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Supplementary Methods 

 

Image acquisition and pre-processing 

1269 butterfly specimens from the species Heliconius erato and H. melpomene were photographed 

at the Natural History Museum London (NHM) by two full-time research assistants over a two 

month period in 2016 (specimen numbers and image filenames, Table S2). Data collection costs 

were £4207 ($5807) for the complete dataset, averaging £3.31 ($4.57) per specimen and £1.66 

($2.29) per photograph. A consistent photographic setup was used throughout with a Nikon digital 

camera, ring light, light-grey foam background, cm to 0.5 mm rulers, and colour analysis chart 

constructed from a Spyder Checkr 24 colour card. Photographs were then screened for poor image 

quality or specimen wing pattern damage, giving a final dataset of 1234 butterflies and 2468 

photographs, including a dorsal and ventral photograph of each butterfly. Photographs were cropped 

to include only the butterfly specimen and a 10 pixel border by image segmentation using MatLab 

scripts. For deep learning, images were then re-sized to a consistent, low-resolution height of 64 

pixels (maintaining the original image aspect ratio and padded to 140 pixels wide). Moderate image 

compression improves the performance of deep learning by reducing the number of pixels that must 

be compared between images. The photographic dataset used for deep learning is provided in the 

Dryad Data Repository with filenames corresponding to joined data in Table S2: 

doi:10.5061/dryad.2hp1978. 

 

Taxonomy, locality data and specimen selection 

Taxonomic and locality data were recorded from NHM Heliconius butterfly specimen labels (Table 

S2). Capture localities were then matched to approximate latitudes and longitudes (Table S2) based 

on NHM records. Subspecies taxonomy follows reference (30). The complete photographic dataset 

covers thirty-seven named subspecies and one labelled cross: 21 subspecies from H. erato and 17 

from H. melpomene. Specimens of these subspecies were sampled exhaustively from the NHM 



collection. All available specimens of H. erato and H. melpomene were selected, within the limits 

of the data collection period, moving systematically through collection drawers. The complete 

photographic dataset (fig. S4, Dryad Data Repository: doi:10.5061/dryad.2hp1978) covers both 

specimens closely representative of subspecies descriptions (30) (31) (including available 

holotypes, syntypes, and paratypes, Table S2) as well as other, naturally varying, individuals. These 

variants include some likely hybrid specimens showing varying levels of phenotypic admixture 

from other subspecies (see additional taxonomic information, Table S2). Inclusion of all available 

specimens in machine learning covers a very broad range of the phenotypic diversity within these 

species, providing the deep learning network with all available information from which to learn 

phenotypic features correlated with subspecies identification (see deep learning methods, below). 

The extent to which the named subspecies (30) are objectively distinguishable was then explicitly 

tested based on classification accuracy during network testing (Deep learning methods, below). 

Locations for all sampled specimens in a phenotypic spatial embedding (Table S3) were calculated 

(Deep learning methods, below) permitting further analysis of phenotypic distances between any 

subset of specimens. Two sets of statistical analyses were then conducted, one set including all 

1269 photographed butterfly specimens and the second set excluding potential hybrid specimens to 

give a reduced dataset of 815 specimens and 1630 photographs (Table S2, fig. S4).  

 

The extent of phenotypic similarity between subspecies, including Müllerian co-mimics, was 

explicitly tested using statistical analyses of phenotypic distances generated by the deep learning 

network (see statistical analyses of phenotypic distance, below). All sampled specimens were 

included in the main statistical analyses. Specimen selection was therefore independent of 

hypotheses of mimicry (e.g. as referring only to standard phenotypes of taxonomic type specimens 

(31)). This facilitated conservative tests of the extent of mimicry among wild-caught specimens, 

without any potential bias from specimen exclusion on our part. Supplementary statistical analyses 

on the reduced dataset (with hybrids excluded) then enabled further testing, independent of any 



effect from a preponderance of hybrids, which may potentially be overrepresented in museum 

collections relative to the wild. 

 

Numbers of butterfly individuals sampled from each subspecies (Table S7) were variable, reflecting 

differences in abundance within the Natural History Museum collection. The average number of 

sampled butterfly individuals per subspecies was 32, the maximum number was 130 (for H. erato 

petiverana) and the minimum number was 1 (for H. melpomene penelope). Of 1234 total specimens 

in the dataset, 60% were from H. erato and 40% were from H. melpomene. The average number of 

sampled butterfly individuals per subspecies for H. erato was 35, for H. melpomene this was 29. 

Twenty-seven of the thirty-eight included subspecies were in one of twelve traditionally 

hypothesised (12) mimicry complexes (Tables S1, S9). 

 

Deep learning 

Image classification and spatial embedding were performed using a 15 layer deep learning network 

(Supplementary Computer Code), which we name ButterflyNet (figure 1). This makes use of a 

triplet embedding loss function (21) (22) to train a network to organise its inputs (images) in a space 

such that proximity in that space is highly correlated with identity (in this case subspecies). The 

network is trained on triplets of butterfly images, with each triplet containing two images sampled 

from the same subspecies and one image sampled from a different subspecies. The specific meaning 

of proximity is given by the distance function used in the loss function (the optimisation objective). 

In this study, the distance function was Euclidean distance. The learned embedding was then passed 

through an additional small network to perform direct categorical subspecies classification. Overall, 

the total network optimises the sum of the triplet loss and the categorical cross entropy 

 

𝑡𝑟𝑖𝑝𝑙𝑒𝑡 𝑙𝑜𝑠𝑠 =  𝐸[‖𝑧𝐴 − 𝑧𝐴′‖2
2 − ‖𝑧𝐴 − 𝑧𝐵‖2

2]    (1) 



Where 𝐸 is the expectation over the dataset, ‖𝑧𝐴 − 𝑧𝐴′‖2 is the Euclidean distance, 𝑧𝐴 is the spatial 

embedding of butterfly 𝐴, butterflies 𝐴 and 𝐴′ are sampled from the same subspecies and butterfly 

𝐵 is sampled from a different subspecies 

 

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝐸[−log (𝑝(𝑦))]    (2) 

 

Where 𝑝(𝑦) is the probability assigned by the network of a given butterfly belonging to its named 

subspecies 𝑦. 

 

The computer code used for machine learning is provided as a Python script (Supplementary 

Computer Code) in ipynb format which can be viewed using a text editor and run using the Jupyter 

Notebook App (http://ipython.org). The script makes use of the PyTorch, Scikit-learn and Adam 

packages.  

Network training 

Network training used the Adam optimizer with a learning rate of 10−4. The method of training is 

as follows. Each batch is composed of sets of image triplets sampled from the training data. To 

generate a triplet, first the majority label is chosen, and a pair of images sharing that label are 

randomly selected. Then a third image is sampled under the constraint that its label does not match 

the majority label (but is otherwise distributed according to the distribution of labels in the training 

data). The batch composition is chosen such that each majority label is selected an equal number of 

times to compose the batch. Images are subjected to augmentation by a uniform random translation 

in the range of [-3,3] pixels on x and y. We trained for a total of 30000 batches, each composed of 

99 image triplets. For the first 1000 batches, the loss function was constructed as an equally 

weighted sum of the classification and triplet losses, with L2 regularization applied with a 

coefficient 6 × 10−5. After 1000 batches, the weighting applied to the classification loss was 

reduced to 0.1 relative to the triplet loss. This helps for training during the initial transient phase in 

http://ipython.org/


which the global structure of the embedding is first emerging by providing a stronger constraint on 

the embedding space (that it must contain sufficient information to predict the butterfly classes). 

These choices were determined as part of a hyperparameter search to optimize test classification 

accuracy as part of the process of development of the model (covering comparisons of 

regularization strategies, choice of activation function between ReLU and ELU, and general 

architecture dimensions and training process), but that search was not exhaustive and does not 

include some recent innovations such as ResNet-type architectures, nor does it include more 

extensive data augmentation strategies. Refinements of the model based on these avenues of 

exploration are left as possibilities for future work, and would likely be able to increase the 

classification accuracy further. In terms of structural considerations, in order for the embedding 

space to respect global topological relationships between the butterfly subspecies, it is necessary to 

have some relative ambiguity in classification so that positioning of clusters with respect to each-

other has measurable consequences to the classifier loss. As such, if the network architecture is 

improved, it may be necessary at that time to either add additional data or refine the problem to 

maintain a fixed level of difficulty if the utility of the embedding is to be preserved. 

Network testing 

After the network was trained on 1500 images randomly sampled from the 2468 images in the 

dataset, network testing was performed on the remainder (968 images). Testing presents the trained 

network with new images, which it has not encountered before. The network then classifies the new 

images by subspecies, image classifications are compared to the known subspecies identities and 

the overall accuracy of test classifications is reported. The accuracy of classification expected 

simply by chance for this dataset was 5%. Additional testing was performed using a support vector 

classifier (SVC) trained on the embeddings from the main network (ButterflyNet). This tested the 

accuracy of classification of specimens to subspecies based on their locations in the phenotypic 

spatial embedding. This therefore tests the extent to which the spatial embedding locations 

generated by ButterflyNet are predictive of subspecies identity (e.g. relative to the original image 

data). 



 

Fig. S1. Diagram of the architecture of the deep learning network ButterflyNet used in this 

study. Green boxes indicate intermediate network layers that perform matrix multiplications (image 

convolutions or dense, all-to-all, mappings). Blue layers perform operations on the output from 

previous layers (e.g. pooling or dropout operations). Brown layers indicate dense layers which 

produce a main output of the analysis (spatial embedding or image classification). 

 

  



Statistical analyses of phenotypic distance 

Pairwise Euclidean phenotypic distances between all images were calculated from the coordinates 

of all 2468 images within a spatial embedding with 64 dimensions, generated using the network 

(Table S3). These distances were then used to calculate the average pairwise Euclidean phenotypic 

distances between all subspecies (Table S4). Squared Euclidean distances were also calculated for 

heat-map visualisation (fig. S3, Table S5). Principal component analysis of the image coordinates 

was additionally used to visualise the principal component scores in the space of principal 

component axes 1 and 2 as well as 3 and 4 (Fig. 2). The Euclidean phenotypic distances between all 

subspecies (Table S4) were used in comparisons between different sets of unique unordered 

subspecies pairs (Fig. 3). The first comparisons (Fig. 3a) included identity pairs (diagonal of Table 

S4; average distances between images within each subspecies), pairs of subspecies traditionally 

hypothesised (12) to mimic each other (Table S1) and all other subspecies pairs (neither co-mimics 

nor identity pairs). The second comparisons (Fig. 3b) separated the two species to compare identity 

pairs from H. erato versus H. melpomene, other pairs (neither co-mimics nor identity pairs) where 

both members were of H. erato versus H. melpomene, and pairs of co-mimics in which one 

subspecies was of H. erato and the other of H. melpomene. Average phenotypic distances for 

subspecies sets and principal component scores were calculated using MatLab scripts. 

Nonparametric statistical analyses (robust to different sample sizes and non-normally distributed 

data) were conducted using the program Past 3, after Shapiro-Wilk’s tests indicated that distances 

for some subspecies sets were non-normally distributed (using an alpha value of 0.05). These 

analyses included Kruskal-Wallis tests for equal medians and, where this overall test was 

significant, subsequent Mann-Whitney pairwise comparisons of statistical distributions between 

groups. 

 

  



Testing evolutionary convergence 

Relatively few examples exist of quantitatively demonstrated evolutionary convergence (24) (25). 

When considering categorical (discrete) traits, convergence can be defined as the repeated 

derivation of the same trait (e.g. phylogenetic character state) in two or more lineages (e.g. 

phylogenetic clades). For quantitative (continuous) traits, evolutionary convergence has been 

defined as an increase in similarity between two lineages (considering some specified axis or axes 

of variation) relative to their ancestral states (25). For consistency with categorical definitions, the 

broad phenomenon of evolutionary convergence may be considered to include some types of 

‘parallel’ evolution (24) (25), such as parallel vectors of change to the same (or similar) trait values. 

Usually, ancestral states are unknown a priori (e.g. they must be estimated from contemporaneous 

taxa or non-contemporaries of uncertain ancestor-descent status). Consequently, tests of 

convergence in continuous traits have previously undertaken quantitative analyses of taxa that are 

qualitatively or functionally similar, and so potentially convergent, relative to respective sister-

groups (immediate relatives) (40) (25) or to broader sets of close relatives (24). Where the 

putatively convergent taxa are quantitatively more similar to each other than are their relatives, this 

has been taken as support for convergence (24) (25). However, without additional information, 

especially on the temporal direction (polarity) of evolutionary change, it can be difficult to 

distinguish putative convergence from alternative patterns such as divergence by dissimilar sister 

taxa.  

 

The studied case of H. erato and H. melpomene overcomes some such difficulties due to the sheer 

number of polymorphic mimicry types. For two compared clades with n cross-clade co-mimic pairs, 

each of which has a distinct pattern feature (or feature set), at most one of these distinct feature sets 

could potentially represent a shared ancestral state. All n-1, other co-mimic features must have been 

independently derived within each clade (since the minimum number of evolutionary derivations 

for a phylogenetic character on a given tree is the number of distinct character states minus one 



(41)). A test of evolutionary convergence can then be applied in which the operational definition of 

convergence is essentially that for discrete traits (independent derivation of the same state e.g. in 

two clades) and quantitative analysis is employed to test the relative similarity of the traits in 

question and the number of quantitatively distinct trait states (e.g. clusters). 

 

Comparative analyses of phenotypic convergence 

To further explore the extent of reciprocal convergence in mimicry between H. erato and H. 

melpomene, comparative analyses (40) were conducted using twelve selected subspecies (fig. S7). 

First, two sets of subspecies were identified (each set including four subspecies), with each set 

consisting of two pairs of interspecies co-mimics in which conspecifics are nearest neighbours in 

the phenotypic spatial embedding, permitting phenotypic sister-group comparisons (fig. S7a-b). The 

ancestral pattern types and order of pattern evolution within H. erato and H. melpomene are not 

known with certainty. However, focal-co-mimics, with pattern features that are potentially derived, 

rather than ancestral, were identified for each comparative analysis based on all available 

independent information from gene phylogenies (26) (27), biogeographic distribution (fig. S2) and 

phylogeographic reconstruction (26). This additional information aids assessment of the most likely 

polarity of pattern evolution (e.g. directed towards the focal taxa). From a cladistic perspective, this 

process is equivalent to assessing the most likely phenotypic states at the hypothetical ancestral 

node for two considered taxa. For comparison, the analyses were then repeated with reversed 

polarity. Two focal subspecies and their nearest conspecifics (fig. S7c) were selected based on 

previous discussion of the influence of H. melpomene on H. erato (e.g. H. erato petiverana  (23)), 

which has been historically controversial (13) (23). The position in phenotypic space of each of the 

focal subspecies was then compared to that of their nearest conspecific (a type of sister-group 

comparison (40) (25)). Compared distances were the squared distance from the mean location of the 

focal co-mimic, summed across all 64 spatial embedding axes, calculated using a Python script 

(Supplementary Computer Code). Expressing the locations in phenotypic space in terms of distance 



from two focal taxa (fig. 5 g-j) enables two-dimensional visualisation of the distances among 

compared taxa across any number of phenotypic axes. This also facilitates tests of mutual 

convergence in which convergence is characterised by decreasing distance between one focal taxon 

and another, relative to a conspecific, and divergence is conversely characterised by increasing 

distance. In each comparative analysis, Mann Whitney tests for equal medians tested whether 

conspecifics differed significantly in their distance from the focal co-mimic of the other species 

(after Shapiro Wilk’s tests indicated that some subspecies values were non-normally distributed). 

 

Phylogenetic analyses 

Neighbour joining trees for subspecies were constructed based on phenotypic distances (e.g. Table 

S4) using MatLab scripts. In order to visualise the phylogenetic agreement versus conflict among 

different axes of the phenotypic spatial embedding (Table S3), neighbour joining trees were 

constructed based on repeated sub-sampling of the axes (sampling either all 64 axes with 1 

replicate, or subsamples of 8 or 32 axes with 100 replicates). Consensus networks were constructed 

to visualise all splits (taxon partitions) implied among sets of trees using the program SplitsTree 4.  

To test the phylogenetic informativeness of the phenotypic distances against independent data 

sources, sets of neighbour joining phenotypic trees (of either all subspecies, H. erato only, or H. 

melpomene only) were compared against phylogenies reconstructed from published gene sequences 

(27) as well as random tree topologies. The subspecies coverage and individual samples sizes of our 

analysis exceed those typically used in current gene sequencing studies. However, published 

phylogenies (26) based on multi-locus gene sequences (27) were available that included 25 of the 

38 studied subspecies (13 H. erato, 12 H. melpomene), from gene loci (sampled from a different, 

smaller set of 127 butterfly individuals) which were either associated with Heliconius wing colour 

pattern (27) (optix, bves, kinesin, GPCR, VanGogh) or were neutral markers (mt COI-COII, SUMO, 

Suz12, 2654 and CAT). For each gene set (pattern versus neutral loci), 100 trees were sampled from 

the output of previously published Bayesian phylogenetic analyses (sampling the MCMC chain 



after burn-in) (26). One thousand equiprobable, random tree topologies were generated for each 

taxon set using the program Mesquite. Pairwise distances between trees from the different sets were 

calculated using the Robinson Foulds (symmetric distance) metric in the program PAUP. Robinson 

Foulds distances across different tree sets were statistically compared using nonparametric Mann-

Whitney tests in the program PAST (after Shapiro-Wilk’s tests indicated non-normal distributions). 

Tree-space visualisations were produced, based on the Robinson Foulds distance, using the TSV 

package in Mesquite. 

 

 
Fig. S2. Geographic localities for sampled butterfly specimens from the polymorphic mimicry 

complex of H. erato and H. melpomene. Open circles indicate approximate capture localities for 

historical butterfly specimens held in the Natural History Museum (NHM), London (Table S2). 

Based on specimen labels, capture localities were identifiable for 94% of 1234 butterflies in the 

dataset. Filled circles show the mean location for each subspecies. Numbers and circle colours 

indicate the subspecies number (Table S7). 

 



 
Fig. S3. Heatmap showing mean pairwise phenotypic and geographic distances between 38 

subspecies of H. erato (black labels) and H. melpomene (gray labels). Upper matrix (including 

diagonal) shows mean pairwise distances for subspecies calculated from the 64-dimensional 

phenotypic embedding generated using a deep convolutional triplet network across 2468 butterfly 

images. Lower matrix shows mean pairwise geographic distance between butterfly specimens. Key 

shows correspondence between heat-map colours and distance, rescaled to vary between zero and 

one from original values (upper, squared Euclidean phenotypic distance and lower, Euclidean 

geographic distance, Tables S5-S6), from blue (most similar) to red (least similar). Black borders on 

squares indicate traditionally hypothesised co-mimics (12). Numbers adjacent to subspecies names 

show the number of butterfly specimens in the image database. 

 

 

  



1 Heliconius melpomene aglaope 

(A) Specimens identified as valid subspecies or accepted synonym 

 
 

(B) Specimens identified as hybrids 

 
 

 

  



2 Heliconius erato amalfreda 

(B) Specimens identified as hybrids 

 
 

3 Heliconius melpomene amandus 

(B) Specimens identified as hybrids

 
 

 

  



4 Heliconius melpomene amaryllis 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

  



5 Heliconius erato amphitrite 

(B) Specimens identified as hybrids

 
 

 

  



6 Heliconius melpomene burchelli 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids 

 
 

 

  



7 Heliconius erato colombina 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

 

  



8 Heliconius erato cyrbia 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

 

  



9 Heliconius melpomene cythera 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

 

  



10 Heliconius erato demophoon 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

 

  



11 Heliconius erato dignus  

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

 

  



12 Heliconius melpomene ecuadorensis 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids 

 
 

  



13 Heliconius erato emma 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids 

 

  



14 Heliconius erato erato 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

 

  



15 Heliconius erato etylus 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

 

  



16 Heliconius erato favorinus 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids 

 

  



17 Heliconius erato favorinus x lativitta 

(B) Specimens identified as hybrids 

 
 

 

  



18 Heliconius melpomene flagrans 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

 

  



19 Heliconius erato guarica 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids 

 
 

  



20 Heliconius erato hydara 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

 

  



21 Heliconius erato lativitta 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

 

  



22 Heliconius erato luscombei 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

 

  



23 Heliconius melpomene malleti 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

 

  



24 Heliconius melpomene melpomene 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

 

  



25 Heliconius erato microclea 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

 

  



26 Heliconius melpomene nanna 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids 

 
  



27 Heliconius erato notabilis 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids 

 
 

 

  



28 Heliconius melpomene penelope 

(B) Specimens identified as hybrids 

 
 

  



29 Heliconius erato petiverana 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

 

  



30 Heliconius erato phyllis 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

 

  



31 Heliconius melpomene plesseni 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

 

  



32 Heliconius melpomene rosina 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

  



33 Heliconius melpomene schunkei 

(A) Specimens identified as valid subspecies or accepted synonym 

 
 

(B) Specimens identified as hybrids 

 
  



34 Heliconius melpomene thelxiopeia 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids 

 
 

  



35 Heliconius erato venus 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

 

  



36 Heliconius erato venustus 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids 

 
 

 

  



37 Heliconius melpomene vulcanus 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

 

  



38 Heliconius melpomene xenoclea 

(A) Specimens identified as valid subspecies or accepted synonym

 
 

(B) Specimens identified as hybrids

 
 

Fig. S4. Collections of specimen photographs used in this study, grouped by subspecies. 

Photographs show all dorsal views, followed by all ventral views (with the same specimen order, 

left to right, top to bottom). Subspecies identification followed NHM specimen labels and the 

taxonomy of Lamas (2014) (30). Individual image files used in deep learning, with specimen 

numbers corresponding Table S2, can be downloaded from the Dryad Data Repository: 

doi:10.5061/dryad.2hp1978. (A) Specimens included in the reduced dataset comprising valid 

subspecies and synonyms only. (B) Specimens excluded from the reduced dataset based on 

taxonomic labelling as hypothesised hybrids (e.g. based on their phenotype and/or capture locality) 

and a visual screen. Hybrid status was recorded (Table S2) based on additional taxonomic 

information from specimen labels, NHM records, the taxonomic checklist of Lamas, 2004 (30) and 

www.butterfliesofamerica.com. Photo Credits: Robyn Crowther and Sophie Ledger, Natural 

History Museum, London.

http://www.butterfliesofamerica.com/


 

Fig. S5. Average pairwise Euclidean geographic distances between subspecies of H. erato and 

H. melpomene. Box plot of mean pairwise geographic distances (Table S6): within subspecies 

(identity), between co-mimic subspecies (mimicry) and between all other subspecies (other). 

Sample sizes: 38, 19 and 684 subspecies pairs, respectively. Boxes show 25-75% quartiles; 

horizontal lines, medians; whiskers, inner fence within 1.5 × box height; circles outliers within 3 × 

box height. 

 

  



 

Fig. S6. Neighbor-joining trees of phenotypic distance between subspecies of H. erato and H. 

melpomene. (A, D) All subspecies. (B, E) Only subspecies of H. erato. (C, F) Only subspecies of 

H. melpomene. Subspecies label colour indicates species (black H. erato, grey H. melpomene). Leaf 

node colours correspond to mimicry groups of Fig. 1. Subspecies numbers correspond to Table S1. 

Black internal nodes (A) show independent clades containing interspecies co-mimics. (D-F) 

Phylogenies reconstructed from average subspecies distances calculated after exclusion of hybrid 

specimens (Table S2). 

 



 

Fig. S7. Comparative analyses of the extent of phenotypic convergence in mimicry. The 

locations of six focal subspecies (A-C) dark blue, H. erato: cyrbia, microclea, petiverana; dark red, 

H. melpomene: cythera, xenoclea, rosina) in phenotypic space are compared alongside their six 

nearest conspecific subspecies (A-C) H. erato, light blue; H. melpomene, light red). Subspecies are 

illustrated by dorsal photographs of the butterfly closest to the mean location for the subspecies. 

Grey points indicate images of the other subspecies in the dataset. Axes show the squared distance 

from the mean location of the focal co-mimic, summed across all 64 spatial embedding axes. As 

polarised towards the focal taxa, these comparative analyses indicate cases of mutual convergence 

(A-B) as well as implied divergence by H. erato where the two species ranges cease to overlap (c) 

in Central-North American H. erato petiverana (23). In (A) the generally less abundant species H. 
melpomene has converged further towards H. erato, in line with the frequency dependent fitness 

benefits predicted in Müllerian mimicry. In another case, (B) H. erato microclea shows greater 

convergence on its co-mimic H. melpomene xenoclea than vice versa. Subspecies mean convergent 

distance from the focal co-mimic of the other species (distance = conspecific – focal conspecific) 

and corresponding Mann Whitney p values for  H. erato and H. melpomene respectively: (A) 

distance = 0.26, p = 1.0195E-15, distance = 0.41, p = 5.1718E-31; (B) distance = 0.52, p = 8.2445E-

16, distance = 0.20, p = 2.1749E-22; (C) distance = -0.22, p = 3.2368E-16, distance = 0.41, p = 

1.1133E-19. Values with reversed evolutionary polarities (focal conspecifics, a-c: venus, vulcanus; 

notabilis, plesseni; demophoon, amaryllis): (A) distance = 0.23, p = 1.3176E-14, distance = 0.08, p 

= 3.8215E-12; (B) distance = 0.19, p = 4.4761E-11, distance = 0.51, p = 5.003E-27; (C) distance = 

0.23, p = 6.1463E-17, distance = -0.42, p = 1.1133E-19. Statistical values with hybrids excluded 

(and standard evolutionary polarities) for H. erato and H. melpomene respectively: (A) distance = 

0.29, p = 2.37E-15, distance = 0.40, p = 1.35E-10; (B) distance = 0.51 , p = 1.44E-11, distance = 

0.22, p = 4.70E-16; c, distance =  -0.21, p = 6.20E-16, distance = 0.41, p = 3.24E-10. 

 

  



 

 

Fig. S8. Principal component visualization of Heliconius butterflies. Dorsal photographs of 

1234 Heliconius butterflies visualised in the space of PCA scores calculated from the deep learning 

spatial embedding coordinates as described for Fig. 2. 
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