Supporting Information for "Every which way? On predicting tumor evolution using cancer progression models"

Ramon Diaz-Uriarte 1,2* , Claudia Vasallo 1,2

1 Dept. Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain2 Instituto de Investigaciones Biomédicas "Alberto Sols" (UAM-CSIC), Madrid, Spain

S6 Text. Additional results.

Contents

Lis	st of Figures	2
1	Overall patterns for the six CPM procedures	3
2	Probability of recovering the most common LOD	4
3	OT and H-CBN, JS, weighted vs. unweighted	6
4	CAPRI and H-CBN, 1-precision, unweighted	7
5	CAPRESE and OT, 1-precision, unweighted	8
6	Coefficient of variation of JS	9
7	Number of paths inferred	10
8	Slopes of regressions of 1-recall and 1-precision on LOD diversity, \boldsymbol{S}_p	11
9	Coefficient of variation of S_c	12
10	Estimated S_c by H-CBN	13
11	Analysis of deviance tables for fitted models 11.1 Models fitted to the complete data set 11.1.1 Two-way interactions 11.1.2 Three-way interactions 11.1.3 Four-way interactions 11.1 Models fitted to each combination of fitness landscape by CPM 11.2.1 Main effects 11.2.2 Two-way interactions 11.2.3 Four-way interactions	14 15 15 16 17 19 19 21 24
12	Number of local maxima, mutations of local maxima, reciprocal sign epistasis and performance	29
13	LOD and CPM diversity: ratios and slopes	30

^{*} ramon.diaz@iib.uam.es

14	Exa	mple of good and moderate performance	30
15	Refe	erences	31
Li	ist o	f Figures	
	A	Summary performance measures for all six CPM procedures for all combinations of sample size, type of landscape, detection regime, and number of genes. For all measures, smaller is better. For OT, H-CBN, and MCCBN, Jensen-Shannon (JS) entropy and 1-precision use probability-weighted predicted paths (see text). Each point represented is the average of 210 points (35 replicates of each one of the six combinations of 3 initial size by 2 mutation rate regimes; we are thus marginalizing over initial size by mutation rate; each one of the 210 points is,	
	D	itself, the average of five runs on different partitions of the simulated data	3
	В	Probability of recovering the most common LOD: probability that the most common observed path to the maximum is among the paths allowed by the CPMs.	4
	C	Probability of recovering the most common LOD and 1-recall: relationship	5
	D	Comparison of the performance of OT and H-CBN using weighted and unweighted probabilities of paths to the maximum.	6
	E	Comparison of the performance of CAPRI with H-CBN using weighted and un-	U
		weighted probabilities of paths to the maximum	7
	F	Comparison of the performance of CAPRESE with OT using weighted and un-	0
	G	weighted probabilities of paths to the maximum	8
		on each combination of sample size and detection regime.	9
	H I	Number of paths to the maximum according to the CPMs Slopes of regressions of 1-recall and 1-precision on LOD diversity, S_p	10 11
	j	Coefficient of variation (standard deviation/mean) of S_c for each combination of model and type of fitness landscape. The coefficient of variation has been computed from the five runs for each landscapes on each combination of sample size and detection regime. For OT and H-CBN, it is computed using the probability-weighted predicted paths (see text). Each point plotted is the average of 210	
	K	points. Estimated S_c by H-CBN for all combinations of sample size by type of landscape	12
	L	by detection regime by number of genes. Each box plot shows 1050 points Slopes of regression of JS and 1-recall on mean number of mutations of local	13

1. Overall patterns for the six CPM procedures

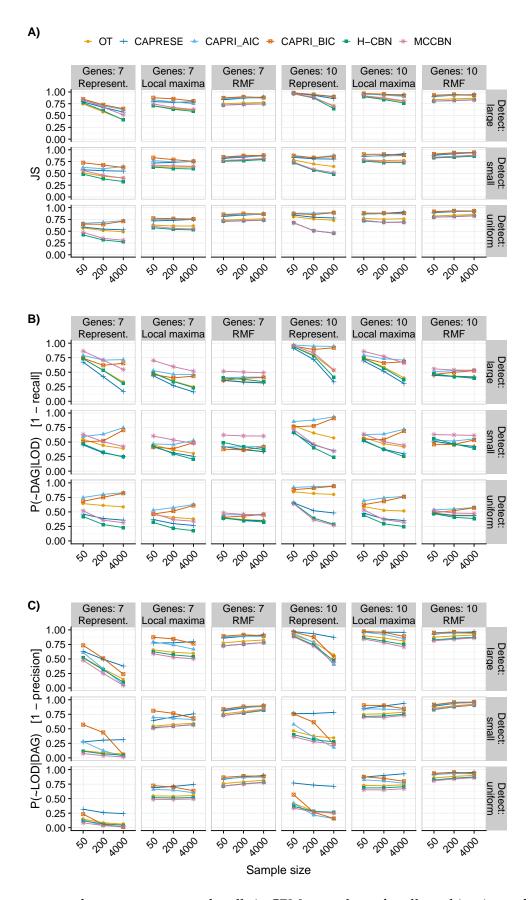


Figure A: Summary performance measures for all six CPM procedures for all combinations of sample size, type of landscape, detection regime, and number of genes. For all measures, smaller is better. For OT, H-CBN, and MCCBN, Jensen-Shannon (JS) entropy and 1-precision use probability-weighted predicted paths (see text). Each point represented is the average of 210 points (35 replicates of each one of the six combinations of 3 initial size by 2 mutation rate regimes; we are thus marginalizing over initial size by mutation rate; each one of the 210 points is, itself, the average of five runs on different partitions of the simulated data.

2. Probability of recovering the most common LOD

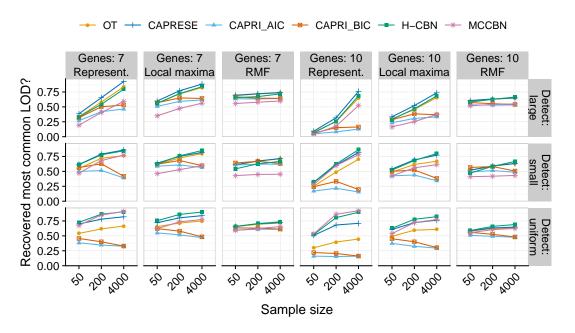


Figure B: Probability of recovering the most common LOD: probability that the most common observed path to the maximum is among the paths allowed by the CPMs.

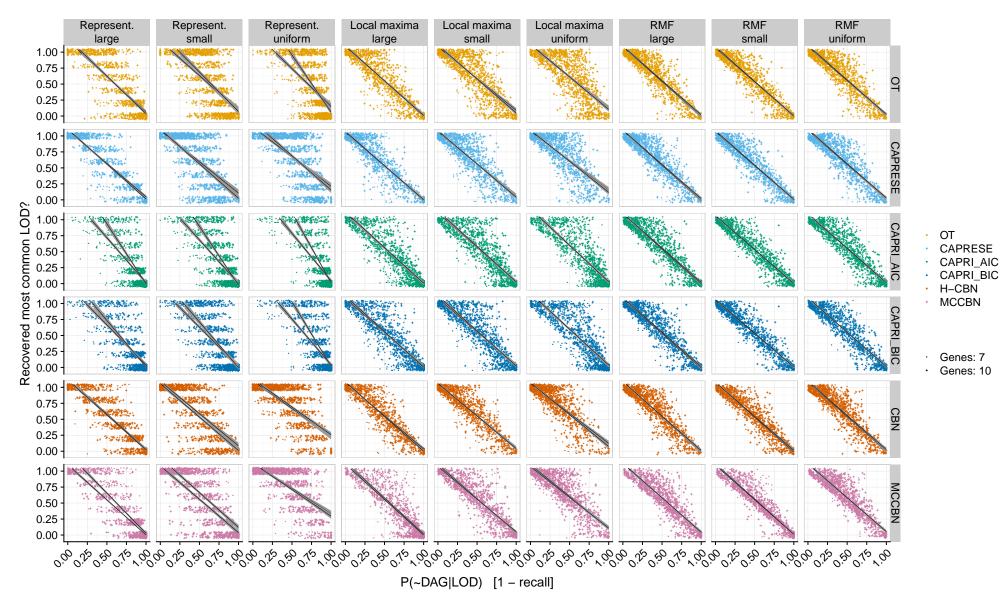


Figure C: Probability of recovering the most common LOD and 1-recall: relationship.

3. OT and H-CBN, JS, weighted vs. unweighted

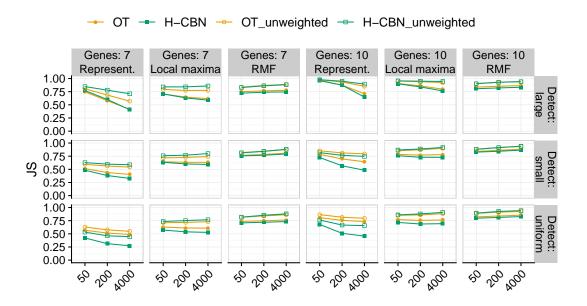


Figure D: Comparison of the performance of OT and H-CBN using weighted and unweighted probabilities of paths to the maximum.

4. CAPRI and H-CBN, 1-precision, unweighted

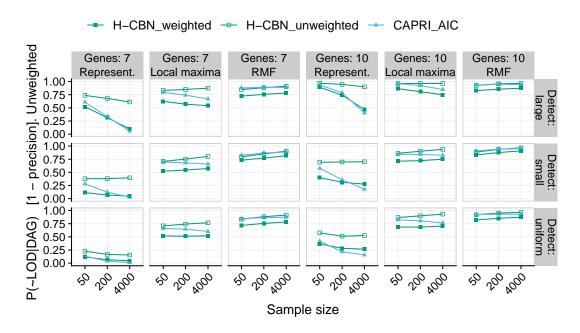


Figure E: Comparison of the performance of CAPRI with H-CBN using weighted and unweighted probabilities of paths to the maximum.

5. CAPRESE and OT, 1-precision, unweighted

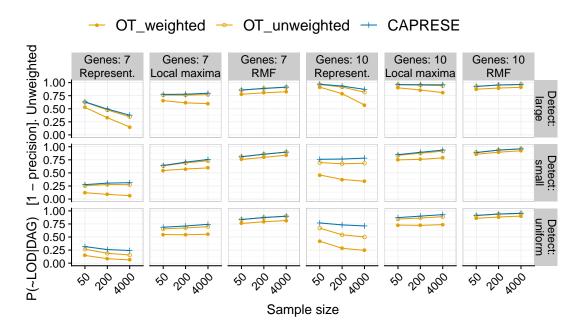


Figure F: Comparison of the performance of CAPRESE with OT using weighted and unweighted probabilities of paths to the maximum.

The results of OT here are remarkable because OT can only build trees, and therefore cannot reflect the dependency of a mutation on two or more upstream mutations so it is prone to allow more paths to the maximum. The results of OT contrasts with those of CAPRESE, the other model that only builds trees. CAPRESE is building DAGs of restrictions that have too few restrictions and, therefore, allow for too many paths to the maximum. One notable difference between the two models is that with OT it is relatively simple to use a measure of 1-precision that weights by the probability of each path. The performance of OT, even if we use unweighted probabilities of paths, is much better than that of CAPRESE but improves even further when using weighted paths, again highlighting the usefulness of weighting paths to obtain more accurate predictions.

6. Coefficient of variation of JS

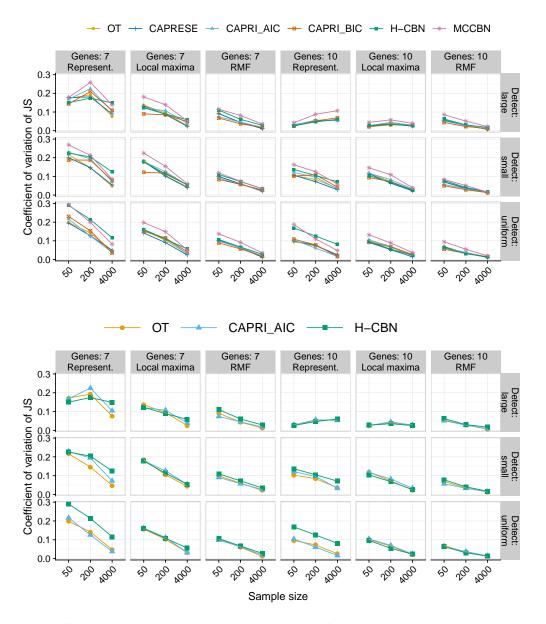


Figure G: Coefficient of variation (standard deviation/mean) of JS for each combination of model and type of fitness landscape. The bottom figure represents the same information as the top one but only for the three models shown in the paper. The coefficient of variation has been computed from the five runs for each landscapes on each combination of sample size and detection regime.

7. Number of paths inferred

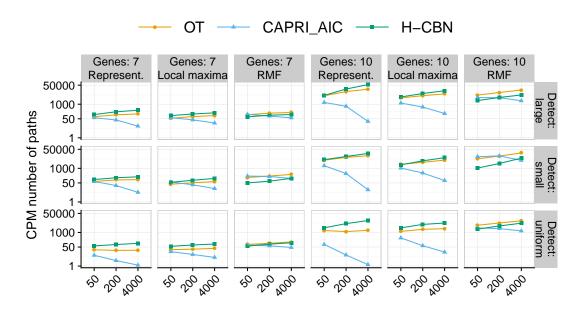


Figure H: Number of paths to the maximum according to the CPMs.

8. Slopes of regressions of 1-recall and 1-precision on LOD diversity, S_p

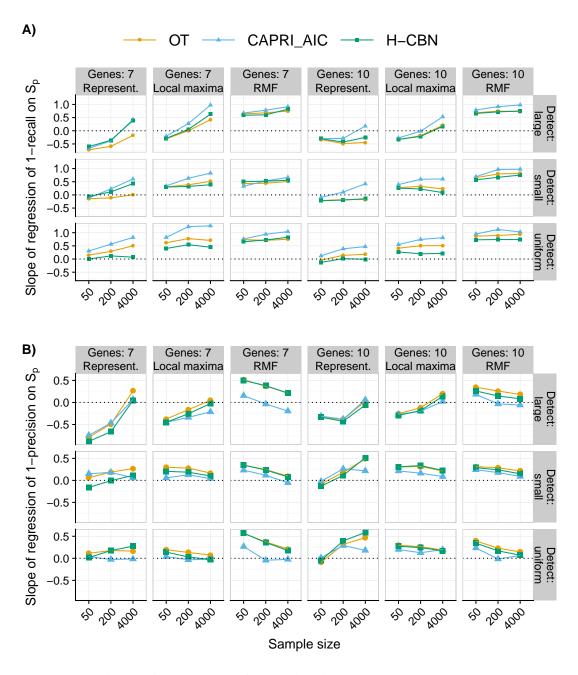


Figure I: Slopes of regressions of 1-recall and 1-precision on LOD diversity, S_p

9. Coefficient of variation of S_c

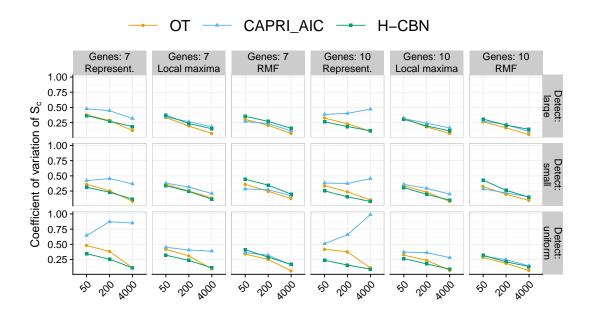


Figure J: Coefficient of variation (standard deviation/mean) of S_c for each combination of model and type of fitness landscape. The coefficient of variation has been computed from the five runs for each landscapes on each combination of sample size and detection regime. For OT and H-CBN, it is computed using the probability-weighted predicted paths (see text). Each point plotted is the average of 210 points.

10. Estimated S_c by H-CBN

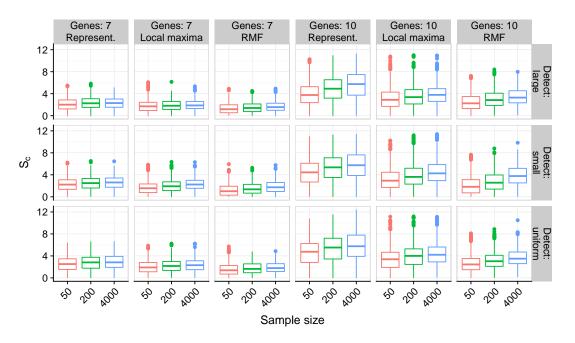


Figure K: Estimated S_c by H-CBN for all combinations of sample size by type of landscape by detection regime by number of genes. Each box plot shows 1050 points.

11. Analysis of deviance tables for fitted models

The tables below show the analysis of deviance tables for the generalized (beta regressions) linear mixed effects models. Models where fitted using the R package glmmTMB [1]. Analysis of deviance tables are from package car [2]. All analysis of deviance tables use Type II Wald chi-square tests.

Analysis have been run on the complete data set (section 11.1), and after splitting for the different combinations of CPM and fitness landscape type (section 11.2).

11.1. Models fitted to the complete data set

(Notice the strong evidence we see for three and four and even five way interactions.)

11.1.1. Two-way interactions

	Chisq	Df	Pr(>Chisq)
Num. Genes	223.34	1.00	< .0001
CPM	9459.99	2.00	< .0001
Landscape	322.37	2.00	< .0001
Detection	4768.56	2.00	< .0001
Sample Size	1599.17	2.00	< .0001
LOD diversity	139.98	1.00	< .0001
Num. Genes:CPM	22.98	2.00	< .0001
Num. Genes:Landscape	91.35	2.00	< .0001
Num. Genes: Detection	2318.60	2.00	< .0001
Num. Genes:Sample Size	381.80	2.00	< .0001
Num. Genes:LOD diversity	8.72	1.00	0.0032
CPM:Landscape	192.88	4.00	< .0001
CPM:Detection	678.41	4.00	< .0001
CPM:Sample Size	818.96	4.00	< .0001
CPM:LOD diversity	170.20	2.00	< .0001
Landscape:Detection	6534.14	4.00	< .0001
Landscape:Sample Size	3110.94	4.00	< .0001
Landscape:LOD diversity	78.21	2.00	< .0001
Detection:Sample Size	2420.56	4.00	< .0001
Detection:LOD diversity	3303.42	2.00	< .0001
Sample Size:LOD diversity	939.31	2.00	< .0001

Table A: Full statistical model (all CPMs), 2-way interactions

11.1.2. Three-way interactions

	Chisq	Df	Pr(>Chisq)
Num. Genes	197.19	1.00	< .0001
CPM	11331.58	2.00	< .0001
Landscape	411.00	2.00	< .0001
Detection	4217.33	2.00	< .0001
Sample Size	1536.56	2.00	< .0001
LOD diversity	146.46	1.00	< .0001
Num. Genes:CPM	52.74	2.00	< .0001
Num. Genes:Landscape	80.98	2.00	< .0001
Num. Genes:Detection	2394.91	2.00	< .0001
Num. Genes:Sample Size	354.72	2.00	< .0001
Num. Genes:LOD diversity	8.15	1.00	0.0043
CPM:Landscape	285.47	4.00	< .0001
CPM:Detection	707.50	4.00	< .0001
CPM:Sample Size	842.82	4.00	< .0001
CPM:LOD diversity	117.61	2.00	< .0001
Landscape:Detection	6924.74	4.00	< .0001
Landscape:Sample Size	3407.98	4.00	< .0001
Landscape:LOD diversity	77.13	2.00	< .0001
Detection:Sample Size	2507.80	4.00	< .0001
Detection:LOD diversity	4229.09	2.00	< .0001
Sample Size:LOD diversity	1120.46	2.00	< .0001
Num. Genes:CPM:Landscape	90.47	4.00	< .0001
Num. Genes:CPM:Detection	36.64	4.00	< .0001
Num. Genes:CPM:Sample Size	10.43	4.00	0.0338
Num. Genes:CPM:LOD diversity	41.35	2.00	< .0001
Num. Genes:Landscape:Detection	1302.06	4.00	< .0001
Num. Genes:Landscape:Sample Size	347.91	4.00	< .0001
Num. Genes:Landscape:LOD diversity	3.70	2.00	0.1572
Num. Genes:Detection:Sample Size	553.21	4.00	< .0001
Num. Genes:Detection:LOD diversity	3.91	2.00	0.1417
Num. Genes:Sample Size:LOD diversity	56.88	2.00	< .0001
CPM:Landscape:Detection	250.27	8.00	< .0001
CPM:Landscape:Sample Size	192.75	8.00	< .0001
CPM:Landscape:LOD diversity	605.91	4.00	< .0001
CPM:Detection:Sample Size	19.44	8.00	0.0127
CPM:Detection:LOD diversity	126.85	4.00	< .0001
CPM:Sample Size:LOD diversity	117.71	4.00	< .0001
Landscape:Detection:Sample Size	2084.94	8.00	< .0001
Landscape:Detection:LOD diversity	867.54	4.00	< .0001
Landscape:Sample Size:LOD diversity	1163.94	4.00	< .0001
Detection:Sample Size:LOD diversity	736.44	4.00	< .0001

Table B: Full statistical model (all CPMs), 3-way interactions

11.1.3. Four-way interactions

	Chisq	Df	Pr(>Chisq)	
Num. Genes	193.68	1.00	< .0001	
CPM	11619.48	2.00	< .0001	
Landscape	426.49	2.00	< .0001	
Detection	4059.78	2.00	< .0001	
Sample Size	1500.59	2.00	< .0001	
LOD diversity	150.27	1.00	< .0001	
Num. Genes:CPM	54.25	2.00	< .0001	
Num. Genes:Landscape	77.19	2.00	< .0001	
Num. Genes:Detection	2370.70	2.00	< .0001	
Num. Genes:Sample Size	357.14	2.00	< .0001	
Num. Genes:LOD diversity	8.47	1.00	0.0036	
CPM:Landscape	298.90	4.00	< .0001	
CPM:Detection	716.32	4.00	< .0001	
CPM:Sample Size	841.73	4.00	< .0001	
CPM:LOD diversity	119.30	2.00	< .0001	
Landscape: Detection	6697.76	4.00	< .0001	
Landscape:Sample Size	3459.44	4.00	< .0001	
Landscape: Jampie 512e Landscape: LOD diversity	77.85	2.00	< .0001	
Detection:Sample Size	2466.93	4.00	< .0001	
Detection: Sample Size Detection: LOD diversity	4132.54	2.00	< .0001	
Sample Size:LOD diversity	1103.02	2.00	< .0001	
1	103.02	4.00		
Num. Genes:CPM:Landscape Num. Genes:CPM:Detection	35.22	4.00	< .0001 < .0001	
		4.00	0.0174	
Num. Genes: CPM: Sample Size	11.99			
Num. Genes: CPM: LOD diversity	43.71	2.00	< .0001	
Num. Genes:Landscape:Detection	1262.35	4.00	< .0001	
Num. Genes:Landscape:Sample Size	350.64	4.00	< .0001	
Num. Genes:Landscape:LOD diversity	3.55	2.00	0.1699	
Num. Genes:Detection:Sample Size	532.95	4.00	< .0001	
Num. Genes:Detection:LOD diversity	2.93	2.00	0.231	
Num. Genes:Sample Size:LOD diversity	50.25	2.00	< .0001	
CPM:Landscape:Detection	229.42	8.00	< .0001	
CPM:Landscape:Sample Size	215.46	8.00	< .0001	
CPM:Landscape:LOD diversity	627.29	4.00	< .0001	
CPM:Detection:Sample Size	21.27	8.00	0.0065	
CPM:Detection:LOD diversity	131.95	4.00	< .0001	
CPM:Sample Size:LOD diversity	88.97	4.00	< .0001	
Landscape:Detection:Sample Size	2216.86	8.00	< .0001	
Landscape:Detection:LOD diversity	867.13	4.00	< .0001	
Landscape:Sample Size:LOD diversity	1175.97	4.00	< .0001	
Detection:Sample Size:LOD diversity	819.51	4.00	< .0001	
Num. Genes:CPM:Landscape:Detection	12.73	8.00	0.1214	
Num. Genes:CPM:Landscape:Sample Size	7.44	8.00	0.4898	
Num. Genes:CPM:Landscape:LOD diversity	14.84	4.00	0.0051	
Num. Genes:CPM:Detection:Sample Size	25.87	8.00	0.0011	
Num. Genes:CPM:Detection:LOD diversity	53.99	4.00	< .0001	
Num. Genes:CPM:Sample Size:LOD diversity	2.51	4.00	0.6425	
	321.87	8.00	< .0001	
Num. Genes:Landscape:Detection:Sample Size				
Num. Genes:Landscape:Detection:Sample Size Num. Genes:Landscape:Detection:LOD diversity Num. Genes:Landscape:Sample Size:LOD diversity	74.72 101.05	4.00	< .0001 < .0001	

Num. Genes:Detection:Sample Size:LOD diversity		4.00	< .0001
CPM:Landscape:Detection:Sample Size	24.77	16.00	0.0739
CPM:Landscape:Detection:LOD diversity	19.36	8.00	0.013
CPM:Landscape:Sample Size:LOD diversity	23.93	8.00	0.0024
CPM:Detection:Sample Size:LOD diversity	10.02	8.00	0.2634
Landscape:Detection:Sample Size:LOD diversity	237.96	8.00	< .0001

Table C: Full statistical model (all CPMs), 4-way interactions

11.2. Models fitted to each combination of fitness landscape by CPM

Remember each model uses 3780 observations: 35 replicates, 3 mutation rates, 2 variance settings, 2 number of genes, 3 detection regimes, 3 sample sizes. These correspond to 420 different fitness landscapes: 35 by 3 by 2 by 2. Each observation is itself the average of five different splits of the set of 20000 simulations.

11.2.1. Main effects

	Chisq	Df	Pr(>Chisq)
Num. Genes	325.32	1.00	< .0001
Sample Size	797.56	2.00	< .0001
Detection	1101.14	2.00	< .0001
LOD diversity	2.41	1.00	0.1206

Table D: Represent..OT

	Chisq	Df	Pr(>Chisq)
Num. Genes	84.38	1.00	< .0001
Sample Size	179.66	2.00	< .0001
Detection	470.52	2.00	< .0001
LOD diversity	63.71	1.00	< .0001

Table E: Local Peaks.OT

	Chisq	Df	Pr(>Chisq)
Num. Genes	9.65	1.00	0.0019
Sample Size	199.97	2.00	< .0001
Detection	206.52	2.00	< .0001
LOD diversity	162.60	1.00	< .0001

Table F: RMF.OT

	Chisq	Df	Pr(>Chisq)
Num. Genes	206.70	1.00	< .0001
Sample Size	62.82	2.00	< .0001
Detection	692.92	2.00	< .0001
LOD diversity	79.61	1.00	< .0001

Table G: Represent..CAPRI_AIC

	Chisq	Df	Pr(>Chisq)
Num. Genes	110.80	1.00	< .0001
Sample Size	48.42	2.00	< .0001
Detection	383.72	2.00	< .0001
LOD diversity	81.86	1.00	< .0001

Table H: Local Peaks.CAPRI_AIC

	Chisq	Df	Pr(>Chisq)
Num. Genes	35.67	1.00	< .0001
Sample Size	144.12	2.00	< .0001
Detection	48.52	2.00	< .0001
LOD diversity	70.86	1.00	< .0001

Table I: RMF.CAPRI_AIC

	Chisq	Df	Pr(>Chisq)
Num. Genes	157.75	1.00	< .0001
Sample Size	1331.50	2.00	< .0001
Detection	2493.82	2.00	< .0001
LOD diversity	0.35	1.00	0.5538

Table J: Represent..H-CBN

	Chisq	Df	Pr(>Chisq)
Num. Genes	71.83	1.00	< .0001
Sample Size	315.26	2.00	< .0001
Detection	823.90	2.00	< .0001
LOD diversity	64.31	1.00	< .0001

Table K: Local Peaks.H-CBN

	Chisq	Df	Pr(>Chisq)
Num. Genes	3.82	1.00	0.0507
Sample Size	100.38	2.00	< .0001
Detection	320.43	2.00	< .0001
LOD diversity	151.14	1.00	< .0001

Table L: RMF.H-CBN

11.2.2. Two-way interactions

	Chisq	Df	Pr(>Chisq)
Num. Genes	229.87	1.00	< .0001
Sample Size	1084.79	2.00	< .0001
Detection	1145.03	2.00	< .0001
LOD diversity	0.02	1.00	0.8958
Num. Genes:Sample Size	168.67	2.00	< .0001
Num. Genes:Detection	705.00	2.00	< .0001
Num. Genes:LOD diversity	4.46	1.00	0.0347
Sample Size:Detection	726.35	4.00	< .0001
Sample Size:LOD diversity	308.31	2.00	< .0001
Detection:LOD diversity	1019.12	2.00	< .0001

Table M: Represent..OT

	Chisq	Df	Pr(>Chisq)
Num. Genes	66.47	1.00	< .0001
Sample Size	163.41	2.00	< .0001
Detection	449.46	2.00	< .0001
LOD diversity	74.54	1.00	< .0001
Num. Genes:Sample Size	34.28	2.00	< .0001
Num. Genes:Detection	443.26	2.00	< .0001
Num. Genes:LOD diversity	0.02	1.00	0.895
Sample Size:Detection	307.15	4.00	< .0001
Sample Size:LOD diversity	21.38	2.00	< .0001
Detection:LOD diversity	403.27	2.00	< .0001

Table N: Local Peaks.OT

	Chisq	Df	Pr(>Chisq)
Num. Genes	9.65	1.00	0.0019
Sample Size	213.84	2.00	< .0001
Detection	215.42	2.00	< .0001
LOD diversity	155.94	1.00	< .0001
Num. Genes:Sample Size	31.75	2.00	< .0001
Num. Genes: Detection	5.39	2.00	0.0676
Num. Genes:LOD diversity	0.05	1.00	0.8191
Sample Size:Detection	7.68	4.00	0.1041
Sample Size:LOD diversity	190.09	2.00	< .0001
Detection:LOD diversity	9.29	2.00	0.0096

Table O: RMF.OT

	Chisq	Df	Pr(>Chisq)
Num. Genes	144.41	1.00	< .0001
Sample Size	70.06	2.00	< .0001
Detection	720.04	2.00	< .0001
LOD diversity	89.03	1.00	< .0001
Num. Genes:Sample Size	154.58	2.00	< .0001
Num. Genes:Detection	574.17	2.00	< .0001
Num. Genes:LOD diversity	5.16	1.00	0.0231
Sample Size:Detection	691.60	4.00	< .0001
Sample Size:LOD diversity	734.28	2.00	< .0001
Detection:LOD diversity	958.49	2.00	< .0001

Table P: Represent..CAPRI_AIC

	Chisq	Df	Pr(>Chisq)
Num. Genes	90.86	1.00	< .0001
Sample Size	36.29	2.00	< .0001
Detection	351.07	2.00	< .0001
LOD diversity	89.21	1.00	< .0001
Num. Genes:Sample Size	8.98	2.00	0.0112
Num. Genes: Detection	309.60	2.00	< .0001
Num. Genes:LOD diversity	0.01	1.00	0.91
Sample Size:Detection	262.51	4.00	< .0001
Sample Size:LOD diversity	80.39	2.00	< .0001
Detection:LOD diversity	429.26	2.00	< .0001

Table Q: Local Peaks.CAPRI_AIC

	Chisq	Df	Pr(>Chisq)
Num. Genes	33.69	1.00	< .0001
Sample Size	164.54	2.00	< .0001
Detection	50.28	2.00	< .0001
LOD diversity	65.36	1.00	< .0001
Num. Genes:Sample Size	34.37	2.00	< .0001
Num. Genes: Detection	2.23	2.00	0.3273
Num. Genes:LOD diversity	1.24	1.00	0.2663
Sample Size:Detection	15.51	4.00	0.0037
Sample Size:LOD diversity	154.86	2.00	< .0001
Detection:LOD diversity	40.59	2.00	< .0001

Table R: RMF.CAPRI_AIC

	Chisq	Df	Pr(>Chisq)
Num. Genes	111.35	1.00	< .0001
Sample Size	1727.19	2.00	< .0001
Detection	2829.04	2.00	< .0001
LOD diversity	2.47	1.00	0.116
Num. Genes:Sample Size	252.55	2.00	< .0001
Num. Genes: Detection	583.85	2.00	< .0001
Num. Genes:LOD diversity	11.81	1.00	6e-04
Sample Size:Detection	583.96	4.00	< .0001
Sample Size:LOD diversity	367.88	2.00	< .0001
Detection:LOD diversity	634.67	2.00	< .0001

Table S: Represent..H-CBN

	Chisq	Df	Pr(>Chisq)
Num. Genes	56.06	1.00	< .0001
Sample Size	313.03	2.00	< .0001
Detection	836.24	2.00	< .0001
LOD diversity	76.98	1.00	< .0001
Num. Genes:Sample Size	35.78	2.00	< .0001
Num. Genes: Detection	413.32	2.00	< .0001
Num. Genes:LOD diversity	0.30	1.00	0.5868
Sample Size:Detection	296.90	4.00	< .0001
Sample Size:LOD diversity	19.84	2.00	< .0001
Detection:LOD diversity	292.03	2.00	< .0001

Table T: Local Peaks.H-CBN

	Chisq	Df	Pr(>Chisq)
Num. Genes	3.82	1.00	0.0506
Sample Size	107.26	2.00	< .0001
Detection	331.99	2.00	< .0001
LOD diversity	144.95	1.00	< .0001
Num. Genes:Sample Size	21.97	2.00	< .0001
Num. Genes: Detection	4.24	2.00	0.12
Num. Genes:LOD diversity	1.16	1.00	0.2823
Sample Size:Detection	4.15	4.00	0.3856
Sample Size:LOD diversity	181.70	2.00	< .0001
Detection:LOD diversity	1.36	2.00	0.5071

Table U: RMF.H-CBN

11.2.3. Four-way interactions

	Chisq	Df	Pr(>Chisq)
Num. Genes	236.38	1.00	< .0001
Sample Size	1105.42	2.00	< .0001
Detection	1046.08	2.00	< .0001
LOD diversity	0.84	1.00	0.3593
Num. Genes:Sample Size	193.98	2.00	< .0001
Num. Genes:Detection	778.62	2.00	< .0001
Num. Genes:LOD diversity	6.38	1.00	0.0116
Sample Size:Detection	722.33	4.00	< .0001
Sample Size:LOD diversity	322.04	2.00	< .0001
Detection:LOD diversity	1027.32	2.00	< .0001
Num. Genes:Sample Size:Detection	96.81	4.00	< .0001
Num. Genes:Sample Size:LOD diversity	28.18	2.00	< .0001
Num. Genes:Detection:LOD diversity	26.39	2.00	< .0001
Sample Size:Detection:LOD diversity	116.00	4.00	< .0001
Num. Genes:Sample Size:Detection:LOD diversity	76.54	4.00	< .0001

Table V: Represent..OT

	Chisq	Df	Pr(>Chisq)
Num. Genes	57.63	1.00	< .0001
Sample Size	166.26	2.00	< .0001
Detection	380.88	2.00	< .0001
LOD diversity	72.98	1.00	< .0001
Num. Genes:Sample Size	35.33	2.00	< .0001
Num. Genes:Detection	409.75	2.00	< .0001
Num. Genes:LOD diversity	0.04	1.00	0.8394
Sample Size:Detection	326.02	4.00	< .0001
Sample Size:LOD diversity	24.07	2.00	< .0001
Detection:LOD diversity	412.53	2.00	< .0001
Num. Genes:Sample Size:Detection	198.32	4.00	< .0001
Num. Genes:Sample Size:LOD diversity	1.85	2.00	0.3967
Num. Genes:Detection:LOD diversity	5.28	2.00	0.0715
Sample Size:Detection:LOD diversity	219.97	4.00	< .0001
Num. Genes:Sample Size:Detection:LOD diversity	8.77	4.00	0.0672

Table W: Local Peaks.OT

Chisq	Df	Pr(>Chisq)
9.69	1.00	0.0019
215.06	2.00	< .0001
215.20	2.00	< .0001
155.03	1.00	< .0001
32.40	2.00	< .0001
5.40	2.00	0.0673
0.05	1.00	0.8191
7.55	4.00	0.1096
191.25	2.00	< .0001
9.34	2.00	0.0094
0.26	4.00	0.9925
1.73	2.00	0.4219
32.05	2.00	< .0001
1.65	4.00	0.799
1.63	4.00	0.8035
	9.69 215.06 215.20 155.03 32.40 5.40 0.05 7.55 191.25 9.34 0.26 1.73 32.05 1.65	9.69 1.00 215.06 2.00 215.20 2.00 155.03 1.00 32.40 2.00 5.40 2.00 0.05 1.00 7.55 4.00 191.25 2.00 9.34 2.00 0.26 4.00 1.73 2.00 32.05 2.00 1.65 4.00

Table X: RMF.OT

	Chisq	Df	Pr(>Chisq)
Num. Genes	163.81	1.00	< .0001
Sample Size	53.20	2.00	< .0001
Detection	661.33	2.00	< .0001
LOD diversity	100.78	1.00	< .0001
Num. Genes:Sample Size	170.47	2.00	< .0001
Num. Genes:Detection	654.22	2.00	< .0001
Num. Genes:LOD diversity	5.37	1.00	0.0205
Sample Size:Detection	691.21	4.00	< .0001
Sample Size:LOD diversity	750.44	2.00	< .0001
Detection:LOD diversity	972.35	2.00	< .0001
Num. Genes:Sample Size:Detection	48.16	4.00	< .0001
Num. Genes:Sample Size:LOD diversity	24.57	2.00	< .0001
Num. Genes:Detection:LOD diversity	42.41	2.00	< .0001
Sample Size:Detection:LOD diversity	116.19	4.00	< .0001
Num. Genes:Sample Size:Detection:LOD diversity	53.68	4.00	< .0001

Table Y: Represent..CAPRI_AIC

Chisq	Df	Pr(>Chisq)
87.57	1.00	< .0001
35.06	2.00	< .0001
329.14	2.00	< .0001
88.97	1.00	< .0001
9.80	2.00	0.0074
309.31	2.00	< .0001
0.03	1.00	0.8725
272.21	4.00	< .0001
87.34	2.00	< .0001
437.56	2.00	< .0001
63.36	4.00	< .0001
1.44	2.00	0.4879
4.16	2.00	0.1248
73.43	4.00	< .0001
2.63	4.00	0.6213
	87.57 35.06 329.14 88.97 9.80 309.31 0.03 272.21 87.34 437.56 63.36 1.44 4.16 73.43	87.57 1.00 35.06 2.00 329.14 2.00 88.97 1.00 9.80 2.00 309.31 2.00 0.03 1.00 272.21 4.00 87.34 2.00 437.56 2.00 63.36 4.00 1.44 2.00 4.16 2.00 73.43 4.00

Table Z: Local Peaks.CAPRI_AIC

-	Chisq	Df	Pr(>Chisq)
Num. Genes	33.91	1.00	< .0001
Sample Size	165.45	2.00	< .0001
Detection	50.85	2.00	< .0001
LOD diversity	65.50	1.00	< .0001
Num. Genes:Sample Size	34.42	2.00	< .0001
Num. Genes:Detection	2.30	2.00	0.3163
Num. Genes:LOD diversity	1.25	1.00	0.2641
Sample Size:Detection	15.66	4.00	0.0035
Sample Size:LOD diversity	155.70	2.00	< .0001
Detection:LOD diversity	41.21	2.00	< .0001
Num. Genes:Sample Size:Detection	1.76	4.00	0.7805
Num. Genes:Sample Size:LOD diversity	9.35	2.00	0.0093
Num. Genes:Detection:LOD diversity	3.06	2.00	0.2169
Sample Size:Detection:LOD diversity	2.52	4.00	0.6414
Num. Genes:Sample Size:Detection:LOD diversity	0.83	4.00	0.9342

Table AA: RMF.CAPRI_AIC

	Chisq	Df	Pr(>Chisq)
Num. Genes	109.99	1.00	< .0001
Sample Size	1798.63	2.00	< .0001
Detection	2781.42	2.00	< .0001
LOD diversity	4.29	1.00	0.0384
Num. Genes:Sample Size	292.35	2.00	< .0001
Num. Genes:Detection	633.77	2.00	< .0001
Num. Genes:LOD diversity	13.30	1.00	3e-04
Sample Size:Detection	577.47	4.00	< .0001
Sample Size:LOD diversity	383.39	2.00	< .0001
Detection:LOD diversity	647.75	2.00	< .0001
Num. Genes:Sample Size:Detection	91.32	4.00	< .0001
Num. Genes:Sample Size:LOD diversity	48.42	2.00	< .0001
Num. Genes:Detection:LOD diversity	16.31	2.00	3e-04
Sample Size:Detection:LOD diversity	97.29	4.00	< .0001
Num. Genes:Sample Size:Detection:LOD diversity	98.90	4.00	< .0001

Table AB: Represent..H-CBN

	Chisq	Df	Pr(>Chisq)
Num. Genes	46.47	1.00	< .0001
Sample Size	326.11	2.00	< .0001
Detection	762.69	2.00	< .0001
LOD diversity	74.96	1.00	< .0001
Num. Genes:Sample Size	35.59	2.00	< .0001
Num. Genes:Detection	377.15	2.00	< .0001
Num. Genes:LOD diversity	0.43	1.00	0.5135
Sample Size:Detection	315.03	4.00	< .0001
Sample Size:LOD diversity	21.87	2.00	< .0001
Detection:LOD diversity	296.12	2.00	< .0001
Num. Genes:Sample Size:Detection	213.53	4.00	< .0001
Num. Genes:Sample Size:LOD diversity	2.25	2.00	0.3248
Num. Genes:Detection:LOD diversity	20.79	2.00	< .0001
Sample Size:Detection:LOD diversity	233.91	4.00	< .0001
Num. Genes:Sample Size:Detection:LOD diversity	4.47	4.00	0.3461

Table AC: Local Peaks.H-CBN

	Chisq	Df	Pr(>Chisq)
Num. Genes	3.85	1.00	0.0499
Sample Size	107.17	2.00	< .0001
Detection	332.57	2.00	< .0001
LOD diversity	143.99	1.00	< .0001
Num. Genes:Sample Size	22.27	2.00	< .0001
Num. Genes:Detection	4.25	2.00	0.1195
Num. Genes:LOD diversity	1.16	1.00	0.2811
Sample Size:Detection	4.19	4.00	0.3803
Sample Size:LOD diversity	182.19	2.00	< .0001
Detection:LOD diversity	1.29	2.00	0.5253
Num. Genes:Sample Size:Detection	0.42	4.00	0.9807
Num. Genes:Sample Size:LOD diversity	0.44	2.00	0.8014
Num. Genes:Detection:LOD diversity	24.00	2.00	< .0001
Sample Size:Detection:LOD diversity	8.52	4.00	0.0744
Num. Genes:Sample Size:Detection:LOD diversity	1.49	4.00	0.8284

Table AD: RMF.H-CBN

12. Number of local maxima, mutations of local maxima, reciprocal sign epistasis and performance

(When interpreting these figures, you should focus on sign of slope and comparisons between models within panel. Comparisons between panels in terms of magnitudes of slopes are complicated because the range of the independent variable can vary a lot between panels —e.g., the range of mean number of mutations in local fitness maxima in the local maxima vs. RMF fitness landscapes.)

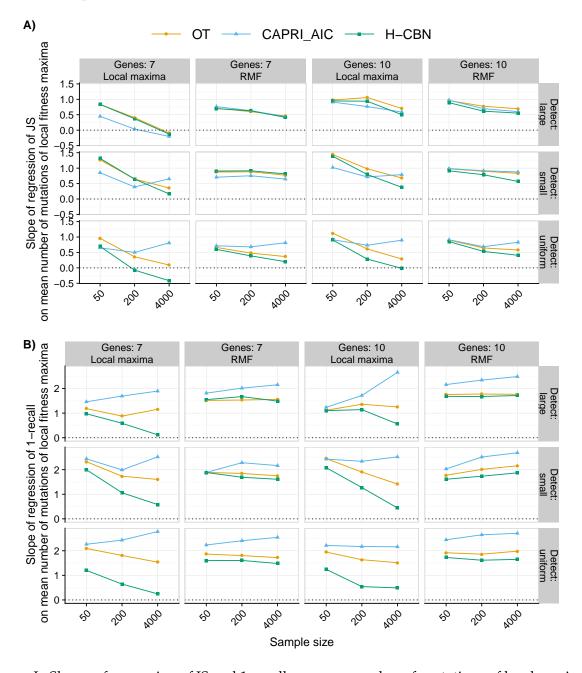


Figure L: Slopes of regression of JS and 1-recall on mean number of mutations of local maxima.

13. LOD and CPM diversity: ratios and slopes

The following R code will, via a simple example, show that it is easy to have data where the average of the ratios is larger than one whereas the slope of the regression is negative:

```
a <- 10
n <- 100
sd <- 0.5
x <- runif(n, min = 1, max = 5)
y <- -1 * x + a + rnorm(n, mean = 0, sd = sd)
plot(y ~ x)
summary(lm(y ~ x))
mean(y/x)</pre>
```

14. Example of good and moderate performance

To give a simple, intuitive view of the kind of the kinds of results obtained, we provide below the output for the frequency of LODs and the estimated probabilities of paths to the maximum from H-CBN with sample size 200 and uniform sampling for two replicate runs from fitness landscape "uW1bRozHBgg4IHvp", a relatively simple case with only six different paths to the maximum.

Frequencies of lines of descent (LODs)

```
LOD Freq

1 WT -> A -> A, B -> A, B, C -> A, B, C, D -> A, B, C, D, E -> A, B, C, D, E, F -> A, B, C, D, E, F, G

2 WT -> A -> A, B -> A, B, C -> A, B, C, D -> A, B, C, D, F -> A, B, C, D, E, F -> A, B, C, D, E, F, G

3 WT -> A -> A, B -> A, B, C -> A, B, C, F -> A, B, C, D, F -> A, B, C, D, E, F -> A, B, C, D, E, F, G

4 WT -> B -> A, B -> A, B, C -> A, B, C, D -> A, B, C, D, E -> A, B, C, D, E, F -> A, B, C, D, E, F, G

5 WT -> B -> A, B -> A, B, C -> A, B, C, D -> A, B, C, D, F -> A, B, C, D, E, F -> A, B, C, D, E, F, G

6 WT -> B -> A, B -> A, B, C -> A, B, C, F -> A, B, C, D, F -> A, B, C, D, E, F, G

0.39750
```

A model with a JS divergence of 0.16:

```
path

1 WT -> A -> A, B, C -> A, B, C, F -> A, B, C, D, F -> A, B, C, D, E, F -> A, B, C, D, E, F, G

2 WT -> B -> A, B, C -> A, B, C, F -> A, B, C, D, F -> A, B, C, D, E, F, G

0.5453
```

Notice how this model only predicts two paths to the maximum, but those are the paths that correspond to the LODs with larger frequencies.

A model with a JS divergence of 0.35:

```
path
                                                                                                         Prob
1 WT -> A -> A, B -> A, B, C -> A, B, C, F -> A, B, C, D, F -> A, B, C, D, E, F -> A, B, C, D, E, F, G
                                                                                                         0.6305357
2 WT -> B -> A, B -> A, B, C -> A, B, C, F -> A, B, C, D, F -> A, B, C, D, E, F -> A, B, C, D, E, F, G
                                                                                                         0.1372609
3 WT -> B -> B, C -> A, B, C -> A, B, C, F -> A, B, C, F -> A, B, C, D, E, F -> A, B, C, D, E, F, G
                                                                                                         0.1739520
4 WT -> B -> B, C -> B, C, F -> A, B, C, F -> A, B, C, D, F -> A, B, C, D, E, F -> A, B, C, D, E, F, G
                                                                                                         0.0153354
5 WT -> B -> B, C -> B, C, F -> B, C, D, F -> A, B, C, D, F -> A, B, C, D, E, F -> A, B, C, D, E, F, G
                                                                                                         0.0356487
6 WT -> B -> B, C -> B, C, F -> B, C, D, F -> B, C, D, E, F -> A, B, C, D, E, F -> A, B, C, D, E, F, G
                                                                                                         0.0067255
7 WT -> B -> B, C -> B, C, F -> B, C, D, F -> B, C, D, E, F -> B, C, D, E, F, G -> A, B, C, D, E, F, G
                                                                                                         0.0005419
```

This model predicts seven paths to the maximum and in fact only the first two correspond to possible paths to the maximum.

15. References

- 1. Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. glmmTMB Balances Speed and Flexibility Among Packages for Zero-Inflated Generalized Linear Mixed Modeling. The R Journal. 2017;9(2):378–400.
- 2. Fox J, Weisberg S. An R Companion to Applied Regression, 2nd Ed. Thousand Oaks, CA: Sage; 2011.