

used for haplotype phasing and the MiniMac (Howie et al., 2012) 11 

(http://genome.sph.umich.edu/wiki/Minimac) was used for imputation with the 1000 12 

Genomes Phase 1 version 3 CEU as the reference dataset (hg19). Finally, 7,747,882 13 

autosomal SNPs with imputation quality score greater than 0.8 (R
2 

> 0.8) were used 14 

for further analysis.  15 

GMV calculation 16 

All structural images were visually checked by two experimenters of radiology. In the 17 

697 subjects with qualified genetic data, we removed 19 subjects because of poor 18 

image quality. Finally, a total of 322 aMCI patients were finally included in the 19 

voxel-based morphometry (VBM) analysis. The GMV maps were calculated using the 20 

VBM8 implemented in Statistical Parametric Mapping software package (SPM8, 21 

http://www.fil.ion.ucl.ac.uk/spm). In the segmentation of VBM8, an adaptive 22 

http://genome.sph.umich.edu/wiki/Minimac
http://www.fil.ion.ucl.ac.uk/spm
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Maximum A Posterior technique (Rajapakse et al., 1997) and a Partial Volume 1 

Estimation (Tohka et al., 2004) were used to estimate the fraction of each pure tissue 2 

type present in every voxel. After the structural images were segmented into gray 3 

matter (GM), white matter and cerebrospinal fluid, the individual’s GM concentration 4 

map was normalized into the Dartel template in Montreal Neurological Institute (MNI) 5 

space (http://www.mni.mcgill.ca/). This template was derived from 550 healthy 6 

control subjects of the IXI-database (http://www.brain-development.org). In the 7 

modulated normalized process, we multiplied the individual’s GM concentration map 8 

only by the non-linear determinants derived from the spatial normalization procedure. 9 

This step resulted in normalized GM density or relative GMV map for each subject. 10 

Here, the GMV of each voxel represents the fraction of GM present in each voxel, 11 

which preserves the local GM density while removing the confounding effect of 12 

variance in individual brain sizes. After that, we resliced the normalized GMV to a 13 

1.5-mm cubic voxel. Finally, the GMV images were smoothed with a kernel of 8 × 8 14 

× 8 mm
3
 full width at half maximum. Then, the spatial pre-processing, normalized, 15 

modulated, and smoothed GMV maps were used for further analysis. 16 

LD score regression and colocalization analysis 17 

To validate the specificity of these index SNPs to MDD but not to AD, we performed 18 

LD score regression (Bulik-Sullivan et al., 2015) and colocalization analyses 19 

(Giambartolomei et al., 2014; Pickrell et al., 2016). LD score regression was applied 20 

to quantify genetic correlation pattern (rg) between GWAS summary statistics of the 21 

1,806 MDD-specific index SNPs from PGC-MDD dataset and GWAS summary 22 
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statistics from IGAP-AD datasets. By estimating the Bayesian posterior probability, 1 

the colocalization analysis was used to test the hypothesis that the 1,806 2 

MDD-specific index SNPs are associated with MDD, but not with AD. The Bayesian 3 

posterior probability > 0.90 was used as a cutoff threshold.  4 

Mediation analysis and Mendelian Randomization (MR) 5 

The SPSS macro (http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html) 6 

(Preacher and Hayes, 2008; Hayes, 2013) was used to perform the mediation analysis 7 

to test whether the GMV of each significant brain region mediates the association 8 

between the PRSsMDD and the status of aMCI-C. The PRSsMDD was defined as an 9 

independent variable, the GMV of each significant brain region as a mediator variable, 10 

and the aMCI group assignment (aMCI-S vs aMCI-C) as a binary dependent variable. 11 

The first step was to confirm that the independent variable (PRSsMDD) was a predictor 12 

of the dependent variable (aMCI-S vs aMCI-C), which is known as the direct effect. 13 

The second step was to confirm that the independent variable (PRSsMDD) was a 14 

predictor of the mediator (GMV). The third step was to confirm that the mediator 15 

(GMV) was a predictor of the dependent variable (aMCI-S vs aMCI-C), while 16 

controlling for the independent variable (PRSsMDD). The indirect effect is the product 17 

of path coefficients of the last two steps. Then the bootstrapping method was used to 18 

assess the significance of the mediation effect. After 5000 bias-corrected 19 

bootstrapping, we could estimate the distribution of the indirect effect and calculate 20 

its 95% confidence intervals (CI). If zero does not fall between the resulting 95% 21 

confidence interval of the bootstrapping method, we could confirm the existence of a 22 

significant mediation effect (P < 0.05). 23 

 24 
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Mendelian randomization (MR) is a statistical technique that uses genetic variants 1 

associated with modifiable exposure as instrumental variables to infer the causal 2 

effect of the exposure on outcome under several assumptions, which can overcome 3 

confounders and reverse causality (Smith and Ebrahim, 2003; Davey Smith and 4 

Hemani, 2014). The pleiotropy may influence on the validity of causal estimates 5 

derived from MR methods. It has been suggested that the conventional MR analysis is 6 

valid when there is vertical pleiotropy or balanced horizontal pleiotropy. However, 7 

when there is unbalanced horizontal pleiotropy, the conventional MR analysis may 8 

generate false positive or false negative estimate. In this situation, MR-Egger method 9 

could correct for unbalanced horizontal pleiotropy and yield a valid estimate (see 10 

Figure 1 in (White et al., 2016) for a recent pictorial description of vertical and 11 

balanced/unbalanced horizontal pleiotropy) (Bowden et al., 2015).  12 

Here, the conventional two-stage method of MR analysis was applied using 13 

PRSsMDD as instrumental variable (G) to make causal inference between left 14 

hippocampal volume (X) and aMCI conversion (Y) (Burgess and Thompson, 2013; 15 

Burgess, 2014; Burgess and Thompson, 2015) 16 

(http://www.mendelianrandomization.com/index.php/software-code). A total of 1806 17 

index SNPs specific to MDD (r
2
 < 0.25 within 250 kb window) were included in 18 

calculation of the PRSsMDD after excluding genetic variants common to PRSMDD (PT = 19 

0.009) and PRSAD (PT = 0.352). In the first stage, the regression of X on G is fit, 20 

which creates a predicted value ( ) of X for each G using equation (1). In the second 21 

stage, a logistic regression is fit in which the binary outcome is Y (aMCI-S and 22 
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aMCI-C) and the independent variable is  using equation (2).  1 

                            (1) 2 

                   (2) 3 

To investigate potential bias due to unbalanced horizontal pleiotropy of PRSsMDD 4 

on the conversion of aMCI, MR Egger regression method was applied in sensitivity 5 

analysis (Bowden et al., 2015) 6 

(http://www.mendelianrandomization.com/index.php/software-code). If the estimated 7 

intercept of this method differs from zero, this provides evidence that there is 8 

unbalanced horizontal pleiotropy. And the slope coefficient from MR Egger regression 9 

(βEgger) estimated the causal effect even the presence of unbalanced horizontal 10 

pleiotropy (Burgess and Thompson, 2017).  11 

12 
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Supplementary Results 1 

 2 

PRSsMDD and PRStsAD predict the conversion from aMCI to AD  3 

After excluding the overlapping SNPs (n=4,711) between the PRSMDD (PT = 0.009) 4 

and PRSAD (PT = 0.009), the PRSsMDD and PRSsAD could significantly predict the 5 

aMCI-C (P = 0.002 and P = 1.05e-9). To balance the number of index SNPs used to 6 

construct the PRS, we also created the PRSAD for the top 1,806 AD-specific index 7 

SNPs (PRStsAD). Although the PRStsAD could significantly predict the status of 8 

aMCI-C (P = 0.013), it could only explain 2.63% of variance for the aMCI-C (Table 9 

S5). In addition, under the same PT (PT = 0.009) as the PRSMDD, the PRSAD could also 10 

predict the aMCI-C (P = 0.046) and explained 1.80% of variance for the aMCI-C 11 

based on 2,554 index SNPs (Table S5). After excluding the overlapping SNPs (n=184) 12 

between the PRSMDD and PRSAD under the same PT (PT = 0.009), only the PRSsMDD 13 

could significantly predict the aMCI-C (P = 7.51e-5), and explained 6.86% of 14 

variance for the aMCI-C (Table S5). These results indicate that the conversion from 15 

aMCI to AD is related to only a small number of MDD-specific genetic variants but to 16 

a large number of AD-specific genetic variants. 17 

Ten-fold cross validation 18 

For each PRS, we used ten-fold cross validation to test the unbiased prediction 19 

accuracy of the PRS on the conversion of aMCI. That is, we randomly divided the 20 

322 aMCI patients into ten disjoint sets (eight sets: each included 32 patients; two 21 

set: each included 33 patients), and then used nine of the sets as training data (N = 22 
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289 or 290) and the remaining one set as test data (N = 33 or 32). We repeated this 1 

process ten times using different possible combinations of training and test sets. 2 

For each validation test, we calculated the accuracy of the test set (32 or 33 aMCI 3 

patients). For each PRS, the mean accuracy and coefficient of variance (CV) of 4 

validation tests are shown in Table S2.  5 

Conversion rates of aMCI in the trisected PRS groups 6 

When PRSsMDD and PRSsAD were trisected into the low, middle and high risk. There 7 

were significant differences in conversion rate among the 9 hierarchical PRS groups 8 

(P =3.23e-6). In the middle PRSsAD group, aMCI patients with high PRSsMDD showed 9 

significantly higher conversion rate than those with low PRSsMDD (59.38% vs 31.58%, 10 

P = 0.022). In the high PRSsAD group, the aMCI patients with high PRSsMDD showed 11 

higher conversion rate than those with low PRSsMDD (89.65% vs 72.97%, P = 0.047) 12 

(Table S6).  13 

Enrichment analyses using genes fine-mapped based on physical position  14 

We remapped the 8,762 SNPs calculated for PRSsMDD into 1,608 genes only based on 15 

the physical position of each variant (within 5kb window). The specific enrichment 16 

results for the 1,608 genes are as the follows: in the annotation of gene ontology, 17 

540/1,608 genes were enriched in the development process, 910/1,608 in the protein 18 

binding, and 783/1,608 in membrane part (Figure S2A and Table S7). Specifically, 19 

these genes mainly over-represented in biological processes of the anatomical 20 

structure morphogenesis (qc = 5.27e-5, FDR-BH correction), development process (qc 21 

= 1.83e-4, FDR-BH correction) and cellular developmental process (qc = 7.48e-4, 22 
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FDR-BH correction) (Figure S2B), in the molecular function of the amyloid-beta 1 

binding (qc = 9.40e-5, FDR-BH correction) (Figure S2C), and in the neuron part (qc = 2 

8.13e-11, FDR-BH correction) and neuron projection (qc = 2.96e-5, FDR-BH 3 

correction) (Figure S2C). And in the KEGG pathway analysis, these genes were also 4 

significantly enriched in neuronal development-related axon guidance (qc = 7.95e-3, 5 

FDR-BH correction) (Figure S2C and Table S9).  6 

In the PPI network analysis, we mapped the PRSsMDD fine-mapping 1,608 genes 7 

to the PPI network of the BIOGRID (315 unmatched genes were excluded). A tightly 8 

connected PPI sub-network was instituted by 928 genes from the remaining 1,293 9 

genes. Using NTA, 928 seed genes and top ten neighboring genes were included in 10 

the construction of the final PPI network consisting of 938 genes. APP was also 11 

identified as the most functionally neighboring genes (Figure S2D). Table S10 12 

showed that the 938 genes of the final PPI network were significantly enriched in 13 

various nervous system related development processes (Figure S2D), such as nervous 14 

system development (qc = 9.91e-6, FDR-BH correction), neuron projection 15 

development (qc = 3.78e-5, FDR-BH correction), neuron development (qc = 1.01e-4, 16 

FDR-BH correction) and generation of neurons (qc = 4.11e-4, FDR-BH correction). 17 

The PPI-based enrichment analysis further confirmed that the PRSsMDD fine-mapping 18 

1,608 genes also involved in the developmental process and amyloid beta binding.  19 

We further explored in which the developmental periods these 1,608 genes were 20 

over-represented in the hippocampus. Under a pSI threshold of 0.05, 65 genes showed 21 

temporal-specific expression in the hippocampus in the middle-late fetal 22 
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developmental period (qc = 0.002, FDR-BH correction) (Figure S2E). Under the most 1 

stringent threshold (pSI = 0.001), CDC20B also showed temporal-specific high 2 

expression in the hippocampus in the middle-late fetal stage, which is well consistent 3 

with the finding (CDC20B) from the 1,860 genes obtained based on expression 4 

patterns in the hippocampus (Figure S2E). 5 

 6 

 7 

8 
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Supplementary Figures 1 

 2 

Figure S1. Histograms of Bayesian posterior probability for 1,806 index SNPs. 3 

Using PP = 0. 90 as a cutoff threshold, there are 1582/1,806 (87.5%) index SNPs are 4 

highly associated with MDD (A), but none SNPs are associated with AD (B), and 5 

none SNPs show colocalization between MDD and AD (C). The X-axis represents the 6 

intervals of Bayesian posterior probability and Y-axis denotes the number of index 7 

SNPs within each interval.  8 

9 
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 1 

Figure S2. Gene enrichment of the PRSsMDD fine-mapping 1,608 genes. (A) 2 

Enrichment of the PRSsMDD genes in GO items. The X-axis shows the numbers of 3 

genes enriched in each item (Y-axis). The red, purple, green bars denote the biological 4 

process, molecular function and cellular component, respectively. (B) Top 40 5 

significant enriched GO BP items of the PRSsMDD genes. The X-axis shows 6 

enrichment factor of each GO item (Y-axis). The size of balls shows the numbers of 7 

genes enriched in each item (numbers of genes are labeled beside the balls). The color 8 

of balls demonstrates the significance of the enrichment analysis. (C) Top 20 9 

significant enriched GO MF and CC items, and all significant KEGG pathway items 10 

of the PRSsMDD genes. The purple, green and grey ground colors show the MF, CC 11 

and KEGG pathway, respectively. (D) Top 40 significant enriched GO BP items of 12 

PPI network. (E) Left, PRSsMDD genes were highly expressed in the middle-late fetal 13 

developmental period in the hippocampus; right, CDC20B was highly expressed in 14 

the early and late mid-fetal development periods in the hippocampus. Period 1-15 15 
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have been described in Table S11. AMY, amygdala; BP, biological process; CBC, 1 

cerebellar cortex; CC, cellular component; CDC20B, cell division cycle 20B; cp, cell 2 

projection; GO, gene ontology; HIP, hippocampus; MF, molecular function; MD, 3 

mediodorsal nucleus of the thalamus; NCX, neocortex; PPI, protein-protein 4 

interaction; pr, positive regulation; rg, regulation; STR, striatum; tt, transmembrane 5 

transporter. 6 

7 
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Supplementary Tables 1 

 2 

Table S1. Quality control of aMCI patients 3 

Steps Exclusion No.  Reasons for exclusion Remainder No.  

0  0 The total number of aMCI patients 398 

1 14 Only with the baseline data  384 

2 9 With a normal diagnosis at the follow-up  375 

3 9 Without genotyping data 366 

4 1 Sex inconsistence  365 

5 30 European population outliers  335 

6 13 Poor image quality 322 

 4 

5 
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Table S2. The predictive accuracies of PRS measures on aMCI conversion in 1 

ten-fold cross validation 2 

Fold 

No. 

PRSAD (N = 322) PRSsAD (N = 322) PRSMDD (N = 322) PRSsMDD (N = 322) PRSsMDD+AD (N = 322) 

Training* Test Training* Test Training* Test Training* Test Training* Test 

1 71.25% 66.26% 68.91% 67.24% 65.69% 64.38% 61.38% 60.75% 71.72% 70.63% 

2 71.72% 67.10% 68.07% 65.63% 63.45% 60.42% 62.76% 56.88% 78.13% 70.24% 

3 70.02% 70.15% 72.45% 63.13% 65.34% 64.34% 61.72% 60.62% 74.24% 70.13% 

4 68.17% 68.56% 72.79% 66.67% 65.17% 62.21% 60.55% 59.23% 74.17% 68.97% 

5 71.88% 70.36% 72.79% 68.97% 65.34% 60.34% 61.03% 62.88% 69.97% 68.63% 

6 70.13% 66.34% 72.38% 68.97% 65.34% 59.75% 62.76% 62.52% 69.97% 69.34% 

7 69.31% 65.62% 68.41% 65.63% 65.34% 64.34% 62.41% 59.13% 79.31% 70.63% 

8 70.69% 63.56% 68.14% 65.63% 62.41% 60.13% 62.41% 60.13% 74.69% 69.34% 

9 70.21% 67.65% 68.14% 68.28% 62.07% 59.98% 62.76% 60.13% 72.28% 69.70% 

10 70.24% 66.89% 68.36% 68.70% 64.59% 60.58% 62.63% 60.61% 74.24% 72.63% 

M 70.36% 67.25% 70.04% 66.89% 64.47% 61.65% 62.04% 60.29% 73.87% 70.02% 

CV 0.02 0.02 0.03 0.03 0.02 0.03 0.01 0.03 0.04 0.02 

* The 322 aMCI patients are divided into ten sets, 8 sets include 32 patients for each and 2 3 

sets include 33 patients for each. Thus, the training data include 289 or 290 aMCI patients and 4 

the corresponding test data include 33 or 32 patients. 5 

AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; CV, coefficient of 6 

variance; MDD, major depressive disorder; PRS, polygenic risk scores; PRSAD, PRS for 7 

AD-related genetic variants; PRSsAD, PRS for AD-specific genetic variants; PRSMDD, PRS for 8 

MDD-related genetic variants; PRSsMDD, PRS for MDD-specific genetic variants; PRSsMDD+AD, 9 

PRS for MDD-specific and AD-related genetic variants.  10 

11 
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Table S3. Top ten known AD locus from AD GWAS meta-analysis 
a
 1 

Rank Gene SNP Ethnicity 
OR  

(95% CI) 
P value 

Sample 

size 

1 APOE 
APOE_ 

e2/3/4 
All 3.685 (3.30-4.12) <1.00E-50 4,167 

2 BIN1 rs744373 All 1.166 (1.13-1.20) 1.59E-26 49,650 

3 CLU rs11136000 Caucasian 0.879 (0.86-0.90) 3.37E-23 72,432 

4 ABCA7 rs3764650 All 1.229 (1.18-1.28) 8.17E-22 60,569 

5 CR1 rs3818361 Caucasian 1.174 (1.14-1.21) 4.72E-21 47,052 

6 PICALM rs3851179 Caucasian 0.879 (0.86-0.92) 2.85E-20 44,358 

7 MS4A6A rs610932 All 0.904 (0.88-0.93) 1.81E-11 63,026 

8 CD33 rs3865444 All 0.893 (0.86-0.93) 2.04E-10 37,767 

9 MS4A4E rs670139 All 1.079 (1.05-1.11) 9.51E-10 64,577 

10 CD2AP rs9349407 All 1.117 (1.08-1.16) 2.75E-09 35,840 

AD, Alzheimer’s disease; CI, confidence interval; SNP, single-nucleotide polymorphisms; 2 

OR, odd ratios; GWAS, genome-wide association analysis.  3 

a
 These data are from http://www.alzgene.org/TopResults.asp. 4 

 5 

6 

http://www.alzgene.org/TopResults.asp
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Table S4. The predictive effects of PRS on the conversion of aMCI (N=322) after 1 

removing SNPs located in the top ten AD loci 2 

 PT SNPs iSNPs P R
2
 Sp Se Ac AUC 

PRSAD 0.352 2,622,829 49,829 7.93e-10 18.44% 71.84% 87.17% 80.75% 0.72 

PRSMDD 0.009 13,462 2,559 7.49e-5 6.86% 68.89% 83.43% 77.33%  0.65 

PRSsAD NA 2,618,124 49,504 1.05e-9 18.09% 70.24% 85.63% 80.12% 0.70 

PRSsMDD NA 8,756  1,806 1.74e-3 4.19% 65.11% 81.74% 76.01% 0.62 

PRSsMDD +AD NA 2,631,585 50,523 2.26e-10 18.71% 70.37% 88.22% 80.86% 0.75 

Ac, accuracy; AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; AUC, 3 

area under curve of receiver operating characteristic curve; iSNPs, numbers of index 4 

single-nucleotide polymorphisms that constitute PRS; MDD, major depressive disorder; NA, 5 

not applicable; PRS, polygenic risk scores; PRSAD, PRS for AD-related genetic variants; 6 

PRSMDD, PRS for MDD-related genetic variants; PRSsMDD, PRS for MDD-specific genetic 7 

variants; PRSsMDD+AD, PRS for MDD-specific and AD-related genetic variants; PT, P values 8 

threshold of genome-wide association studies; R
2
, Nagelkerke’s pseudo R

2
 of logistic 9 

regression; Se, sensitivity; SNPs, numbers of single-nucleotide polymorphisms that constitute 10 

PRS; Sp, specificity. 11 

12 
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Table S5. The predictive effects of PRS measures on the conversion of aMCI 1 

 PT No. of SNPs No. of iSNPs P R
2
 

PRSMDD 0.009 13,472 2,559 7.49e-5 6.86% 

PRSAD 0.009 100,088 2,554 4.62e-2 1.80% 

PRStsAD NA NA 1,806 1.30e-2 2.63% 

PRSsMDD NA 13,286 2,535 7.51e-5 6.86% 

PRSsAD NA 99,904 3,254 1.05e-1 1.10% 

aMCI, amnestic mild cognitive impairment; AD, Alzheimer’s disease; iSNPs, index SNPs; 2 

MDD, major depressive disorder; NA, not applicable; PRS, polygenic risk scores; PRSAD, PRS 3 

for AD-related genetic variants; PRSMDD, PRS for MDD-related genetic variants; PRSsAD, PRS 4 

for AD-specific genetic variants; PRSsMDD, PRS for MDD-specific genetic variants. PRStsAD, 5 

PRS for the top 1,806 AD-specific genetic variants; PT, P values threshold of genome-wide 6 

association studies; R
2
, Nagelkerke’s pseudo R

2 
of logistic regression; and SNP, 7 

single-nucleotide polymorphism. 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 
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Table S6. Conversion rates of aMCI in the trisected PRS groups 1 

PRS groups aMCI-S (N) aMCI-C (N) Conversion rate 

Low PRSsAD and low PRSsMDD 22 11 33.33% 

Low PRSsAD and middle PRSsMDD 19 14 42.42% 

Low PRSsAD and high PRSsMDD 19 21 52.50% 

Middle PRSsAD and low PRSsMDD 26 12 31.58% 

Middle PRSsAD and middle PRSsMDD 16 21 56.76% 

Middle PRSsAD and high PRSsMDD 13 19 59.38% 

High PRSsAD and low PRSsMDD 10 27 72.97% 

High PRSsAD and middle PRSsMDD 7 36 83.72% 

High PRSsAD and high PRSsMDD 3 26 89.65% 

All 135 187 58.07% 

AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; aMCI-C, conversion 2 

from aMCI to AD; aMCI-S, aMCI patients with a stable diagnosis; PRS, polygenic risk scores; 3 

PRSsAD, PRS for AD-specific genetic variants; and PRSsMDD, PRS for MDD-specific genetic 4 

variants. 5 

 6 

7 
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Table S7. Numbers of PRSsMDD fine-mapping 1,860 genes and PRSsMDD 1 

fine-mapping 1,608 genes observed in the GO category 2 

Items Description 

PRSsMDD 

fine-mapping  

1,860 genes 
a
 

PRSsMDD 

fine-mapping  

1,608 genes 
b
 

GO: 

biological 

process 

biological regulation 901 954 

metabolic process 777 825 

response to stimulus 661 700 

multicellular organismal process 590 627 

cell communication 542 571 

developmental process 505 540 

localization 523 558 

cellular component organization 480 522 

multi-organism process 148 158 

cell proliferation 160 168 

reproduction 83 92 

growth 80 85 

unclassified 561 237 

GO: 

molecular 

function 

protein binding 855 910 

ion binding 381 400 

transferase activity 192 204 

nucleotide binding 189 202 

molecular transducer activity 140 143 

nucleic acid binding 257 273 

transporter activity 144 157 

hydrolase activity 181 189 

enzyme regulator activity 77 79 

structural molecule activity 61 71 

lipid binding 58 58 

chromatin binding 38 41 

 molecular adaptor activity 23 24 

carbohydrate binding 19 17 

antioxidant activity 10 11 

unclassified 560 238 

GO: 

cellular 

componen

t 

membrane 738 783 

nucleus 491 525 

cytosol 266 295 

vesicle 302 327 

macromolecular complex 362 388 

endomembrane system 320 341 
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 membrane-enclosed lumen 300 319 

cell projection 194 200 

 endoplasmic reticulum 146 155 

Golgi apparatus 127 134 

extracelluar space 97 104 

cytoskeleton 154 172 

mitochondrion 100 103 

envelope 69 74 

endosome 58 62 

extracellular matrix 56 56 

vacuole 55 60 

chromosome 45 51 

unclassified 528 201 

GO, gene ontology; PRSsMDD, PRS for MDD-specific genetic variants.  1 

a
 PRSsMDD genetic variants were fine-mapped into 1,860 genes based on the 2 

hippocampal-specific regulatory probability between eQTLs and epigenomic features (within 3 

a 5kb window) 4 

b
 PRSsMDD genetic variants were fine-mapped into 1,608 genes based on physical position of 5 

each variant (within a 5kb window) 6 

 7 

Table S8. Gene enrichment analysis of PRSsMDD fine-mapping 1,860 genes  8 

(See accompanying Excel file) 9 

 10 

Table S9. Gene enrichment analysis of PRSsMDD fine-mapping 1,608 genes  11 

(See accompanying Excel file) 12 

 13 

Table S10. Gene enrichment analysis of the PPI network from PRSsMDD 14 

fine-mapping 1,860 genes and PRSsMDD fine-mapping 1,608 genes  15 

(See accompanying Excel file) 16 

 17 

 18 

 19 
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Table S11. Period 1-15 in the temporal expression analysis  1 

Period Description Age 

1 Embryonic 4PCW-8PCW 

2 Early fetal 8PCM-10PCW 

3 Early fetal 10PCM-13PCW 

4 Early mid-fetal 13PCW-16PCW 

5 Early mid-fetal 16PCW-19PCW 

6 Late mid-fetal 19PCW-24PCW 

7 Late fetal 24PCW-38PCW 

8 Neonatal and early infancy 0M-6M 

9 Late infancy 6M-12M 

10 Early childhood 1Y-6Y 

11 Middle and late childhood 6Y-12Y 

12 Adolescence 12Y-20Y 

13 Young adulthood 20Y-40Y 

14 Middle adulthood 40Y-60Y 

15 Late adulthood 60Y- 

M, postnatal months; PCW, post-conceptional weeks; Y, postnatal years. 2 

3 
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