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Supplementary Material

Section S1. Social learning success probability

In our model individuals successfully acquire a trait socially with probability

Ps(t) = on} (3)

where m; = Z” , i.e. the number of neighbours with trait ¢ divided by the total number of traits
exhibited in i’s heighbourhood. We use a quadratic function in eq. 3, because we assume that an
individual needs to observe a trait in its neighbourhood at least twice to learn it successfully. Figure
S3A shows how the probability for successful social learning Pgs(t) changes as m; moves away from
1. In fig. S3B we calculated Pg(t) for different number of neighbours. It shows that acquiring a
trait socially is most likely when all neighbours exhibit trait ¢, but quickly decreases as the trait

becomes more rare in i’s neighbourhood.

Section S2. An alternative social learning model

In the main text, we describe a model where learning is abstracted into learning episodes. An
individual picks a trait relative to the frequency in its (social) environment and the probability
that (social) learning is effective. Subsequently, the individual attempts to acquire proficiency for
this trait through (social) learning. Here, we describe an alternative version of our model where
these two steps may happen at different points in time.

Model Similar to the model described in the main text, during social learning an individual ¢
observes a trait ¢t with probability P, = \/om; ;. If successful, the trait is added to the individual’s
‘memory.” If the trait already exists in the memory, we assume that the individual will learn that
trait (i.e., learning a trait still requires two hits, but the first hit can be 'saved’ in the memory between
learning episodes). We assume that if an individuals’ memory is full, the most recently observed
trait drives out the oldest observed trait. This introduces a new parameter to the model, memory
size. We considered memory to either be infinite (all encounters will be remembered), or finite
(only the last m learning episodes are memorised). We ran simulations for m € {1, 2,10, T}, where
T = 100 is the total number of traits in the world, corresponding to unlimited memory.

Note, in the model reported in the main text an individual i’s proficiency for trait ¢ increases
with probability p, = o7}, where o is the overall success probability of social learning. Here, suc-
cessful learning would be proportional to o2 (as increasing trait proficiency happens with proba-
bility P?). We avoid this by using /o instead. Furthermore, since we now allow only a single ob-
servation per learning bout, the scale of the learning period doubles compared to our base model.



Results Figure S1 shows results for these experiments in comparison to the results we report in
the main text (labelled ‘quadratic”). If there is no restriction to the memory (labelled ‘memory’)
individuals have generally much larger repertoire sizes (fig. Slc) than those reported in the main
text. As predicted, we find that specialists have lower trait proficiency (fig. Slc). This is be-
cause when memory is unrestricted, individuals have a higher chance to acquire traits from their
neighbours even if those traits are relatively rare. Therefore, specialists spend more learning turns
improving the proficiency of a larger set of traits, which, in turn, keeps trait proficiency low.

An interesting result from simulations without memory restrictions is that generalists have
much shorter path lengths. In the main text, we state that generalists avoid random connections
(pr) to circumvent trait convergence in their neighbourhood, which would lead to a smaller trait
diversity and smaller repertoire sizes. Here, however, populations retain high trait diversity and
so individuals increase their repertoire sizes by forming more connections. Being close to others
now increases trait diversity without leading to trait convergence. This leads to relatively short
path length and high degree and with a wide range of random connections in generalists (Sla,b).

Finally, as we decrease m our results become more similar to the model reported in the main
text. Smaller m lead to higher trait proficiency in specialists, but also to smaller trait repertoires
(Slc). The smaller repertoires also reduce the overall trait diversity in the population (S1d). Fi-
nally, where m = 1 we yield qualitatively similar results to those reported in the main text (fig.
52). If memory has only one slot an individual only acquires a trait if it successfully engages with
it in two consecutive learning episodes, which is the same as raising the probability to the power
of two.

Conclusions These results show that our results and the mechanism behind them are robust to
reasonable alternative assumptions about social learning. In particular, the tradeoff between trait
diversity and proficiency is there regardless of the learning model, or memory size. Larger memory
sizes allow individuals to learn more traits counter-intuitively reduce proficiency, and in the limit,
remove any difference between specialist and generalist populations. Aslong as memory is limited,
however, the tradeoffs and mechanisms we identified in our original model hold qualitatively.

Section S3. Network metrics for fixed values of p, and pr

We systematically vary the values of p,, and p, and observe the resulting network measures, i.e.
degree, average path length, and local clustering. Degree centrality and local clustering are highest
for large p,, and p,, where all individuals are well-connected (Fig. S3C,D). However, clustering
is also high where well-connected clusters are detached from each other (high p, and low p,).
Average path length is longest for small p,. However, for very small p, well-connected clusters
become detached, which leads to a sudden drop in path length (Fig. S3E). For larger values of p,
path length decreases again due to long distance links.
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Fig. S1. The effect of increasing memory on trait repertoire and highest skill level. Results
from simulations where repeated successful engagement with a trait throughout different learn-
ing episodes is stored in an individual’s memory. Data shown are for memory size m € {2,10,7'}
(labelled, 'memory2’, ‘memory10’, and ‘memory’ respectively). For comparison, we also include
the results from the main text (labelled ‘quadratic’). Results for simulations with selection for pro-
ficiency (‘specialists’) and repertoire size ('generalists’) are shown in darker and lighter shading.
Parameters were the same as reported in the main text for Fig. 3.
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Fig. S2. If memory size is limited, then the two different social learning algorithms are qualitatively
the same. Results shown as in fig. S1 but for memory size m = 1. For comparison, we also include
the results from the main text (labelled ‘quadratic’).
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Fig. S3. The effect of complex contagion on social learning dynamics, and of linking parameters on
network characteristics. (A) Comparing the probability for successful social learning in the linear
case (Ps(t) = om;) and the parabolic case (Ps(t) = or?), which we use in our model. (B) How
does the probability to learn a specific trait socially (Ps(t) on y-axis) change as number of
neighbours (x-axis) and number of individuals with this trait (n;) changes (all neighbours
with repertoire size 6). Network metrics for fixed p,, and p,. C, Degree centrality is highest for
high p,, and p,. D, Clustering is highest for high p,, and p, (globally clustered network) but also
for high p,, and very low p, (small, isolated local clusters). E, Path length is longest for low
pr, and low p,. Data shown here are from the same simulations as results shown in Fig. 2 of the
main text.

Section S4. Coupling pr to p, to limit degree centrality

In the main text we coupled p, with p,, to achieve specific average degree centrality (k € {2,6,10}).
To do this, we use the following equation to calculate the value for p, given p,, that a new individual
inherits from its parent, degree k, and graph size N

E(N —1—po(N —2))— N +1
(N—2)(N—1-k)

Dr =

This equation has been taken directly from ref (64). Note that for certain combinations of popu-
lation size N, degree k, and p,, becomes negative. For example, for k = 4 and N = 100 for values



pn, > 0.778 p, becomes negative. We can calculate for which values of p,, (given k and N) p, <0

N+l N-1
Pn =N "2 T k(N —2)

which simplifies to
E(N+1)—(N—-1)
Pn =
k(N —2)

We set p,, = 0 whenever p, < 0 in our simulations.

In fig. S4 and S5 we compare evolved networks for three different average degrees (k € {2,6,10})
and for the generalist and specialist selection regimes. We find the strongest differences for k£ = 6,
where under specialist selection almost all individuals possess the most common trait (fig. S4E),
whereas under generalist selection more than three traits are widely distributed throughout the
population(fig. S4B). Also, although the average degree is the same we find that under specialist
selection almost all individuals achieve trait proficiencies above 2 (fig. S5E), whereas under gen-
eralist selection fewer individuals reach this level (fig. S5B). Results are much more similar for
both selection regimes for low (k = 2) and high (k = 10) degree.
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Fig. S4. Distribution of common traits depends on average connectivity. As average connec-
tivity increases from k = 2 (A,D), to k = 6 (B,E), and k = 10 (C/F) the distribution of the most
common traits changes both for populations selected for generalist knowledge (A-C), and special-
ist knowledge (D-F). Individuals are coloured based on whether they possess the most common
(green), second most common (orange), or third most common (red) trait, or neither of the three
most common traits (blue) in that order. The largest difference between selection regimes are
at intermediate connectivity (B,E), where almost all specialists posses the most common traits,
whereas generalists form clusters of different knowledge sets. Note, some individuals have more
than k£ connections (due to giving birth), or less than k connections (death of a neighbour).
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Fig. S5. Trait proficiency depends on the level of trait convergence and connectivity. Shown
are the same networks as in fig. S4, however, nodes are green if at least one trait proficiency in
the individual’s repertoire is larger than two, otherwise they are blue. Similar to fig. S4 we find
the largest differences for intermediate connectivity (B,E) where almost all specialists have a pro-
ficiency higher than two, whereas almost all generalists have a lower proficiency.

Section S5. Time series for simulations with evolving p, and pr
In fig. S6 we combine the trajectories of the linking probabilities p,, and p, for all three selection

regimes (neutral, specialist, generalist). Here, we can see that under specialist selection p,, but also
P, increases faster than when selection is neutral.
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Fig. S6. Trajectories for linking probabilities pn and pr averaged over all simulation runs for all
three selection regimes (neutral, generalist, and specialist). A, p,, increases strongest and fasted
under specialist selection. B, p, drops for generalist selection. Data shown here are from the same
simulations as data shown in Fig. 2 in the main text.

Section S6. Low mutation rate

Results in the main text are from simulations with mutation rate 4 = 1. Here, we show that at a
lower mutation rate (1 = 0.01) our results remain qualitatively unchanged (fig. S7).
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Fig. S7. Results displayed as in Fig. 2 of the main text but with mutation rate p = 0.01.
Overall, results are comparable. (A—-C) However, we find that some specialist populations have
formed complete graphs (degree 100, a). Also, it is apparent that generalist networks have shorter
average path lengths then in Fig. 2. This is because with the lower mutation rate p, can be much
closer to 0 and so generalists are more likely to form isolated clustered (where path length are
short). Populations under neutral selection are between both selection regimes. (D-F) For better
visualisation we plotted here only results for neutral selection from A-B. Colours are chosen to
indicate high (> 5), low (< 2), and intermediate proficiency (D), and how proficiency relates to
the linking probabilities (E).

Section S7. Connection costs

In the main text, we assume that forming and maintaining connections comes at no extra cost
to the individual, other than diluting the signal that might come from its neighbours. Here, we
subtract a fixed cost per connection from an individual’s payoff and observe how this is changing
connectedness. We find that connection costs mainly affect specialists as they usually form dense
networks. By adding connection costs specialists form fever connections. Thus, more sparsely
connected networks with longer average path length emerge (fig. S8A), which reduces average



trait proficiency but increases repertoire size (fig. S8B).

For comparison, we include figures in the same style as Fig. 2 and 5 but with connection costs.
The results remain qualitatively similar. However, we find that p,, and p, are not drifting as much
under specialist selection as we have seen without connection costs (fig. S9A-C). Also, when
switching from specialist to generalist selection there are fewer populations that do not return to
a more sparsely connected state than what we observe without connection costs (fig. S9D-G). In
conclusion, adding connection costs avoids that the population is drifting towards a fully connected
graph, which allows the population to increase trait diversity more easily once selection pressure
changes.
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Fig. S8. Adding a cost per connection reduces average degree in specialists, whereas generalists
are less affected. (A) Shown are average degree and path length for simulations with
connection costs and for generalist (left) or specialist (right) selection. Generalists are less affected
by connection costs, as they generally form fewer connections than specialists. High connection
costs makes networks more similar to those under generalist selection. (B) Increasing connection
costs makes populations more similar to those under generalist selection (left column), even if they
are under specialist selection (right column).
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Fig. S9. Added connection costs. (A-C) Data are presented as in Fig. 3 in main text but with
fitness cost 0.01 per connection. The results are qualitatively similar, however, we find less drifting
of linking parameters and overall lower average degree for specialists. (D-G) Data are presented
as in Fig. 5 in main text but with fitness cost 0.01 per connection. The results are qualitatively
similar, however, we find that fewer simulations fail to switch from specialist to generalist selection
(red lines).

Section S8. Varying population size and trait number

In the main text, we presented data for simulations with N = 100 individuals and 7" = 100 traits.
However, we also ran simulations for different population sizes (N € {10!,10%%,102,10*,103})



and different number of traits (T" € {50, 100, 150, 200, 250}). All other parameters are identical
to those used for simulation in Fig. 3. We find that social inheritance (p,) and random linkage
(pr) is consistently high under specialist and neutral selection, whereas both parameters are low
for generalists (fig. S1I0A,B). Interestingly, we find that specialists (and neutral selection) achieve
the average highest proficiency for large populations and a large number of traits (fig. S10C).
The reason for this is that the higher possible number of traits in these worlds makes it less likely
that innovation events among neighbours result in the same trait. Hence, rare traits are even less
likely to be learned and overall repertoire sizes remain smaller (fig. S10D). Consequently, we
also find the lowest number of possible traits known to a population in those simulations where
there are many traits available (i.e. 10° traits, fig. S10E). Overall, specialists seem to benefit from
larger populations but also from a wider variety of possible traits (which undermine the effect of
innovating novel traits). Generalists on the other side do best either if the number of traits is small
or if populations are small (fig. S10D).

As an example, we plotted results for 7" = 100 from fig. 510 in fig. S11. Two results stand out.
First, we find that results from the end of specialist and generalist simulations look very similar.
As we have shown, these two selection regimes are different at the initial stage but are both drifting
towards fully connected networks.

Second, we find that even with larger populations both average repertoire size and average
highest proficiency plateau (fig. S11B,C). As we describe in the main text, this is due to the limit
number of learning turns individuals have to acquire traits. There are 100 learning turns, and (as in
the main text) we assume a social learning success rate of o = 0.75, which would allow a maximum
proficiency of about 8. This is only true if all neighbours only have a repertoire of size 1 and all
share the same trait. However, even in the larger populations repertoire size is not smaller than 4,
which means that occasionally a learning turn is used to improve proficiency in a different trait.
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Fig. S10. Varying the number of traits and individuals in a population. Each square repre-
sents the average of 100 simulations for generalist, specialist, and neutral selection. Otherwise,
parameters are identical to those used for Fig. 3.



A 1001 B 55 C
6.
X 2
- ® 8
S . Q504 =
g % S g
= g_ 5 47
£ o 2
—_ (®]
[ [0] c
° D 4.5
F 601 s §
>
—Generalist < =5
= Specialist
=—Neutral
eutr 4.0 —_—
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Population size Population size Population size

Fig. S11. Increasing population size also increases trait diversity in the population. Exem-
plary, the figure shows data from fig. 510 for 100 traits. We find that both the total trait diversity
(A), as well as trait proficiency (C) increases with population size. As expected, higher proficiency
coincides with smaller repertoires (B).

Section S9. Varying innovation and social learning success rate

Throughout the main text, we used social learning success rate 0.75 and an innovation success rate
of 0.01, per learning attempt. For fig. 512, we systematically vary both rates and observe how this
affects the results.

In general, we find that trait diversity in populations is higher for higher rates of innovation (fig.
S12E), independent of selection regime and social learning rate. We also find only small differences
in repertoire size, except for very high innovation rates (fig. S12D). Interestingly, generalists do
best when both rates are high, as this provides large trait diversity and high chances to acquire these
traits. Conversely, while specialists benefit from high social learning success rates, high innovation
rates undermine local (and by extension, global) trait convergence, which makes it less likely to
engage repeatedly with the same traits (fig. S12C). For linking parameters, we find that parameters
drift for all combinations of innovation and copying rates under specialist and neutral selection
(fig. S12A,B). However, for generalists, this is only true where there is no social learning (here,
the social network does not matter) and where innovation rates are very low (here, populations
converge on traits as there is not a sufficient number of traits innovated).
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