Supplementary Information

Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression

Flynn e*t al.*

Supplementary Table 1. PDX Models. The model number, breast cancer subtype, rate of xenograft metastasis, site of metastasis in the patient, and nodal status of the patient for each PDX model is described.

Model	Breast Cancer	Rate of xenograft	Patient Metastatic	Nodal Status
	Subtype	metastasis	Site	of Patient
BCM-3613	HER2+/ER-/PR-	23.8%	Brain	Not reported
BCM-4664	TNBC	0%	None	+
BCM-3963	HER2+/ER-/PR-	13.6%	Brain	+
BCM-4013	TNBC	21.4%	None	+
BCM-2664	TNBC	7.1%	None	-
BCM-4913	TNBC	0%	None	+
BCM-3887	TNBC	14.3%	Brain	-
BMC-3204	TNBC	28.6%	None	-

Supplementary Table 2. shRNAs. The gene, catalog number from Sigma Aldrich, sequence, and the identifying shRNA number are described for each shRNA used in this study.

Gene	Catalog Number	Sequence	shRNA designation
Atg3	Sigma Aldrich Cat. #	5'-CCGGTGTGACCATTGACCAT	shAtg3
	TRCN0000247441	ATTTACTCGAGTAAATATGGTCAAT	
		GGTCACATTTTTG	
Atg7	Sigma Aldrich Cat.	5'-CCGGGCCAACATCCCTGGAT	shAtg7_sh1
	#TRCN0000375444	ACAAGCTCGAGCTTGTATCCAGGG	
		ATGTTGGCTTTTTG	
	Sigma Aldrich Cat. #	5'-CCGGGCAGTGATGACCGCA	shAtg7_sh2
	TRCN0000305993	TGAATGCTCGAGCATTCATGCGGT	
		CATCACTGCTTTTTG	
	Sigma Aldrich Cat. #	5'-CCGGTTCTGTCACGGTTCGA	shAtg7_sh3
	TRCN0000305991	TAATGCTCGAGCATTATCGAACCG	
		TGACAGAATTTTTG	
p62/	Sigma Aldrich Cat. #	5'-CCGGCACCCTCCACCATTGT	shp62_sh1
SQST	TRCN0000238134	GATAGCTCGAGCTATCACAATGGT	
M1		GGAGGGIGIIIIG	
	Sigma Aldrich Cat. #	5'-CCGGIGIGGGGGGGACICG	shp62_sh2
	TRCN0000238135	CIAIAACICGAGIIAIAGCGAGII	
510000			
FIP200	Sigma Aldrich Cat. #	5-CCGGCCAACTTTAACACAGT	shFIP200_sh1
	TRCN0000331566		
	Ciama Aldrich Cat #		
	Sigma Aldrich Cat. #		SNFIP200_SN2
	TRCN0000304383		
	Sigma Aldrich Cat #		ahEID200 ah2
			511717200_5113
	1110110000004004		
Pfkfh2	Sigma Aldrich Cat #	5'-CCGGGTGTTCAATGTGGGA	shPfkfh3
	TRCN0000025418	GAGTATCTCGAGATACTCTCCCAC	
		ATTGAACACTTTTT	

Cell Line	Base Media	Supplements	
D2.HAN (D2.OR and D2.A1)	DMEM	10% FBS and 1% Pen/Strep	
4T1 Series (67NR, 4T07, 4T1)	DMEM	10% FBS and 1% Pen/Strep	
MDA-MB-231	DMEM	10% FBS and 1% Pen/Strep	
BT474	DMEM	10% FBS and 1% Pen/Strep	
MCF7	DMEM	10% FBS, 1 μg/mL insulin (Sigma	
		Aldrich) and 1% Pen/Strep	
T47D	RPMI-1640	10% FBS, 1 μg/mL insulin (Sigma	
		Aldrich), and 1% Pen/Strep	
BT549	RPMI-1640	10% FBS, 1 μg/mL insulin (Sigma	
		Aldrich), and 1% Pen/Strep	
HCC1806	RPMI-1640	10% FBS and 1% Pen/Strep	

Supplementary Table 3. Cell Line Culture Conditions for each human and murine cell line are described.

Supplementary Table 4. RT-PCR Primers. Gene, species, and primer sequences for each primer used in this study.

Gene Name	Species	Forward Primer	Reverse Primer
Pfkfb3	Mouse	5'-CGGGAGAGGTCAGAG AACAACATGA	5'-TTGGCCTCGAGAAGATGA GC
PFKFB3	Human	5'-GATGCCCTTCAGGAAA GCCT	5'-TCCCCGACGTTGAACACT TT
p62/ SQSTM1	Human	5'-CTATGGCGTCGCTCAC CGT	5'-CCGTCCTCATCGCGGTAG TG
Gapdh	Mouse	5'-CAACTTTGGCATTGTG GAAGGGCTC	5'-GCAGGGATGATGTTCTGG GC AGC
GAPDH	Human	5'-TCCATGACAACTTTGGT ATCGT	5'-AGTAGAGGCAGGGATGA TGTT

Antibody	Application		Dilution	Catalog Number
Pfkfb3	Western Blotting		1:1000	Abcam (ab181861)
p62/	Western Blotting		1:1000	Abcam (ab56416)
SQSTM1				
LC3B	Western Blotting		1:2500	Novus Bio (NB100-2220)
Atg3	Western Blotting		1:1000	Cell Signaling (# 3415)
Atg5	Western Blotting		1:1000	Cell Signaling (#12994)
Atg12	Western Blotting		1:1000	Cell Signaling (#4180)
Beclin-1	Western Blotting		1:1000	Cell Signaling (#3495)
GFP	Western Blotting		1:1000	Abcam (ab6556)
FLAG	Western Blotting/	Co-	1:750	Sigma (#F3165)
	immunoprecipitation			
HA	Western Blotting/	Co-	1:750	Abcam (ab16918)
	immunoprecipitation			
β-Actin	Western Blotting		1:20,000	Sigma
Pfkfb3	IHC		1:250	Abcam (ab181861)
p62/	IHC		50 μg/mL	Abcam (ab91526)
SQSTM1				
LC3B	IHC		1:1000	Novus Bio (NB100-2220)
Atg3	IHC		2.5 μg/mL	Thermo Fisher (720056)
LC3B-	Immunofluorescence		1:250	Abcam (ab225383)
AF647				
LAMP1-	Immunofluorescence		1:150	Abcam (ab67283)
Cy3				
CD24-	Flow cytometry		1:1000	BD (562563)
BV421				
CD49f-PE	Flow cytometry		1:1000	Invitrogen (12-0495-82)

Supplementary Table 5. Antibodies. The antibody, catalog number and staining condition dilution as well as the application for each antibody used in this study.

Gene Name	Gene Symbol	Fold-change
ABL	Abl1	1.54
Aldehyde Dehydrogenase 1 Family Member A3	Aldh1a3	0.01
Calreticulin	Calr	0.48
Cyclin A2	Ccna2	1.88
Cyclin B1	Ccnb1	3.73
Cyclin E1	Ccne1	2.94
CD44	CD44	0.61
Cell Division Cycle 25C	Cdc25c	2.28
Cyclin-dependent Kinase 2	Cdk2	2.10
Cyclin-dependent Kinase 4	Cdk4	2.23
Cyclin-dependent Kinase Inhibitor 1	Cdkn1a	0.30
Checkpoint Kinase 1	Chek1	4.03
Checkpoint Kinase 2	Chek2	1.78
Cbp/p300-interacting Transactivator 2	Cited2	6.10
Collagen type 1, alpha 1	Col1a1	0.01
Collagen type 3, alpha 1	Col3a1	0.31
Cellular Repressor of E1A-stimulated Genes 1	Creg1	4.02
E2F Transcription Factor 1	E2f1	3.63
E2F Transcription Factor 3	E2f3	1.75
Early Growth Response Protein 1	Egr1	0.37
Ets2	Ets2	2.38
Fibronectin	Fn1	3.61
Growth Arrest & DNA-damage Inducible Alpha	Gadd45a	0.24
Inhibitor of DNA-binding 1	ld1	0.42
Interferon Gamma	Infg	0.09
Insulin Growth Factor 1	lgf1	0.01
Insulin Growth Factor-binding Protein 5	lgfbp5	0.01
Interferon Regulatory Factor 3	Irf3	1.91
Interferon Regulatory Factor 5	Irf5	15.03
Interferon Regulatory Factor 7	Irf7	6.91
Mouse Double Minute 2	Mdm2	1.99
MORC3	Morc3	1.99
Мус	Мус	9.10
NADPH Oxidase 4	Nox4	2.89
Proliferating Cell Nuclear Antigen	Pcna	3.39
Urokinase	Plau	0.20
Phosphatase & Tensin Homolog	Pten	0.38
Retinoblastoma-like Protein 1	Rbl1	2.55
Superoxide Dismutase 1	Sod1	4.82
Secreted Protein Acidic & Cysteine Rich	Sparc	0.18
T-box Transcription Factor 2	Tbx2	2.44
T-box Transcription Factor 3	Tbx3	45.67
Telomeric Repeat Binding Factor 2	Terf2	1.89
Telomerase	Tert	12.22
Tumor protein 53	Trp53	0.01
Twist BHLH Transcription Factor 1	Twist1	1.82

Supplementary Figure 1: Flynn et al.

Supplementary Figure 1. D2.OR cells remain dormant in a 3D tissue culture system and express numerous senescence associated genes. **a** Senescence-associated genes are differentially expressed between dormant D2.OR and metastatic D2.A1 cells. Data are gene expression levels in D2.A1 cells normalized to D2.OR cells using a 1.5-fold cut-off. **b** D2.OR cells exhibit minimal

outgrowth in 3D-cultures as compared to their metastatic D2.A1 counterparts. Data represent mean (\pm STDEV) of biological replicates performed in triplicate (*****P*≤0.0001). This experiment was independently repeated for a total of 3 experiments, all with similar results.

Supplementary Figure 2: Flynn et al.

Supplementary Figure 2. Priming increases the stem cell frequency and decreases the latency of mammary fat pad tumor formation *in vivo*. D2.OR and D2.A1 primed and unprimed cells were inoculated into the mammary fat pads of BALB/C mice (Fig. 1). **a** Metastatic D2.A1 cells exhibit early outgrowth from the mammary fat pad. **b** Priming of dormant D2.OR cells decreases tumor latency while increasing stem cell frequency as determined by ELDA: Extreme Limiting Dilution Analysis http://bioinf.wehi.edu.au/software/elda/. The ELDA software uses a test to evaluate differences between population groups (analogous to one-way ANOVA) in Fig. 1C. Data represent n=5 mice/group.

Supplementary Figure 3: Flynn et al

Supplementary Figure 3. Measuring autophagic flux in dormant cells. **a** Autophagy flux mCherry-Height:GFP-Height ratio in "primed" D2.OR (3D) and "unprimed" D2.OR (2D) cells. **b** Immunofluorescence of LAMP1 (green) and LC3B (red) colocalization in dormant D2.OR and metastatic D2.A1 cells untreated and treated with chloroquine (50 μ M; CQ).

Supplementary Figure 4: Flynn et al

Supplementary Figure 4. Assessing autophagy status in human breast cancer tumor samples. The Case Comprehensive Cancer Center Breast Cancer TMA was stained for p62/SQSTM1, LC3 and ATG3. Representative IHC staining for these antigens are shown in panels **a**, **c**, and **e** Quantification of staining intensity levels of each of the cores on the TMA are highlighted in panels **b**, **d** and **f** 100 breast cancer sample cores were evaluated for each antigen.

Supplementary Figure 5: Flynn et al

Supplementary Figure 5. Modulating autophagy in dormant cells. Genetic inhibition of autophagy in dormant cells. **a** NMuMG, D2.OR, and D2.A1 cells were incubated in the absence (NT) or presence of either rapamycin (50 nM) or chloroquine (CQ) (10 μ M) for 0-24 hours (hrs) as indicated. Alterations in p62/SQSTM1 expression was monitored by immunoblotting. **b** D2.OR, D2.A1, MCF7, and NMuMG cells were incubated in the absence or presence of the autophagy inhibitor, chloroquine (CQ) under serum reduced (1%) conditions as indicated. Differences in cell viability were quantified by CellTiter-Glo Assay. Data are the mean (± S.E.M; n=3). **c** NMuMG cells are highly autophagic, while MCF7 cells exhibit low levels of basal autophagy. **d** Growth of dormant D2.OR cells in the absence or presence of \ 10 μ M or 50 μ M CQ in 3D-culture systems.

Supplementary Figure 6: Flynn et al

Supplementary Figure 6: Autophagy inhibition in dormant D2.OR cells. Depleting the expression of Atg3 (**a**; shAtg3), Atg7 (**b**; shAtg7), p62/SQSTM1 (**c**; shp62), and FIP200 (**d**; shFIP200) inhibits autophagy as determined by immunoblotting for p62/SQSTM1 and LC3B. **d** FIP200-deficiency promotes aberrant Pfkfb3 expression in D2.OR cells and **e**, induces their outgrowth in 3D-cultures. Data represent mean (±STDEV of biological replicates performed in triplicate. This experiment was independently repeated for a total of three experiments, all with similar results. (**e**). **f** Depleting Atg3 expression renders D2.OR cells more sensitive to the Pfkfb3 inhibitor, PFK158. Data represent mean (±STDEV) of biological replicates performed in triplicate (** *P*≤ 0.01 and ****P*≤0.001). This experiment was independently repeated for a total of 3 experiments, all with similar results.

Supplementary Figure 7: Flynn et al

Supplementary Figure 7. p62/SQSTM1 binds to ubiquitinated Pfkfb3. HEK-293 cells were transiently transfected with empty vector or p62/ SQSTM1 fused to GFP (pDestEGFP-p62). **a** p62 mRNA expression. Data represent mean (±STDEV) of replicates performed in triplicate (**** *P*<0.0001). This experiment was independently repeated for a total of 3 experiments, all with similar results. **b** Alterations in p62/SQSTM1, GFP, and Pfkfb3 expression were monitored by immunoblotting. **c** Immunoblot (IB) analysis of HEK-293 cells transiently transfected with FLAG-tagged Pfkfb3, HA-tagged Ubiquitin (Ub-HA), or GFP-tagged p62/SQSTM1 mutants. Subsequently, anti-FLAG immunocomplexes were captured and immunoblotted with antibodies against FLAG or HA as indicated. **d** Knockdown of Atg3 and Atg7 does not significantly impact the expression levels of Pfkfb3 mRNA after 8 passages following autophagy inactivation.

Supplementary Figure 8: Flynn et al

Supplementary Figure 8. Gating strategy.

Supplementary Figure 9. Uncropped gel images

Figure 3a 02.02 MAH 33-20 02.0201419720 0 3 02.02.01AHg320 02. RenAig7 20 220 4 ā Zso 20 2 63 250 24 22 54 63 4 150 150 -100 100 75 PFEFD3 PFEF63 50 60 p-action 60 B-OCHA 37

Figure 4b

Figure 4c

Figure 5b

Figure 3f

4 CC 18 OC

0447 87649 NOA-NG-231

PEREB

Actio

BTHTH MCF7 Figure 6a

Figure 6b

Figure 6c

OSEUND

PFEFE

HELOIS

GFP-MAD

100 ----

37

160 16

60

87 -25 -

B-activ

Figure 7c

293 PG2 WT

PFEFb3

293

293 PEZ WT

GFP

293

293 PG2 WT

293

PGZ

1111

50

37

25 -

Figure 7e

B-2000

14AUg18