
Supporting Information for “Every which way? On
predicting tumor evolution using cancer progression
models”

Ramon Diaz-Uriarte1,2*, Claudia Vasallo1,2

1 Dept. Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain
2 Instituto de Investigaciones Biomédicas “Alberto Sols” (UAM-CSIC), Madrid, Spain

* ramon.diaz@iib.uam.es

S5 Text. Cancer data sets: sources, characteristics, addi-
tional results.

Contents

List of Figures 1

1 Cancer data sets 2
1.1 Cancer data sets: sources and characteristics . . . . . . . . . . . . . . . . . . . . . 3
1.2 Bootstrapping on the cancer data sets . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Cancer data sets: additional results, figures 7
2.1 Cancer data sets: JSob and unpredictability for the bootstrap runs . . . . . . . . . 8

2.1.1 Cancer data sets: distribution of number of mutations per subject . . . . . 9
2.1.2 Cancer data sets: proportion of individuals in which a mutation is present 10
2.1.3 Cancer data sets: scatterplots of JSo,b, Sc, and number of paths to the

maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 References 12

List of Figures

A Results from the cancer data sets analyzed with H-CBN. Data sets have been ordered
by increasing sample size, and the x-axis labels provide the acronym (shown in full in
the inset legend). Below the data set acronym are the number of subjects and the total
number of features, respectively. Analysis were run three times, limiting the number
of features analyzed to the 7, 10, and 12 most common ones; the boxplots for each data
set are shown in increasing order of number of features. For data sets such as, say,
Pancreas genes (Pan Ge), with 7 features, using 7, 10, or 12 maximum features makes
no difference in the number of features analyzed; the three replicate runs show run-
to-run variability. A) JSo,b: JS statistic for the comparison of the distribution of paths
from running H-CBN on the original data set against the distribution of paths from
running H-CBN on each one of the bootstrap runs. B) Diamonds show the Sc from the
full data, and boxplots the Sc from the bootstrap runs. Right axis labeled by number of
equiprobable paths equivalent to the Sc. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

B Cancer data sets: Histograms of number of mutations per subject in the data sets. 9

1



C Cancer data sets: Histograms of proportion of individuals in which each muta-
tion is present. For example, in the PP data set, there are four mutations that are
present in 80% to 90% of the individuals in the data set, 1 mutation present in
90% to 100% of the individuals, 1 mutation in between 0 and 10% of the individ-
uals, and 1 in between 10% and 15%. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

D Cancer data sets: scatterplots of the relationship between JSo,b, Sc, and number
of paths to the maximum, using the data labels, using the statistics from analyses
with 12 features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1. Cancer data sets

The cancer data sets used here are a representative example of data sets to which researchers
have applied CPMs or data sets to which researchers might want to apply CPMs. All of these
data sets (in at least one of their variants) have been used previously in studies with CPMs
except for the BRCA data sets, that were obtained de novo for this paper.

These data sets vary in:

• sample size (27 to 594 samples);

• data types (nonsynonymous somatic mutations, and copy number aberrations, or both);

• levels of analysis: altered/non-altered pathways —e.g., Pan pa, GBM pa, Col pa, all
pa—, functional modules —GBM mo–, exclusivity groups [1] —Col msi co, Col mss co,

ACML co—, genes —e.g., BRCA ba s, BRCA he s, Pan ge, GBM ge, Col ge, Ov, Lu—,
and different types of gene-level events as insertion/deletions, missense point mutations,
nonsense point mutations —ACML and ACML co.

• different procedures for driver selection, from simple frequency-based selection of fea-
tures (e.g., GBM ge, Pan ge, Col ge) to state-of-the-art methods for the identification of
significantly altered genes [2] (e.g., BRCA he s, BRCA ba s, Col msi, Col mss, GBM CNA);

• restriction of patient subtypes (with the purpose of achieving sample homogeneity —e.g.,
BRCA ba s, BRCA he s, Col msi, Col mss);

Thus, in several cases the same source data set has been processed in different ways to
produce two different versions. For three of the data sets, two versions, one coded in terms
of mutations of genes and one in terms of pathway alterations, were available (Col ge and
Col pa, GBM ge and GBM pa, Pan ge and Pan pa). For three other data sets, we have analyzed
both the original data (Col msi, Col mss, ACML), and the same data after accounting for so-
called “exclusivity relations” (see 1; Col msi co, Col mss co, ACML co). Another data set,
GBM CNA, was also analyzed in terms of “functional modules” (GBM mo).

Other data sets have been obtained from a single source and split to increase subject homo-
geneity (e.g., BRCA ba s and BRCA he s; Col msi, Col mss).
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1.1. Cancer data sets: sources and characteristics

Name Source Original
source

Number
of fea-
tures

Number
of sub-
jects

Type of event Abbreviation

All Pathways [3] (From
sources
for colon,
glioblastoma,
and pancreas
genes data
sets)

12 268 candidate mut all pa

Colon Genes [3] [4] 8 95 candidate mut Col ge
Colon Pathways [3] [4] 10 95 candidate mut Col pa
Glioblastoma Genes [3] [5] 8 78 candidate mut GBM ge
Glioblastoma Path-
ways

[3] [5] 10 78 candidate mut GBM pa

Pancreas Genes [3] [6] 7 90 candidate mut Pan ge
Pancreas Pathways [3] [6] 7 90 candidate mut Pan pa
Lung [7] [8] 51 161 recurrent mut Lu
Ovarian [7] [9] 192 326 recurrent mut Ov
Ovarian driver [7] [9] 9 326 significant mut Ov drv
Colon MSI [1] [10] 30 27 significant mut

and CNA
Col msi

Colon MSS [1] [10] 34 152 significant mut
and CNA

Col mss

Colon MSI mutual
exclusivity groups
collapsed

[1] [10] 20 27 significant mut
and CNA

Col msi co

Colon MSS mutual
exclusivity groups
collapsed

[1] [10] 13 152 significant mut
and CNA

Col mss co

ACML [11, 12] [13] 16 64 recurrent mut ACML
ACML mutual ex-
clusivity groups
collapsed

[11, 12] [13] 11 64 recurrent mut ACML co

GBM CNA [14, 15] [16] 48 563 significant
CNA

GBM CNA

GBM CNA modules [14, 15] [16] 9 563 significant
CNA

GBM mo

GBM co-occurrent [17] [18, 19] 3 594 significant
co-occurrent
CNA

GBM coo

Ovarian CNV [20] [21] 7 87 recurrent arm-
level CNA

Ov CNV

BRCA HER2, sub-
types

[14, 15] [22] 4 57 significant mut BRCA he s

BRCA basal-like,
subtypes

[14, 15] [22] 6 81 significant mut BRCA ba s

Table A: Cancer data sets used. Source refers to where the data have been obtained from, generally also
the first reference where data set has been used with CPMs. Data sets BRCA he s and BRCA ba s have
been obtained from original sources for this paper. A data set very similar to GBM CNA was used in [23],
but we obtained it from [14, 15], as explained in the text. Type of event: mut: nonsynonymous somatic
mutations; CNA: copy number alterations; candidate mut: nonsynonymous mutations on candidate genes
[2, 4, 24]; significant mut: nonsynonymous mutations on significant mutated genes, as defined by state-of-
the-art algorithms [2] MuSiC [25] or MutSigCV [26]; significant CNA: significant copy number alterations,
as defined by GISTIC2.0 [27].
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These are further details about how the data were obtained and the rationale for the data
processing:

All Pathways and Colon, Glioblastoma, Pancreas pathways Data sets Colon Genes, Glioblas-
toma genes, and Pancreas genes are from [3], with original sources [4], [5], and [6], respec-
tively.

For the corresponding data sets in terms of pathways, the mapping from genes to path-
ways was done by [3], from the original papers with data sets. Our scripts to reproduce
the analysis are provided with the code. Note that for Pancreas pathways we eliminate
the four pathways that were present in all subjects (see also [3] and notes in the code for
details). For Glioblastoma pathways, two pathways had identical patterns (Apoptosis
and Small GTPase-dependent signaling (other than KRAS)) and only one was used.

What we call “All Pathways” here, for brevity, is called “All cancer types” in [3].

Lung Original data from [8]. They were obtained from text file Lung SM4 from the supplemen-
tary material of [7] (file “BMLv1.tar.gz”).

Ovarian Original data from [9]. They were obtained from text file OV SM5 from the supplemen-
tary material of [7] (file “BMLv1.tar.gz”).

Ovarian driver Data come from data set Ovarian, restricting events to 9 significantly mutated
genes described in Table 2 of source paper [9].

Colon MSI Colorectal cancer, microsatellite unstable tumors. The original data (as well as
Colon MSS) come from COADREAD [10]; we obtained them from [1], where the original
data were split by tumor subtype into MSI and MSS (see also comments about patient
stratification under “BRCA basal-like, subtypes, BRCA HER2, subtypes”).

We used GIMP to open the PDF file page (Figure 3 on page 6 of [1]) where the figure was
and cropped the grid of the figure and exported it as JPEG with high resolution. Then we
imported it in ImageJ(Fiji) (https://fiji.sc/), converted it to 8-bit, applied threshold
option and set it to B/W, then exported it as text image (matrix as txt). Then we imported
the text image in R and used the code in fig to matrix capri pnas.R to convert the text
image into a matrix of genotypes. The data were checked against the original figures.

Colon MSS Colorectal cancer, microsatellite stable tumors. The original data come from COAD-
READ [10] and we obtained them from [1], where the original data were split by tumor
subtype into MSI and MSS (see above).

From [1]. Same process as for Colon MSI; the figure is Figure S5 from page 16 of the sup-
plementary material to [1]. The authors explain that “Events selected for reconstruction
are those involving genes altered in at least 5% of the cases, or part of group of alterations
showing an exclusivity trend (see Figure S4).”

Colon MSI mutual exclusivity groups collapsed, Colon MSS mutual exclusivity groups collapsed
Data sets were obtained from data sets Colon MSI and Colon MSS, respectively, pro-
cessed so events showing mutual exclusivity patterns described in [1] were collapsed in
a single event representing an exclusivity group.

Mutual exclusivity patterns, as explained in [1], could decrease the performance of CPMs
(as CPMs assume no events show exclusivity or otherwise reduce the probability of an-
other event occurring [7]). How to deal with these exclusivity patterns with CPMs such
as CBN, OT, CAPRESE, or CAPRI without additional formulas, is not clear, however.
For the Colon MSI and Colon MSS data sets, the exclusivity groups identified in Car-
avagna et al. (2016), [1], are supposed to represent fitness-equivalent exclusive sets of
alterations. Some of these exclusivity groups share events, some represent “hard” exclu-
sivity relations whereas others represent “soft” exclusivity relations [1]. What we have
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done is consider each one of the exclusivity groups as analogous to a pathway in Ger-
stung et al. (2011) [3] or a module in Cheng et al. (2012) [23] (where the same gene can
be part of different pathways/modules or, in this case, different exclusivity groups). This
amounts to considering each exclusivity group as a “fitness equivalent” (sensu [1]) set
of alterations for some “phenotype” shared by the exclusivity group, similar to what [1]
did, and should not introduce any additional difficulties for the inference of downstream
dependencies.

We removed from the data set any alteration that was a member of one or more exclusiv-
ity groups as an individual alteration. Thus, the data sets with exclusivity groups differ
from the original ones by adding exclusivity groups and removing alterations that belong
to those exclusivity groups. We used the Table S3 of the Supplementary Material of [1]
as the canonical source of exclusivity groups. However, notice that there must be the
following mistakes in Table S3: in row 6 it says ACVR1B:a, but there is no amplification
event that affects ACVR1B in data set Colon MSI, according to Figure 3 in the paper (and
Figure 5 and Figure S11), but mutation and deletion; in row 7 it says NRAS:a but there
is no amplification event that affects NRAS in data set Colon MSI, according to Figure 3
in the paper (and Figure 5 and Figure S11), but mutation and deletion; in row 15 it says
NRAS:d but there is no deletion event that affects NRAS in data set Colon MSS, accord-
ing to Figure S5 (and Figure S4 and Figure S10), but mutation and amplification. So we
assumed it should say ACVR1B:d in row 6, NRAS:d in row 7 and NRAS:a in row 15.
Additionally, when a mutual exclusivity group in Table S3 was contained in another (for
instance, group in row 5 is part of group of row 1) we used only the bigger one. This pro-
cedure results, for Colon MSI, in a new data set of 27 subjects and 20 columns (five from
the exclusivity groups, and 15 from the 30 alterations in the original data set minus the
15 removed as they are in one or more exclusivity groups). For Colon MSS, this results
in a new data set of 152 subjects and 13 columns (11 from the exclusivity groups, and 2
from the 34 alterations in the original data set minus the 32 removed as they are in one or
more exclusivity groups).

ACML Data are originally from [13], and were obtained from the aCML data set in R package
“TRONCO” [12] and processed to keep the 16 events used in [11]. The data includes al-
terations with a frequency above 5 % in original data set from [13] and additional selected
alterations hypothesized to be part of a functional ACML progression path in the liter-
ature and are shown in Figure 5 of [11]. As explained in [11], events are categorized as
insertion/deletions, missense point mutations, and nonsense point mutations. This data
set shows mutual exclusivity patterns described in Section 4.2 of [11].

ACML mutual exclusivity groups collapsed Data come from data set ACML, processed so
events showing mutual exclusivity patterns described in [11] were collapsed in a single
event. As with data sets Colon MSI and Colon MSS, here we dealt with mutual exclusiv-
ity patterns in the data by collapsing individual events in exclusivity groups considered
as “fitness equivalent” groups. The two exclusivity groups were obtained from Section
4.2 of [11]: one involves all types of alterations of genes ASXL1 and SF3B1 (ASXL1 non-
sense point, ASXL1 ins/del, SF3B1 missense point) and the other involves all types of
alterations of genes TET2 and IDH2 (TET2 nonsense point, TET2 missense point, TET2
ins/del, IDH2 missense point); thus, there are 11 columns, 2 from the exclusivity groups,
and 9 from the 16 alterations minus the 7 removed as they belong into exclusivity groups.

GBM CNA Data come from TCGA GBM PUB CNA data set [16] and were obtained from
cBioPortal [14, 15] using the R package “cgdsr” [28], selecting only CNA data from 51
driver genes used by Cheng et al. (2012) and detailed in Table 1 of [23], with a GISTIC
score of 2 or -2. By doing so, we intended to follow the author’s indications to obtain the
same data set Cheng et al. (2012), [23], used to infer a cancer progression model. Although
[23] cite [19] as the source of their data, we understand that the original data set used
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in [23] should have been the “Provisional” TCGA data set at that time since they got more
patients (462) than the total number of patients in the only published TCGA glioblastoma
study at the date [19] (206). So, we used the data from the TCGA glioblastoma study
published in 2013 [16] on the belief that this is the closest we can get to reproduce the data
set used in [23] (the study of 2013, [16], contains 198 patients in common with the study
of 2008, [19]). Note that 3 of the 51 genes were not altered in any subject and then were
removed from the data set. Also note that, contrary to [23], to avoid mutual exclusivity
patterns we only analyze one level of gain/loss per gene; so, here we used high-level
amplification (GISTIC score of 2) and homozygous deletion (GISTIC score of - 2).

GBM CNA modules Data come from GBM CNA, processed so individual alterations were
grouped in modules at phenotype level of cancer-related pathways.

We reproduced the procedure used in Cheng et al. (2012) [23] to map alterations to func-
tional modules of positive or negative effects within different cancer-related pathways as
originally described in [29] and as detailed in Table 1 of [23].

GBM co-occurrent Data come originally from [19] and [18] and were obtained from Supple-
mentary Material file ST01.xls (GBM copy number tab) of Attollini et al. (2010) and
processed to keep only three highly correlated events described in [17], namely PTEN
homozygous deletion, P16 homozygous deletion and EFGR low-level amplification.

Ovarian CNV Obtained from data set ov.cgh in the R package “Oncotree” [20]. Data are orig-
inally from [21]; ov.cgh from the “Oncotree” R package has also been used in [30].

BRCA basal-like, subtypes, BRCA HER2, subtypes Original data come from TCGA BRCA
PUB mutation data set [22] and were obtained from cBioPortal [14, 15] using the R pack-
age “cgdsr” [28], restricting the data to subtype-specific significantly mutated genes within
patients subtypes.

The data were then split in two, restricting the subjects to those classified as basal-like
and HER2-enriched subtypes, respectively. To split the data set according to cancer sub-
types we used the patient’s classification by the gene expression-based PAM50 technique
as detailed in Supplementary Table 1 of [22]. Then, for each subtype, we restricted the
features to subtype-specific significantly mutated genes identified by MuSiC algorithm
[25] and detailed in Supplementary Table 2 of [22] (Supplementary Tables 1-4.xls file in
supplementary file nature11412-s2.zip).

The reason for splitting the data into two subsets is that cancer subtypes are believed
to follow distinct evolutionary trajectories, and hence rely on at least some different
drivers and/or pathways, and show differences in the chronology of accumulation of
alterations [23, 31, 32]. Thus, sample heterogeneity in terms of different cancer subtypes
(intertumor heterogeneity) can be confounding and hamper the identification of existing
relations in the data. Sample stratification can alleviate this to some extent and should
allow to focus on relevant events for specific subsets of subjects [1].

1.2. Bootstrapping on the cancer data sets

If the bootstrapping process resulted in a feature becoming absent from the data, or two or more
features having identical patterns (i.e., one feature being identical to another) we discarded the
bootstrap sample and obtained a new one; this is done to ensure that all bootstrapped data sets
have paths of identical length (see also section “Preprocessing of data for CPMs” in S4 Text).
This, therefore, leads to JS values that are more optimistic (smaller).
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2. Cancer data sets: additional results, figures
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2.1. Cancer data sets: JSob and unpredictability for the bootstrap runs
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Figure A: Results from the cancer data sets analyzed with H-CBN. Data sets have been ordered by increasing sample
size, and the x-axis labels provide the acronym (shown in full in the inset legend). Below the data set acronym are the
number of subjects and the total number of features, respectively. Analysis were run three times, limiting the number
of features analyzed to the 7, 10, and 12 most common ones; the boxplots for each data set are shown in increasing
order of number of features. For data sets such as, say, Pancreas genes (Pan Ge), with 7 features, using 7, 10, or 12
maximum features makes no difference in the number of features analyzed; the three replicate runs show run-to-run
variability. A) JSo,b: JS statistic for the comparison of the distribution of paths from running H-CBN on the original
data set against the distribution of paths from running H-CBN on each one of the bootstrap runs. B) Diamonds show
the Sc from the full data, and boxplots the Sc from the bootstrap runs. Right axis labeled by number of equiprobable
paths equivalent to the Sc.

8



2.1.1. Cancer data sets: distribution of number of mutations per subject
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Figure B: Cancer data sets: Histograms of number of mutations per subject in the data sets.
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2.1.2. Cancer data sets: proportion of individuals in which a mutation is present
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Figure C: Cancer data sets: Histograms of proportion of individuals in which each mutation
is present. For example, in the PP data set, there are four mutations that are present in 80% to
90% of the individuals in the data set, 1 mutation present in 90% to 100% of the individuals, 1
mutation in between 0 and 10% of the individuals, and 1 in between 10% and 15%.
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2.1.3. Cancer data sets: scatterplots of JSo,b, Sc, and number of paths to the maximum
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Figure D: Cancer data sets: scatterplots of the relationship between JSo,b, Sc, and number of
paths to the maximum, using the data labels, using the statistics from analyses with 12 features.
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