Supporting Information

Nematophin, an antimicrobial dipeptide compound from

Xenorhabdus nematophila YL001 as a potent biopesticide for

Rhizoctonia solani control

Shujing Zhang¹, Qi Liu², Yunfei Han¹, Jinghua Han¹, Yonghong Wang¹* and Xing Zhang¹

¹Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
²Plant quarantine and protection bureau of Zhumadian, Henan 463000, China

*Correspondence:

Yonghong Wang (yhwang@nwafu.edu.cn)

Table of contents

- 1. Synthesis of (±)-Nematophin and (+)-Nematophin
- 2. Biochemical and molecular characteristics of X. nematophila YL001 (Table S1

and S2; Figure S1)

- 3. Table S3
- 4. Figure S2 and Figure S3
- 5. ¹H NMR, ¹³C NMR and MS spectra (Figure S4-S28)

1. Synthesis of (±)-Nematophin

Scheme S1. Synthetic route for the preparation of the target compound (±)-Nematophin

Ethyl-dimethylaminopropyl-carbodiimide hydrochloride (EDCl, 2.4 mmol, 1.2 equiv) and N, N-dimethyl-4-aminopyridine (DMAP, 0.4 mmol, 0.2 equiv) were add into an ice-cooled solution of (±)-2-keto-3-methylvaleric acid ((±)-KMVA, 2 mmol, 260.3 mg) in N, N-dimethyformamide (DMF, 5 mL) and the mixture was stirred at 0 °C for 30 min. Then, tryptamine (2.4 mmol, 1.2 equiv) was added into the mixture. After being stirred at 0 °C for another 30 min, the mixture was allowed to warm to 25 °C and then stirred for 24 h. The resulting solution was added into 20 mL of distilled water and extracted with ethyl acetate (3 \times 20 mL). The organic layer was collected, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo* to afford a yellow residue. The residue was purified by silica gel chromatography (petroleum ether/EtOAc, 5:1, V/V) to yield (±)-Nematophin (0.34 g, 62.5%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (bs, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.42 (d, J = 8.1 Hz, 1H), 7.26 (t, J = 7.6 Hz, 1H), 7.26 (t, J = 7.6 Hz, 1H), 7.26 (t, J = 7.6 Hz, 1H) 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.11 (bs, 1H), 7.08 (d, J = 1.5 Hz, 1H), 3.69 (q, J = 6.7Hz, 2H), 3.59 – 3.49 (m, 1H), 3.07 (t, J = 6.9 Hz, 2H), 1.83 – 1.71 (m, 1H), 1.50 – 1.37 (m, 1H), 1.13 (d, J = 6.9 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 202.39, 160.08, 136.47, 127.18, 122.34, 122.04, 119.61, 118.67, 112.56, 111.30, 40.40, 39.55, 25.46, 25.19, 15.17, 11.50; ESI-MS (m/z): [M+Na]⁺ calculated for

 $C_{16}H_{20}N_2NaO_2$ 295.14, found 295.10; $[M-H]^-$ calculated for $C_{16}H_{19}N_2O_2$ 271.14, found 271.11.

2. Synthesis of (+)-Nematophin

2.1 (2S, 3S)-2-Hydroxy-3-methylpentanoic Acid (a) (Paik et al., 2003)

6.2 g of NaNO₂ (89.8 mmol) was added into an ice-cooled (0 °C) solution of Lisoleucine (1.96 g, 15 mmol) in 0.5 M H₂SO₄ (60 mL) over a period of 1 h. After that, the mixture was allowed to warm to 25 °C and stirred for another 24 h. The resulting solution was extracted with ether (3 × 20 mL). Then, the organic extracts were collected, dried by anhydrous Na₂SO₄, filtered, and evaporated *in vacuo* to give a yellow oil. Purification was performed by crystallization from ether and petroleum ether to give **a** (1.5 g, 75.8%) as a white solid. $[\alpha]_D^{25}$: 20.18 (c 4, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 4.19 (d, J = 3.4 Hz, 1H), 1.84 – 1.96 (m, 1H), 1.50 – 1.38 (m, 1H), 1.37 – 1.22 (m, 1H), 1.03 (d, J = 6.9 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.58, 74.66, 38.91, 23.68, 15.34, 11.73.

2.2 (2'S, 3'S)-N-(Indol-3-ylethyl)-2'-hydroxy-3'-methylpentan-amide (b)

The synthetic procedure of **b** was identical to that of (±)-Nematophin except N-Hydroxysuccinimide (NHS, 1.2 equiv) and 2-hydroxy-isoleucic acid (**a**, 1 equiv) being used. The crude product was purified by chromatography on silica gel (CH₂Cl₂/MeOH, 50:1, V/V) to yield **b** (0.28 g, 61.3%) as a white solid. $[\alpha]_D^{25}$: -4.51 (c 1.55, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.19 (bs, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 7.3 Hz, 1H), 7.12 (t, *J* = 7.3 Hz, 1H), 6.99 (d, *J* = 2.2 Hz 1H), 6.54 (bs,

1H), 3.90 (dd, J = 5.0, 3.5 Hz, 1H), 3.62 (q, J = 6.6 Hz, 2H), 3.03 – 2.91 (m, 2H), 2.73 (d, J = 5.3 Hz, 1H), 1.86 – 1.76 (m, 1H), 1.39 – 1.27 (m, 1H), 1.17 – 1.04 (m, 1H), 0.94 (d, J = 6.9 Hz, 3H), 0.85 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.27, 136.44, 127.32, 122.22, 122.09, 119.47, 118.68, 112.83, 111.34, 76.36, 39.31, 38.77, 25.44, 23.06, 15.61, 11.88; ESI-MS (m/z): [M+Na]⁺ calculated for C₁₆H₂₂N₂NaO₂ 297.15, found 297.10.

2.3 (+)-Nematophin (Paik et al., 2003)

200 mg of Dess-Martin reagent (periodinane, 0.47 mmol) was added into a solution of **b** (100 mg, 0.36 mmol) in 5 mL of CH₂Cl₂. The mixture was stirred for 20 min at 25 °C. The resulting solution was filtered through Celite, and the solvent was removed by vacuum rotary evaporation. The residue was purified on a silica gel column eluted with a petroleum ether-EtOAc mixture (5:1, V/V) to afford 49.2 mg (50.3%) of (+)-Nematophin as a white solid. $[\alpha]_D^{25}$: 31.66 (c 0.58, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.11 (bs, 1H), 7.60 (d, *J* = 7.9 Hz, 1H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.21 (t, *J* = 7.3 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 1H), 7.05 (bs, 1H), 7.03 (d, *J* = 1.7 Hz, 1H), 3.64 (q, *J* = 6.7 Hz, 2H), 3.50 (h, *J* = 6.8 Hz, 1H), 3.02 (t, *J* = 6.9 Hz, 2H), 1.78 – 1.66 (m, 1H), 1.45 – 1.33 (m, 1H), 1.08 (d, *J* = 6.9 Hz, 3H), 0.88 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 202.40, 160.07, 136.46, 127.17, 122.34, 122.07, 119.61, 118.68, 112.53, 111.32, 40.40, 39.55, 25.47, 25.20, 15.19, 11.54; ESI-MS (m/z): [M+H]⁺ calculated for C₁₆H₂₁N₂O₂ 273.16, found 273.00; [M+Na]⁺ calculated for C₁₆H₂₀N₂NaO₂ 295.14, found 295.07; [M–H]⁻ calculated for C₁₆H₁₉N₂O₂ 271.14, found 271.10.

Symbiotic bacteria	Gram	shape	Size (µm)	Spore
X. nematophilus YL001	G	Rod	0.5×1.3-1.7×9.5	None

Table S2 Biochemical characteristics of X. nematophila YL001 (Wang and Zhang, 2006)

Physiological index	Positive / negative reaction
Catalase	-
Oxidase	-
Urease	-
Lecithinase	+
Protease	+
Gelatin	+
Lipase	-
Tween 80	-
Nitrate reduction	-
Indole production	-
H ₂ S production	-
Voges-Prokauer test	-
Starch hydrolysis-soluble	-
Phenylalanine deaminase	-
Tryptophan deaminase	-
Aesculin hydrolysis	-
D, L -Glycerate	+
Simmon's citrate	+

Note: +: positive reaction ; -. negative reaction;

Xenorhabdus nematophila strain YL001 16S ribosomal RNA gene, partial sequence

AGATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGGACGGTAACAGGAAA CAGCTTGCTGTTTTGCTGACGAGTGGCGGACGGGTGAGTAATGTCTGGGGATCTGCCC GATGGAGGGGGATAACCACTGGAAACGGTGGCTAATACCGCATGACCTCTTGGGAGTA AAGTGGGGGACCTTCGGGCCTCACGCCATCGGATGAACCCAGATGGGATTAGCTAGTA GGCGGGGTAATGGCCCACCTAAGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGC CACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATT GCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGGT TTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGG GGATGTGAAATCCCCGGGCTTAACCCAGGAACGGCATCCAAGACTGGTTGGCTAGAGT CTCGTAGAGGGGGGTAGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGA ATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGT GGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGTCGATTTGG AGGCTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAGCGCGTTAAATCGACCGCCTGGGG AGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGGCCCGCACAAGCGGTGG AGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCACGGG ATCAGGCAGAGATGCCGGAGTGCCTTCGGGAACCGTGAGACAGGTGCTGCATGGCTG TCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATC CTTTGTTGCCAGCACTTCGGGTGGGAACTCAAGGGAGACTGCCGGTGATAAACCGGA GGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGAGTAGGGCTACACACGTGC TACAATGGCAGATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGAACTCATAAAGT CTGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTA ATCGTAGATCAGAATGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCA CACTTTGTGATTCATGACTGGGGTGAAGTCGTAACAAGGTAACCGTAGGGGAACC

Figure S1 The homology trees of Xenorhabdus nematophila YL001 based on 16S

rDNA (A) and the genome sequence (B).

Pathogenic fungi	Host plant	Geographic origins
Rhizoctonia solani	Rice	Hanzhong (Shannxi province)
Exserohilum turcicum	Corn	Yangling (Shannxi province)
Phytophthora infestans	Potato	Yulin (Shannxi province)
Fusarium graminearum	Wheat	Yangling (Shannxi province)
Verticillium dahliae	cucumber	Yangling (Shannxi province)
Phytophthora capsici	Pepper	Yangling (Shannxi province)
Botrytis cinerea	Tomato	Yangling (Shannxi province)
Sclerotinia sclerotiorum	Oilseed rape	Hanzhong (Shannxi province)
Alternaria alternate	tobacco	Mianchi (Henan province)
Gaeumannomyces gramini	Wheat	Yangling (Shannxi province)

Table S3 Pathogenic fungi and oomycetes used in this study

Figure S2 The circular dichroism (CD) spectra of NEP-1, -2 and -3 in CHCl₃ with a concentration of 5.8 mg/mL at 25 $^{\circ}$ C.

Figure S3 *In vivo* antimicrobial activity of **NEP-1** and mancozeb against *P. infestans*. (A, C) Protective activity of **NEP-1**; (B, D) Curative activity of **NEP-1**. Preventive/curative efficacy: the control efficacy of a compound that was sprayed on potato leaves 12 h before/after inoculation with *P. infestans*. NEP500, 500 µg/mL of **NEP-1**; NEP1000, 1000 µg/mL of **NEP-1**; MZ: 500 µg/mL of mancozeb.

Figure S4 Effect of NEP-1 on sclerotial formation of *R. solani*. (A) Control plate; (B)
Plate treated with NEP-1 at 15.00 μg/mL; (C) Plate treated with NEP-1 at 20.00 μg/mL;
(D) Plate treated with NEP-1 at 30.00 μg/mL. All the plates were incubated under identical conditions for 6 days.

Figure S5 ¹H NMR spectrum of (±)-nematophin (**NEP-1**) isolated from *X. nematophila*

YL001.

Figure S6¹³C NMR spectrum of (±)-nematophin (**NEP-1**) isolated from *X. nematophila* YL001.

Figure S7 ESI-MS spectrum of (±)-nematophin (NEP-1) isolated from X. nematophila

YL001.

Figure S8 HRESI-MS spectrum of (\pm) -nematophin (NEP-1) isolated from *X*. *nematophila* YL001.

Figure S9 ¹H NMR spectrum of *cyclo* (L-Pro-Gly) (2).

Figure S10 ¹³C NMR spectrum of *cyclo* (L-Pro-Gly) (2).

Figure S11 ESI-MS spectrum of cyclo (L-Pro-Gly) (2).

Figure S12 HRESI-MS spectrum of *cyclo* (L-Pro-Gly) (2).

Figure S14 ¹³C NMR spectrum of N, N'-dimethyl-*cyclo*(L-Phe-L-Leu) (**3**).

Figure S16 ¹H NMR spectrum of synthetic (±)-nematophin (NEP-2).

Figure S17¹³C NMR spectrum of synthetic (±)-nematophin (NEP-2).

Figure S18 ESI-MS spectrum of synthetic (±)-nematophin (NEP-2) in positive mode.

Figure S19 ESI-MS spectrum of synthetic (±)-nematophin (NEP-2) in negative mode.

Figure S20 ¹H NMR spectrum of (2S,3S)-hydroxypentanoic acid (**a**).

Figure S22 ¹H NMR spectrum of (2'S, 3'S)-N-(Indol-3-ylethyl)-2'-hydroxy-3'-methyl

pentanamide (b).

pentanamide (b).

Figure S24 ESI-MS spectrum of (2'S, 3'S)-N-(Indol-3-ylethyl)-2'-hydroxy-3'-methyl

pentanamide (b).

Figure S27 ESI-MS spectrum of synthetic (+)-nematophin (NEP-3) in positive mode.

Figure S28 ESI-MS spectrum of synthetic (+)-nematophin (NEP-3) in negative mode.

Reference:

- Paik, S., Park, M.K., Jhun, S.H., Park, H.K., Lee, C.S., Cho, B.R., et al. (2003). Isolation and Synthesis of Tryptamine Derivatives from a Symbiotic Bacterium *Xenorhabdus nematophilus* PC. *Cheminform* 34(45), 2101-2118. doi: 10.1002/chin.200345209
- YH, Wang, X, Zhang (2006). Isolation and preliminary identification of two strains of entomopathogenic nematode symbionts. Jour. of Nor thwest Sci-Tech Univ. of Agri. and For. (Nat. Sci. Ed.), 34(12), 174-180. doi:10.3321/j.issn:1671-9387.2006.12.034.