Supplementary Information for

A versatile route to fabricate single atom catalysts with high

chemoselectivity and regioselectivity in hydrogenation

He et al.

Supplementary Methods

Materials. All the solvents and chemicals were available from suppliers and used as received unless specially stated.

Dichloromethane (Greagent, 99.5%), hexane (Greagent, 97%), methanol (Greagent, 99.5%), propionic acid (Aladdin, 99.5%), benzaldehyde (Aladdin, 99.5%), *N,N*dimethylformamide (Aladdin, 99.5%), [toluene](http://www.jkchemical.com/CH/products/J29APP-9-198.html) (ACS reagent, 99.5%), acetic acid (Aladdin, 99.5%), 1,2,4-trichlorobenzene (Aladdin, 99.5%), tetrahydrofuran (Aladdin, 99.5%), triethylamine (Aladdin, 99.5%), n-butyllithium solution (Aladdin, [2.5 M in hexanes\)](http://www.aladdin-e.com/zh_cn/b118688.html), benzonitrile (Aladdin, 99%), phenol (Aladdin, 99.5%), decahydronaphthalene (Aladdin, 98%), diphenyl ether (Aladdin, 99.5%), 1-phenyl-1-propyne (Aladdin, 98%), 1-phenyl-1 pentyne (TCI, 97%), 5-decyne (Aladdin, 98%), 1-nitro-4-ethynylbenzene (TCI, 98%), 1 ethynyl-4-vinylbenzene (Chengdu Novel Biochemical Co. Ltd, 98%), [1-ethynyl-4-](javascript:showMsgDetail() [\(phenylethynyl\)benzene](javascript:showMsgDetail() (Chengdu Novel Biochemical Co. Ltd, 98%), 1-(dec-1-yn-1-yl)- 3-ethynylbenzene (Chengdu Novel Biochemical Co. Ltd, 97%). Pyrrole (Aladdin, 99%) was distilled under a N_2 atmosphere before use.

Sodium acetate anhydrous (CH3COONa, Aladdin, 99%), [titanium\(IV\) chloride](http://www.jkchemical.com/CH/products/A01971770.html) solution (TiCl₄, J&K, [1.0 M solution in toluene](http://www.jkchemical.com/CH/products/A01971770.html)), vanadyl sulfate hydrate (VOSO₄ xH₂O, Sigma-Aldrich, 97%), chromium chloride (CrCl2, Aladdin, 99%), manganese chloride tetrahydrate (MnCl₂ 4H₂O, Aladdin, 99%), iron(II) chloride (FeCl₂, Aladdin, 99.5%), cobalt(II) acetate tetrahydrate $(Co(CH_3COO)_2$ 4H₂O, Aladdin, 99.5%), nickel(II) acetate tetrahydrate (Ni(CH₃COO)₂ 4H₂O, Aladdin, 99%), copper(II) acetate monohydrate $(Cu(CH_3COO)_2 H_2O$, Aladdin, 99%), gallium(III) chloride anhydrous (GaCl₃, Aladdin, 99.99%), zirconyl chloride octahydrate (ZrOCl₂ 8H₂O, Aladdin, 99%), molybdenum trioxide (MoO₃, Aladdin, 99.5%), triruthenium dodecacarbonyl (Ru₃C₁₂O₁₂, Aladdin, 99%), di-μ-chloro-tetracarbonyldirhodium(I) ([Rh(CO)₂Cl]₂, Aladdin, 97%), palladium chloride (PdCl2, Aladdin , [Pd 59–60%\)](http://www.aladdin-e.com/zh_cn/p105196.html), silver nitrate (AgNO3, Aladdin, [99.8%\)](http://www.aladdin-e.com/zh_cn/p105196.html), cadmium acetate dihydrate $(Cd(CH_3COO)_2$ $2H_2O$, Aladdin, [99.5%\)](http://www.aladdin-e.com/zh_cn/p105196.html), indium chloride tetrahydrate $(Incl₃4H₂O, Aladdin, 99.9%),$ tin chloride $(SnCl₂, Aladdin, 99%),$ erbium (III) [acetylacetonate hydrate](http://www.jkchemical.com/CH/products/J3493-6801.html) $(Er(C_5H_7O_2))$ ₃ xH₂O, Sigma, 97%), tungsten chloride (WCl₆, Aladdin, 99.9%), chloro(1,5-cyclooctadiene)iridium(I) dimer $(C_{16}H_{24} Ir_2Cl_2$, Aladdin, 97%), platinum chloride (PtCl2, Aladdin, Pt≥73%), gold chloride trihydrate $(HAuCl₄ 3H₂O, Aladdin, 99.9%),$ bismuth nitrate pentahydrate $(Bi(NO₃)₃ 5H₂O, Aladdin,$ 98%), silica gel (Qingdao Haiyang Chemical Plant, 200–300 mesh), aluminum oxide (Aladdin, 200–300 mesh).

Synthesis of TPP and MTPP. TPP¹, TiTPP², VTPP³, CrTPP⁴, MnTPP¹, FeTPP¹, CoTPP¹, NiTPP⁵, CuTPP⁶, GaTPP⁴, ZrTPP⁷, MoTPP⁸, RuTPP⁹, RhTPP¹⁰, PdTPP¹¹, AgTPP¹², CdTPP¹³, InTPP¹⁴, SnTPP¹⁵, ErTPP¹⁶, WTPP¹⁷, IrTPP¹⁸, PtTPP¹⁹, AuTPP²⁰, and BiTPP²¹ were synthesized according to the reports, respectively. Details were given in the following:

Supplementary Fig. 1 Schematic illustration of the preparation of TPP and MTPP.

TPP: Typically, benzaldehyde (100 mmol) was added to a two-necked roundbottomed flask (500 mL) containing 250 mL propionic acid, and heated to 140 °C, followed by addition of freshly distilled pyrrole (100 mmol). After refluxing for 3 h, the solution was cooled to room temperature naturally and added 250 mL absolute ethanol. Subsequently, the as-obtained precipitate was filtered, washed with methanol and dried in the air. The precipitate was further purified with silica gel column chromatography using CH2Cl² as eluent. After removal of eluent by rotary evaporation, the product was dried at 80 °C in vacuum for 24 h and gave the purple powder with the yield of 23% . ¹H NMR (500 MHz, CDCl3): δ 8.84 (s, 8H), 8.23–8.21 (d, J = 8.22 Hz, 8H), 7.80–7.73 (m, 12H), -2.78 $(s, 2H)$.

TiTPP: Under the N_2 atmosphere, the as-synthesized TPP (1.0 mmol) was dissolved in 100 mL dry toluene in a 250 mL Schlenk flask and carefully syringed 5 mL nbutyllithium solution [\(2.5 M in hexanes\)](http://www.aladdin-e.com/zh_cn/b118688.html), followed by stirred for 30 min at room temperature. Then 25 mL [titanium\(IV\) chloride](http://www.jkchemical.com/CH/products/A01971770.html) solution (TiCl₄, [1.0 M solution in toluene\)](http://www.jkchemical.com/CH/products/A01971770.html) was added by syringe, and stirred for 3 h at 100 °C. The solution was cooled to room temperature naturally, then exposed to air and stirred for 3 h. After removal of solvent by rotary evaporation, the material was further purified by silica gel column chromatography with CH_2Cl_2 as eluent. The eluent was removed by rotary evaporation and the product was dried at 80 \degree C in vacuum for 24 h.

VTPP: Under the N_2 atmosphere, the as-synthesized TPP (1.0 mmol) and vanadyl sulfate hydrate (10.0 mmol) were dissolved in 100 mL N,N-dimethylformamide (DMF) in a 250 mL three-necked round-bottomed flask, and refluxed for 3 h at 150 °C, then the solution was cooled to room temperature naturally. After removal of DMF solvent by

rotary evaporation, the material was purified by silica gel column chromatography with CH2Cl2/hexanes/MeOH as eluents. The eluents were removed by rotary evaporation and the product was dried at 80 $^{\circ}$ C in vacuum for 24 h.

Similarly, MTPP ($M = Cr$, Mn, Fe, Co, Ni, Cu, Ga, Pd, Ag, Cd, In, Sn, Er, and Bi) were also synthesized with the same procedure of VTPP and different metal salts (chromium chloride, manganese chloride tetrahydrate, iron(II) chloride, cobalt(II) acetate tetrahydrate, nickel(II) acetate tetrahydrate, copper(II) acetate monohydrate, gallium(III) chloride anhydrous, palladium chloride, silver nitrate, cadmium acetate dehydrate, indium chloride tetrahydrate, tin chloride, [erbium\(III\) acetylacetonate hydrate,](http://www.jkchemical.com/CH/products/J3493-6801.html) bismuth nitrate pentahydrate), respectively.

Besides, MTPP ($M = Zr$, Mo, Ru, Rh, W, Ir, and Pt) were also synthesized with the same procedure of VTPP and different metal salts and solvents, respectively. Details were given in the following:

For ZrTPP: zirconyl chloride octahydrate, benzonitrile.

For MoTPP: molybdenum trioxide, phenol.

For RuTPP: molybdenum trioxide, decahydronaphthalene.

For RhTPP: di-μ-chloro-tetracarbonyldirhodium(I), dry toluene.

For WTPP: tungsten chloride, phenol.

For IrTPP: chloro(1,5-cyclooctadiene)iridium(I) dimer, 1,2,4-trichlorobenzene.

For PtTPP: platinum chloride, diphenyl ether.

AuTPP: Under the N_2 atmosphere, the as-synthesized TPP (1.0 mmol), gold chloride trihydrate (10.0 mmol) and sodium acetate anhydrous were dissolved in 100 mL acetic acid in a 250 mL three-necked round-bottomed flask, and refluxed for 12 h at 120 \degree C, then the solution was cooled to room temperature naturally. The solvent was removed by rotary evaporation and CH_2Cl_2 was added. After washing with 10% aqurous Na₂CO₃ and water, the solution was dried by MgSO₄ and removed the solvent by rotary evaporation. Subsequently, the as-obtained material was further purified by silica gel column chromatography with CH_2Cl_2 /hexanes/MeOH as eluents. The eluents was removed by rotary evaporation and the product was dried at 80 $^{\circ}$ C in vacuum for 24 h.

Synthesis of M1/N-C, Pt-NPs/N-C(1:0), N-C, and Pt1-Sn1/N-C. A series of M1/N-C, Pt- $NPs/N-C(1:0)$, N-C, and Pt₁-Sn₁/N-C catalysts were prepared with similar procedure of Pt1/N-C, and the detailed precursors ratios (MTPP:TPP, mol:mol) were also given in the following.

For M_1/N -C (M = Mn, Fe, Co, In, Er), MTPP:TPP = 1:0;

For M_1/N -C (M = Ni, Ga, Zr), MTPP:TPP = 1:10;

For M_1/N -C ($M = Ag$, Bi), MTPP:TPP = 1:20;

For M_1/N -C ($M = Ti$, V, Cr, Cu, Mo, Ru, Pd, Cd, Sn, W, Ir, Pt), MTPP:TPP = 1:40;

For M_1/N -C (M = Rh), MTPP:TPP = 1:80;

For M_1/N -C (M = Au), MTPP:TPP = 1:160;

For Pt₁/N-C (1:320), PtTPP:TPP = 1:320;

For Pt₁/N-C (1:80), PtTPP:TPP = 1:80;

For Pt₁/N-C (1:20), PtTPP:TPP = 1:20;

For Pt-NPs/N-C $(1:0)$, PtTPP:TPP = 1:0;

For N-C, MTPP:TPP $= 0:1$;

For $Pt_1-Sn_1/N-C$, $PtTPP:STPP:TPP = 1:1:40$.

Synthesis of Pt-NCs/N-C and Pt-NPs/N-C. The preparation processes for Pt-NCs/N-C and Pt-NPs/N-C were the same as that for $Pt₁/N-C$ except the pyrolysis temperatures that Pt-NCs/N-C and Pt-NPs/N-C were obtained by treating the as-prepared polymers under flowing nitrogen gas at 700 $\mathbb C$ and 800 $\mathbb C$ for 3 h, respectively.

1-ethynyl-4-(phenylethynyl)benzene 3# (Supplementary Figs. 40–41): ¹H NMR (500 MHz, CDCl3): δ 7.55–7.52 (m, 2H), 7.50–7.46 (m, 4H), 7.38–7.35 (m, 3H), 3.18 (s, 1H); ¹³C NMR (125 MHz, CDCl3): δ 132.2, 131.8, 131.6, 128.7, 128.5, 123.9, 123.1, 122.0, 91.5, 89.0, 83.4, 79.0; HRMS (m/z): [M+H]⁺ calcd. for C₁₆H₁₁, 203.0855; found, 203.0854.

1-(phenylethynyl)-4-vinylbenzene 3a (Supplementary Figs. $42-43$): ¹H NMR (500 MHz, CDCl₃): δ 7.55–7.52 (m, 2H), 7.51–7.49 (d, J = 7.49 Hz, 2H), 7.40–7.39 (d, J = 7.40 Hz, 2H), 7.37–7.33 (m, 3H), 6.75–6.69 (m, 1H), 5.81–5.77 (d, J = 5.79 Hz, 1H), 5.32–5.29 (d, J = 5.30 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 137.6, 136.4, 131.9, 131.7, 128.5, 128.4, 126.3, 123.4, 122.7, 114.9, 90.2, 89.6; HRMS (m/z): [M+H]⁺ calcd. for C₁₆H₁₃, 205.1011; found, 205.1011.

1-ethyl-4-(phenylethynyl)benzene 3b (Supplementary Figs. 44-45): ¹H NMR (500 MHz, CDCl3): δ 7.58–7.56 (m, 2H), 7.51–7.49 (d, J = 7.50 Hz, 2H), 7.39–7.33 (m, 3H), 7.22–7.21 (d, J = 7.21 Hz, 2H), 2.72–2.67 (m, 2H), 1.30–1.26 (m, 3H); ¹³C NMR (125 MHz, CDCl3): δ 144.8, 131.7, 131.7, 128.4, 128.2, 128.0, 123.6, 120.6, 89.7, 88.9, 29.0, 15.5; HRMS (m/z): [M+H]⁺ calcd. for C₁₆H₁₅, 207.1168; found, 207.1168.

1-styryl-4-vinylbenzene 3c (Supplementary Figs. 46–47): ¹H NMR (500 MHz, CDCl₃): δ 7.54–7.52 (d, J = 7.53 Hz, 2H), 7.50–7.48 (d, J = 7.49 Hz, 2H), 7.43–7.41 (d, J = 7.42 Hz, 2H), 7.39–7.36 (m, 2H), 7.29–7.27 (m, 1H), 7.15–7.08 (m, 2H), 6.76–6.71 (m,

1H), 5.80–5.76 (d, J = 5.78 Hz, 1H), 5.28–5.26 (d, J = 5.27 Hz, 1H); ¹³C NMR (125 MHz, CDCl3): δ 137.4, 137.0, 137.0, 136.6, 128.8, 128.8, 128.4, 127.8, 126.8, 126.7, 126.6, 113.9; HRMS (m/z): [M+H]⁺ calcd. for C₁₆H₁₅, 207.1168; found, 207.1169.

1-(dec-1-yn-1-yl)-3-ethynylbenzene $4#$ (Supplementary Figs. 48–49): ¹H NMR (500) MHz, CDCl3): δ 7.53 (s, 1H), 7.39–7.36 (m, 2H), 7.25–7.22 (m, 1H), 3.06 (s, 1H), 2.41– 2.38 (m, 2H), 1.63–1.57 (m, 2H), 1.46–1.43 (m, 2H), 1.32–1.30 (m, 8H), 0.91–0.89 (m, 3H); ¹³C NMR (125 MHz, CDCl3): δ 135.2, 132.0, 131.2, 128.4, 124.6, 122.4, 91.5, 83.1, 79.8, 77.6, 32.0, 29.4, 29.3, 29.1, 28.8, 22.8, 19.5, 14.3; HRMS (m/z): [M+H]⁺ calcd. for C18H23, 239.1794; found, 239.1793.

1-(dec-1-yn-1-yl)-3-vinylbenzene 4a (Supplementary Figs. $50-51$): ¹H NMR (500) MHz, CDCl3): δ 7.44 (s, 1H), 7.31–7.27 (m, 2H), 7.25–7.22 (m, 1H), 6.69–6.63 (m, 1H), 5.76–5.73 (d, J = 5.75 Hz, 1H), 5.27–5.24 (d, J = 5.25 Hz, 1H), 2.42–2.39 (m, 2H), 1.64– 1.58 (m, 2H), 1.48–1.42 (m, 2H), 1.34–1.26 (m, 8H), 0.90–0.87 (m, 3H); ¹³C NMR (125 MHz, CDCl3): δ 137.7, 136.4, 131.0, 129.5, 128.5, 125.5, 124.5, 114.5, 90.7, 80.5, 32.0, 29.4, 29.3, 29.1, 28.9, 22.8, 19.6, 14.3; HRMS (m/z): [M+H]⁺ calcd. for C₁₈H₂₅, 241.1951; found, 241.1949.

1-(dec-1-en-1-yl)-3-vinylbenzene 4b (Supplementary Figs. 52–53): ¹H NMR (500 MHz, CDCl₃): δ 7.43 (s, 1H), 7.37–7.30 (m, 3H), 6.80–6.73 (m, 1H), 6.45–6.41 (d, J = 6.43 Hz, 1H), 6.33–6.26 (m, 1H), 5.83–5.79 (d, J = 5.81 Hz, 1H), 5.31–5.28 (d, J = 5.29 Hz, 1H), 2.29–2.24 (m, 2H), 1.56–1.49 (m, 2H), 1.39–1.35 (m, 10H), 0.97–0.94 (m, 3H); ¹³C NMR (125 MHz, CDCl3): δ 138.3, 137.8, 137.0, 131.7, 129.6, 128.8, 125.5, 124.7, 124.1, 113.9, 33.2, 32.1, 29.7, 29.5, 29.5, 29.4, 22.8, 14.3; HRMS (m/z): [M+H]⁺ calcd. for C18H27, 243.2107; found, 243.2106.

1-decyl-3-ethynylbenzene 4c (Supplementary Figs. 54–55): ¹H NMR (500 MHz, CDCl3): δ 7.32–7.30 (m, 2H), 7.25–7.21 (m, 1H), 7.18–7.15 (m, 1H), 3.05 (s, 1H), 2.61– 2.56 (m, 2H), 1.63–1.57 (m, 2H), 1.39–1.26 (m, 14H), 0.94–0.86 (m, 3H); ¹³C NMR (125 MHz, CDCl3): δ 143.2, 132.2, 129.6, 129.2, 128.3, 122.0, 84.1, 76.8, 35.8, 32.1, 31.4, 29.9, 29.7, 29.6, 29.5, 29.4, 22.8, 14.3; HRMS (m/z): [M+H]⁺ calcd. for C₁₈H₂₇, 243.2107; found, 243.2106.

1-(dec-1-en-1-yl)-3-ethylbenzene 4d (Supplementary Figs. $56-57$): ¹H NMR (500) MHz, CDCl₃): δ 7.23–7.16 (m, 3H), 7.05–7.03 (d, J = 7.04 Hz, 1H), 6.38–6.34 (d, J = 6.36 Hz, 1H), 6.26–6.18 (m, 1H), 2.66–2.60 (m, 2H), 2.23–2.17 (m, 2H), 1.50–1.43 (m, 2H), 1.35–1.22 (m, 13H), 0.90–0.87 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 144.5, 138.1, 131.2, 130.0, 128.6, 126.5, 125.6, 123.4, 33.2, 32.1, 29.7, 29.6, 29.5, 29.4, 29.0, 22.8, 15.8, 14.3; HRMS (m/z): [M+H]⁺ calcd. for C₁₈H₂₉, 245.2264; found, 245.2267.

1-decyl-3-vinylbenzene 4e (Supplementary Figs. 58–59): ¹H NMR (500 MHz, CDCl₃): δ 7.08–7.07 (m, J = 7.08 Hz, 3H), 6.93–6.91 (m, 1H), 6.58–6.51 (m, 1H), 5.61– 6.56 (d, J = 5.58 Hz, 1H), 5.08–5.05 (d, J = 5.07 Hz, 1H), 2.46–2.42 (m, 2H), 1.50–1.42 (m, 2H), 1.16–1.11 (m, 14H), 0.75–0.71 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 143.3, 137.6, 137.2, 128.5, 128.1, 126.5, 123.7, 113.6, 36.1, 32.1, 31.7, 29.8, 29.8, 29.7, 29.5, 29.5, 22.9, 14.3; HRMS (m/z): [M+H]⁺ calcd. for C₁₈H₂₉, 245.2264; found, 245.2261.

1-decyl-3-ethylbenzene 4f (Supplementary Figs. 60–61): ¹H NMR (500 MHz, CDCl₃): δ 7.25–7.22 (m, 1H), 7.06–7.03 (m, 3H), 2.69–2.60 (m, 4H), 1.68–1.62 (m, 2H), 1.36–1.26 (m, 17H), 0.94–0.91 (m, 3H); ¹³C NMR (125 MHz, CDCl3): δ 144.3, 143.1, 128.3, 128.2, 125.8, 125.2, 36.2, 32.1, 31.8, 29.8, 29.7, 29.6, 29.5, 29.0, 22.9, 15.8, 14.3; HRMS (m/z): $[M+H]^+$ calcd. for C₁₈H₃₁, 247.2420; found, 247.2418.

Supplementary Fig. 2 AC HAADF-STEM of N-C. Scale bar, 2 nm.

Supplementary Fig. 3 Fourier transform (FT) k^3 -weighted χ (k)-function of the EXAFS spectra for Pt L₃-edge and corresponding R-space fitting curves for the Pt₁/N-C catalyst.

Sample	Shell	$C.N.$ ^a	$R(A)^b$	σ^2 (\times 10 ⁻³ Å ²) ^c E ₀ (eV) ^d		
Pt_1/N -C	$Pt-N$	3.4	2.03 ± 0.02	3	0.7	
	$Pt-N-C$	2.2	$2.98 + 0.04$	2.5	5.4	

Supplementary Table 1. Structural Parameter of EXAFS fitting for the Pt₁/N-C

^a C.N.: coordination number; ^b R: bond distance; ^c σ^2 : Debye-waller factors; ^d E₀: the inner potential correction.

Supplementary Fig. 4 XANES Pt L₃ edge for Pt₁/N-C, PtO₂, and Pt foil.

Supplementary Fig. 5 a TEM image, **b** STEM image, and **c** particle size distribution of Pt-NPs/N-C(1:0). Scale bar, 20 nm.

Supplementary Fig. 6 a TEM image, **b** STEM image, and **c** XRD pattern of Ti₁/N-C.

Scale bar, 10 nm.

$Ti (wt\%)$ ^a	N $(wt\%)$ ^b	BET surface area $(m^2g^{-1})^c$
0.12	4.57	587

Supplementary Table 4. Ti content, N content, BET surface area for Ti₁/N-C

Supplementary Fig. 7 a TEM image, **b** STEM image, and **c** XRD pattern of V₁/N-C.

Scale bar, 10 nm.

V $(wt\%)^a$	$N(wt\%)$ ^b	BET surface area $(m^2g^{-1})^c$
0.19	5.05	656

Supplementary Table 5. V content, N content, BET surface area for $V_1/N-C$

Supplementary Fig. 8 a TEM image, **b** STEM image, and **c** XRD pattern of Cr₁/N-C.

Scale bar, 10 nm.

Supplementary Table 6. Cr content, N content, BET surface area for Cr_1/N -C

Supplementary Fig. 9 a TEM image, **b** STEM image, and **c** XRD pattern of Mn₁/N-

C. Scale bar, 10 nm.

Supplementary Table 7. Mn content, N content, BET surface area for Mn₁/N-C

Supplementary Fig. 10 a TEM image, **b** STEM image, and **c** XRD pattern of Fe₁/N-

C. Scale bar, 10 nm.

Supplementary Table 8. Fe content, N content, BET surface area for Fe₁/N-C

Supplementary Fig. 11 a TEM image, **b** STEM image, and **c** XRD pattern of Co1/N-

C. Scale bar, 10 nm.

Supplementary Fig. 12 a TEM image, **b** STEM image, and **c** XRD pattern of Ni₁/N-

C. Scale bar, 10 nm.

Supplementary Table 10. Ni content, N content, BET surface area for Ni₁/N-C

Supplementary Fig. 13 a TEM image, **b** STEM image, and **c** XRD pattern of Cu₁/N-

C. Scale bar, 10 nm.

Supplementary Fig. 14 a TEM image, **b** STEM image, and **c** XRD pattern of Ga₁/N-

C. Scale bar, 10 nm.

Supplementary Fig. 15 a TEM image, **b** STEM image, and **c** XRD pattern of Zr₁/N-

C. Scale bar, 10 nm.

Supplementary Table 13. Zr content, N content, BET surface area for Zr₁/N-C

Supplementary Fig. 16 a TEM image, **b** STEM image, and **c** XRD pattern of Mo₁/N-

C. Scale bar, 10 nm.

Supplementary Fig. 17 a TEM image, **b** STEM image, and **c** XRD pattern of Ru₁/N-

C. Scale bar, 10 nm.

Supplementary Fig. 18 a TEM image, **b** STEM image, and **c** XRD pattern of Rh₁/N-

C. Scale bar, 10 nm.

Supplementary Table 16. Rh content, N content, BET surface area for Rh₁/N-C

Supplementary Fig. 19 a TEM image, **b** STEM image, and **c** XRD pattern of Pd1/N-

C. Scale bar, 10 nm.

Supplementary Fig. 20 a TEM image, **b** STEM image, and **c** XRD pattern of Ag1/N-

C. Scale bar, 10 nm.

Supplementary Table 18. Ag content, N content, BET surface area for Ag₁/N-C

Supplementary Fig. 21 a TEM image, **b** STEM image, and **c** XRD pattern of Cd1/N-

C. Scale bar, 10 nm.

Supplementary Fig. 22 a TEM image, b STEM image, and c XRD pattern of In₁/N-C.

Scale bar, 10 nm.

Supplementary Table 20. In content, N content, BET surface area for In₁/N-C

Supplementary Fig. 23 a TEM image, **b** STEM image, and **c** XRD pattern of Sn₁/N-

C. Scale bar, 10 nm.

Supplementary Fig. 24 a TEM image, **b** STEM image, and **c** XRD pattern of Er₁/N-

C. Scale bar, 10 nm.

Supplementary Fig. 25 a TEM image, **b** STEM image, and **c** XRD pattern of W1/N-

C. Scale bar, 10 nm.

Supplementary Table 23. W content, N content, BET surface area for W₁/N-C

Supplementary Fig. 26 a TEM image, b STEM image, and c XRD pattern of Ir₁/N-C.

Scale bar, 10 nm.

Supplementary Table 24. Ir content, N content, BET surface area for Ir₁/N-C

Supplementary Fig. 27 a TEM image, **b** STEM image, and **c** XRD pattern of Au₁/N-

C. Scale bar, 10 nm.

Supplementary Table 25. Au content, N content, BET surface area for Au₁/N-C

Supplementary Fig. 28 a TEM image, **b** STEM image, and **c** XRD pattern of Bi₁/N-

C. Scale bar, 10 nm.

Supplementary Table 26. Bi content, N content, BET surface area for Bi₁/N-C

Supplementary Fig. 29 EXAFS data for M₁/N-C, corresponding metal oxides and metal foils (M= V, Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Mo, Ru, Rh, Pd, Sn, W, Ir, and Pt, respectively).

Supplementary Fig. 30 α TEM image, **b** STEM image and **c** XRD pattern of Pt₁/N-C(1:320). Scale bar, 10 nm.

Supplementary Table 27. Pt content, N content, BET surface area for Pt₁/N-

Supplementary Fig. 31 a TEM image, **b** STEM image and **c** XRD pattern of Pt₁/N-C(1:80). Scale bar, 10 nm.

Supplementary Fig. 32 a TEM image, b STEM image and **c** XRD pattern of Pt₁/N-C(1:20). Scale bar, 10 nm.

Supplementary Table 29. Pt content, N content, BET surface area for Pt₁/N-C(1:20)

Pt $(wt\%)$ ^a	N $(wt\%)^b$	BET surface area $(m^2g^{-1})^c$
0.73	4.85	656

Supplementary Fig. 33 a TEM image, **b** STEM image and **c** XRD pattern of Pt1-

Sn1/N-C. Scale bar, 10 nm.

Supplementary Table 30. Pt, Sn, and N content, BET surface area for Pt₁-Sn₁/N-C

Supplementary Fig. 34 XRD pattern of Pt-NCs/N-C.

Supplementary Fig. 35 XRD pattern of Pt-NPs/N-C.

Supplementary Fig. 36 Selective hydrogenation of **a** 1-nitro-4-ethynylbenzene, **b** 1 ethynyl-4-vinylbenzene, **c** 1-ethynyl-4-(phenylethynyl)benzene, and **d** 1-(dec-1-yn-1 yl)-3-ethynylbenzene on Pt₁/N-C. Reaction condition: substrate (0.5 mmol) , Pt₁/N-C (Pt:substrate = 1:1200, mol:mol), methanol (2.0 mL), H_2 (1.0 MPa). Reaction temperature: **a** and **b** 50 °C; **c** and **d** 80 °C.

Supplementary Table 33. Hydrogenation of substrates with internal alkyne on Pt catalysts with different aggregation states ^a

^a Substrates (1.0 mmol), catalyst (Pt:substrates = 1:1200, mol:mol), methanol (2.0 mL), 80 °C, H₂ (1.0 MPa). b Pt:substrates

 $= 1:4000$, mol:mol, 50 °C. All the conversions were maintained at <20%.

Supplementary Fig. 37 Schematic illustration of the hydrogenation of substrates with

terminal alkyne or internal alkyne on Pt SACs and Pt NPs.

Supplementary Fig. 38 Catalytic performance of $Pt_1/N-C$ in hydrogenation of **a** 1nitro-4-ethynylbenzene, **b** 1-ethynyl-4-vinylbenzene, **c** 1-ethynyl-4- (phenylethynyl)benzene, and **d** 1-(dec-1-yn-1-yl)-3-ethynylbenzene for 5 catalytic runs. Reaction condition: substrate (0.5 mmol) , catalyst $(Pt:substrate = 1:1200, \text{ mol}$; mol:mol), methanol (2.0 mL), H_2 (1.0 MPa). Reaction temperature: **a** and **b** 50 °C; **c** and **d** 80 °C. All the conversions were maintained at ~20%.

Supplementary Fig. 39 TEM, STEM, and AC HAADF-STEM images of Pt₁/N-C after 5 catalytic runs of hydrogenation of **a–c** 1-nitro-4-ethynylbenzene, **d–f** 1-ethynyl-4 vinylbenzene, **g–i** 1-ethynyl-4-(phenylethynyl)benzene, and **j–l** 1-(dec-1-yn-1-yl)-3 ethynylbenzene, respectively. Scale bar, 10 nm for TEM/STEM images, 2 nm for AC HAADF-STEM images.

Supplementary Fig. 40 ¹H NMR spectrum of 1-ethynyl-4-(phenylethynyl)benzene.

Supplementary Fig. 41 ¹³C NMR spectrum of 1-ethynyl-4-(phenylethynyl)benzene.

Supplementary Fig. 42¹H NMR spectrum of 1-(phenylethynyl)-4-vinylbenzene.

 -80.2

 $\begin{array}{c}\n 177.6 \\
178.4 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
171.7 \\
1$

Supplementary Fig. 43¹³C NMR spectrum of 1-(phenylethynyl)-4-vinylbenzene.

Supplementary Fig. 44 ¹H NMR spectrum of 1-ethyl-4-(phenylethynyl)benzene.

Supplementary Fig. 45¹³C NMR spectrum of 1-ethyl-4-(phenylethynyl)benzene.

Supplementary Fig. 46¹³C NMR spectrum of 1-styryl-4-vinylbenzene.

Supplementary Fig. 47 ¹³C NMR spectrum of 1-styryl-4-vinylbenzene.

Supplementary Fig. 48 ¹H NMR spectrum of 1-(dec-1-yn-1-yl)-3-ethynylbenzene.

Supplementary Fig. 49¹³C NMR spectrum of 1-(dec-1-yn-1-yl)-3-ethynylbenzene.

Supplementary Fig. 50 ¹H NMR spectrum of 1-(dec-1-yn-1-yl)-3-vinylbenzene.

Supplementary Fig. 51¹³C NMR spectrum of 1-(dec-1-yn-1-yl)-3-vinylbenzene.

Supplementary Fig. 52¹H NMR spectrum of 1-(dec-1-en-1-yl)-3-vinylbenzene.

Supplementary Fig. 53¹³C NMR spectrum of 1-(dec-1-en-1-yl)-3-vinylbenzene.

Supplementary Fig. 54 ¹H NMR spectrum of 1-decyl-3-ethynylbenzene.

Supplementary Fig. 55 ¹³C NMR spectrum of 1-decyl-3-ethynylbenzene.

Supplementary Fig. 56¹H NMR spectrum of 1-(dec-1-en-1-yl)-3-ethylbenzene.

Supplementary Fig. 57¹³C NMR spectrum of 1-(dec-1-en-1-yl)-3-ethylbenzene.

Supplementary Fig. 58 ¹³C NMR spectrum of 1-decyl-3-vinylbenzene.

Supplementary Fig. 59 ¹³C NMR spectrum of 1-decyl-3-vinylbenzene.

Supplementary Fig. 60¹³C NMR spectrum of 1-decyl-3-ethylbenzene.

Supplementary Fig. 61 ¹³C NMR spectrum of 1-decyl-3-ethylbenzene.

Supplementary References

- 1. Chen, Y., et al. State-of-the-art aluminum porphyrin-based heterogeneous catalysts for the chemical fixation of CO² into cyclic carbonates at ambient conditions. *ChemCatChem* **9**, 767– 773 (2017).
- 2. Stolzenberg, A. M., Haymond, G. S. Activation barriers to meso-aryl group rotation in titanyl tetraaryltetrapyrroles. an investigation of the out-of-plane flexibility of hydroporphyrins. *Inorg. Chem.* **41**, 300–308 (2002).
- 3. Kumar, R., Chaudhary, N., Sankar, M., Maurya, M. R. Electron deficient nonplanar βoctachlorovanadylporphyrin as a highly efficient and selective epoxidation catalyst for olefins. *Dalton Trans.* **44**, 17720–17729 (2015).
- 4. Chen, P., et al. Binding of propylene oxide to porphyrin- and salen-M(III) cations, where M = Al, Ga, Cr, and Co. *Inorg. Chem.* **44**, 2588–2595 (2005).
- 5. Han, Y., et al. Singly versus doubly reduced nickel porphyrins for proton reduction: experimental and theoretical evidence for a homolytic hydrogen-evolution reaction. *Angew. Chem. Int. Ed.* **55**, 5457–5462 (2016).
- 6. Ke, W.-z., et al. Synthesis and properties of a meso-tetraphenylporphyrin and its $Zn(II)$ complex with a dicyanoisophorone liked by double bond in the β pyrrolic position. *Inorg. Chem. Commun.* **14**, 1311–1313 (2011).
- 7. Bajju, G. D., et al. Synthesis, spectroscopic and biological studies on new zirconium(IV) porphyrins with axial ligand. *Bioinorg. Chem. Appl.*, **2013**, 903616 (2013).
- 8. Motorina, E. V., Lomova, T. N., Troshin, P. A., Klyuev, M. V. Novel 2'-(pyridin-4-yl)-5'- (pyridin-2-yl)-1'-(pyridin-2-yl)methylpyrrolidinyl[60]fullerene-hydroxyoxo(5,10,15,20 tetraphenyl-21H,23H-porphinato) molybdenum(V) dyads. *Russ. J. Gen. Chem.* **84**, 946–952 (2014).
- 9. Tanaka, K., et al. Auxiliary-directed oxidation of ursolic acid by 'Ru'-porphyrins: chemical modulation of cytotoxicity against tumor cell lines. *Tetrahedron Lett.* **53**, 1756–1759 (2012).
- 10. Nakamura, M., et al. Self-assembled molecular gear: A 4:1 complex of Rh(III)Cl tetraarylporphyrin and tetra(p-pyridyl)cavitand. *J. Am. Chem. Soc.* **138**, 12564–12577 (2016).
- 11. Wang, R.-F., et al. A hydrogen-bonded-supramolecular-polymer-based nanoprobe for ratiometric oxygen sensing in living cells. *Adv. Funct. Mater.* **26**, 5419–5425 (2016).
- 12. Bichan, N. G., Tyulyaeva, E. Y., Lomova, T. N. Structure and stability of H⁺ associates of (5,10,15,20-tetraphenylporphinato)silver(II) in trifluoroacetic acid. *Russ. J. Phys. Chem. A* **88**, 1345–1350 (2014).
- 13. Azenha, E. G., et al. Heavy-atom effects on metalloporphyrins and polyhalogenated porphyrins. *Chem. Phys.* **280**, 177–190 (2002).
- 14. Xu, L., Zhai, M.-K., Lu, X.-C., Du, H.-B. A robust indium-porphyrin framework for CO₂ capture and chemical transformation. *Dalton Trans.* **45**, 18730–18736 (2016).
- 15. Bai, D., Duan, S., Hai, L., Jing, H. Carbon dioxide fixation by cycloaddition with epoxides, catalyzed by biomimetic metalloporphyrins. *ChemCatChem* **4**, 1752–1758 (2012).
- 16. Santria, A., Fuyuhiro, A., Fukuda, T., Ishikawa, N. Synthesis of a series of heavy Lanthanide(III) monoporphyrinato complexes with tetragonal symmetry. *Inorg. Chem.* **56**, 10625–10632 (2017).
- 17. Motorina, E. V., Lomova, T. N. Hydroxyoxo(5,10,15,20-tetraphenylporphinato)tungsten(V) as a receptor for foodstuff and drug components. Thermodynamics of supramolecular complexation. *Russ. J. Inorg. Chem.* **55**, 727–733 (2010).
- 18. Wang, J.-C., et al. Enantioselective intramolecular carbene C-H insertion catalyzed by a chiral iridium(III) complex of D4-symmetric porphyrin ligand. *ACS Catal.* **3**, 1144–1148 (2013).
- 19. Borisov, S. M., Klimant, I. Efficient metalation in diphenyl ether A convenient route to luminescent platinum(II) complexes. *Dyes Pigm.* **83**, 312–316 (2009).
- 20. Dixon, I. M., Collin, J.-P., Sauvage, J.-P., Flamigni, L. Porphyrinic dyads and triads assembled around iridium(III) bis-terpyridine: Photoinduced electron transfer processes. *Inorg. Chem.* **40**, 5507–5517 (2001).
- 21. Gomes, M. L., et al. Synthesis and characterization of bismuth(III) and antimony(V) porphyrins: high antileishmanial activity against antimony-resistant parasite. *J. Biol. Inorg. Chem.* **20**, 771–779 (2015).