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S1. Discrete model simulation
In this section, we describe how to perform simulations with the discrete model.

(a) Discrete equations
Here, we describe the method to solve Equation (S1.1), governing the discrete model, with
m springs per cell, for the position of each spring boundary, x(ν)i , for i= 1, 2, . . . , N and

ν = 1, 2, . . . ,m and x(1)N+1. The equations are included here for convenience:

η(ν)
dx

(ν)
i

dt
= f

(ν+1)
i − f (ν)i ; (S1.1)

f
(ν)
i = k

(ν−1)
i

(
x
(ν)
i − x(ν−1)

i − a(ν−1)
i

)
. (S1.2)

(b) Converting cell density into initial positions
We now explain how to convert an initial distribution of density, q0(x), into an initial condition
for the discrete model by determining the initial spring boundary positions, x(ν)i = x

(ν)
i (0), for

i= 1, 2, . . . , N and ν = 1, 2, . . . ,m, and x
(1)
N+1. To solve for these positions we use the Matlab

fsolve function [1] applied to the system of the equations

x
(1)
1 = 0, (S1.3)

1

x
(ν−1)
i − x(ν)i

+
1

x
(ν)
i − x(ν+1)

i

x
(ν+1)
i − x(ν−1)

i

2

−m∂q0(x)

∂x

∣∣∣∣
x=xνi

= 0, (S1.4)

x
(1)
N+1 =L. (S1.5)

Equations (S1.3) and (S1.5) arise from the fixed boundary conditions. Equation (S1.4) arises from
equating the approximate numerical gradient of the density from the discrete system at a position
x
(ν)
i with the gradient of q0(x) at the same position. To evaluate the numerical gradient we use

the midpoints of the domains x(ν−1)
i <x<x

(ν)
i and x

(ν)
i <x<x

(ν+1)
i+1 . The density in the first

domain is given by 1/
[
m
(
x
(ν)
i − x(ν−1)

i

)]
and similarly 1/

[(
m(x

(ν+1)
i − x(ν)i

)]
for the second

domain (Figure S1).

(c) Assigning spring properties
In this section we explain our approach to assigning spring properties assuming that we know the
initial cell boundary positions, x(ν)i , the initial cell stiffness distribution, k0(x), and initial resting
cell length distribution, a0(x). Here we consider the cell stiffness initial condition and note that
the same ideas apply to assign the resting cell length. We consider spring ν in cell i, located at

x
(ν)
i <x<x

(ν+1)
i ; let x̃

(ν)

i be the position of the median of k0(x) in this domain, and use this to

define the discrete spring stiffness as k(ν)i =mk0

(
x̃
(ν)
i

)
(Figure S2). For the resting cell length this

would be a(ν)i = a0

(
x̃
(ν)
i

)
/m. This median position, x̃(ν)i , is solved for by equating the integral

of the initial condition spring stiffness function in x(ν)i <x< x̃
(ν)
i and x̃(ν)i <x<x

(ν+1)
i ,∫ x̃(ν)

i

x
(ν)
i

k0(x) dx=

∫x(ν+1)
i

x̃
(ν)
i

k0(x) dx. (S1.6)
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Figure S1. Schematic to determine the approximate numerical gradient of the density from the discrete system at position

xνi .
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(ν)~

~
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Figure S2. Schematic to determine the position x̃(ν)i used to define the discrete spring stiffness value for spring ν in

cell i, k(ν)i =mk0

(
x̃
(ν)
i

)
.

(d) Numerical methods
This discrete model, with m springs per cell, is governed by Equations (S1.1) with the fixed
boundary conditions x(1)1 = 0, x(1)N+1 =L. Appropriate scalings of the cell properties are required

to determine the spring properties, k(ν)i =mk0

(
x̃
(ν)
i

)
and a

(ν)
i = a0

(
x̃
(ν)
i

)
/m. The viscosity

coefficient must also be scaled appropriately through η(ν) = η/m. These form a system ofNm− 1

ordinary differential equations, with the two boundary conditions, and initial conditions for the
positions, x(ν)i , spring stiffnesses, k(ν)i , and resting spring lengths, a(ν)i , of each spring ν in cell
i, and viscosity coefficient for the system, η(ν). We solve this system using Matlab ode15s [2].
Alternatively, this system can be analysed with an eigenmode decomposition which is convenient
to determine the steady state.
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S2. Continuum model simulation
Here we describe the numerical method used to solve the partial differential equations associated
with the continuum description.

(a) Discretisation scheme
For convenience we re-state the governing equations:

∂q(x, t)

∂t
=−1

η

∂2f(x, t)

∂x2
; (S2.1)

∂k(x, t)

∂t
=−1

η

1

q(x, t)

∂f

∂x

∂k(x, t)

∂x
; (S2.2)

∂a(x, t)

∂t
=−1

η

1

q(x, t)

∂f

∂x

∂a(x, t)

∂x
; (S2.3)

f(x, t) = k(x, t)

(
1

q(x, t)
− a(x, t)

)
. (S2.4)

The first step is to substitute the interaction force from Equation (S2.4) into Equations (S2.1),
(S2.2) and (S2.3). We solve Equation (S2.1) implicitly, and we solve Equations (S2.2) and (S2.3) for
the cell stiffness and resting cell length, respectively, explicitly [4]. First, we uniformly discretise
the domain with nodes spaced ∆x apart. The nodes are indexed j = 1, . . . , R, where R is the
total number of spatial nodes. We apply an upwinding scheme using a numerically determined
velocity at each node, which is defined for node j and time step n as vnj , given by

vnj =
1

η

1

qnj

[
knj+1

(
1

qnj+1

− anj+1

)
− knj−1

(
1

qnj−1

− anj−1

)]
. (S2.5)

We use non-constant time stepping for efficiency with the timestep to advance the numerical
solution from timestep n to timestep n+ 1 denoted∆tn. The value of this timestep is determined
based on the maximum numerical velocity across all nodes at time n, maxj(v

n
j ), and is chosen

as ∆tn =min
(
0.001(∆x)2, 0.00001(∆x)2/maxj(v

n
j )
)

, where ∆x= 0.01 to produce Figure 4 and
Supplementary Figures S3, S4 and S6, and ∆x= 0.05 otherwise.

We solve Equation (S2.1) using a Crank-Nicolson approximation. At the central nodes we have

qn+1
j − qnj
∆tn

=− 1

2

1

(∆x)2

[
knj+1

η

(
1

qnj+1

− anj+1

)
− 2

knj
η

(
1

qnj
− anj

)
+
knj−1

η

(
1

qnj−1

− anj−1

)]

− 1

2

1

(∆x)2

[
kn+1
j+1

η

(
1

qn+1
j+1

− an+1
j+1

)
− 2

kn+1
j

η

(
1

qn+1
j

− an+1
j

)
+
kn+1
j−1

η

(
1

qn+1
j−1

− an+1
j−1

)]
,

j = 3, . . . , R− 2, n= 0, . . . T,

(S2.6)

where we use the approximation

1

qn+1
j

=
qn+1
j(
qnj

)2 , (S2.7)

for the terms at timestep n+ 1 on the right-hand side of Equation (S2.6). This approximation
allows us to write the discretised system of equations in tridiagonal form. For the boundary
condition at x= 0, corresponding to node j = 1, we apply a second order forward difference
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stencil so that

qn1 = 1

/[
an1 +

4kn2
3kn1

(
1

qn2
− an2

)
− kn3

3kn1

(
1

qn3
− an3

)]
. (S2.8)

To obtain the equation for node j = 2 we set j = 2 in Equation (S2.6) and replace qn1 with Equation
(S2.8). Similarly, to obtain an equation for node j =R at the right boundary x=L we apply a
second order backwards difference stencil,

qnR = 1

/[
anR −

knR−2

3knR

(
1

qnR−2

− anR−2

)
+

4knR−1

3knR

(
1

qnR−1

− anR−1

)]
. (S2.9)

This allows us to form an equation for node j =R− 1 also. Now we use the Thomas algorithm [3]
to advance one time step for the equations governing nodes j = 2, . . . , R− 1. Using the results
for nodes j = 2, . . . , R− 1 and Equations (S2.8) and (S2.9) we can update the boundary nodes
qn+1
1 , qn+1

R .
While performing each temporal step we must also update the cell stiffnesses, knj , and resting

cell lengths, anj , at each node. At the boundaries, x= 0 and x=L, corresponding to nodes
j = 1 and j =R, these cell properties are fixed so kn1 = k01 and an1 = a01 for n= 1, . . . , T . For
the interior nodes j = 2, . . . , R− 1, we apply an explicit method with upwinding. The sign of
maxj(v

n
j ) determines whether we apply forward or backward difference stencils. For example, if

maxj(v
n
j )> 0 then we apply a backward first order difference to the cell stiffness, Equation (S2.2),

kn+1
j − knj
∆tn

=−1

η

knj − k
n
j−1

(∆x)2

[
knj

(
1

qnj
− anj

)
− knj−1

(
1

qnj−1

− anj−1

)]
, j = 2, . . . , R− 1.

(S2.10)

Cell properties are constant along cell boundary trajectories. Therefore, if we have a cell property
which is initially homogeneous it will remain homogeneous. The numerical method can then be
simplified by not simulating the related cell property equation and replacing its appearance in
the other equations with its constant value.
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S3. Steady state analysis for two tissue model
We obtain an analytical expression for the steady state position of the interface, S, between
two distinct adjacent tissues. Suppose that the left-most tissue is characterised by N1 cells with
stiffness k1 and resting spring length a1, for 0<x< S. Similarly, suppose that the right-most
tissue is characterised by N2 cells with stiffness k2 and resting spring length a2 for S <x<L.
Considering the continuum system given by Equations (S2.1), (S2.2), (S2.3), and (S2.4) for each
tissue at steady state, the equations governing the evolution of the cellular properties are trivially
solved as we have a homogeneous cell population in each tissue. However, solving Equation
(S2.1) and applying the no flux density boundary conditions gives, for the first tissue,

k1
η

(
1

q1
− a1

)
= c1, 0<x< S, (S3.1)

where c1 is an arbitrary constant. At steady state the forces at the interface, x= S, are at
equilibrium, giving,

k1
η

(
1

q1
− a1

)
=
k2
η

(
1

q2
− a2

)
. (S3.2)

Relating this mesocopic density to the microscopic density for the tissue we have

q1 =
N1

S , q2 =
N2

L− S .
(S3.3)

Substituting Equation (S3.3) into Equation (S3.2) and rearranging gives

S =

k1a1
k2

+
L

N2
− a2

k1
k2N1

+
1

N2

. (S3.4)

S4. Breast cancer detection case study: model implementation
Here we present our method to obtain a user specified steady state cell stiffness histogram
consistent with the initial ki by choosing the initial condition for the resting spring length, ai.

(a) Choosing the resting spring length to choose the steady state
The possible final steady state spring stiffness histogram distributions must be consistent with
the initial ki as spring properties are constant along cell trajectories. For illustrative purposes we
choose the steady state spring stiffness histogram distribution we wish to obtain as guided by
experimental results [5]. With this choice we can read off the histogram frequencies that describe
the coverage of the each histogram interval at steady state. For simplicity, we assume that cells
with ki in the same histogram interval are of equal length at steady state. Then the length of each
cell in a histogram interval is given by the total length of cells in the histogram interval divided by
the number of cells in the interval. As we have an initial ordering of the cells and each cell length
at steady state we can now readily determine the steady state cell boundary positions. Returning
to Equation (S1.1), with a single spring per cell, at steady state and the fixed boundary conditions
x1 = 0, xN+1 =L, we now know every xi and ki and we can solve this system ofN + 1 nonlinear
equations to find each ai, using fsolve in MATLAB [1]. A simulation is then initiated with these
ai. This simulation reaches the steady state spring stiffness histogram distribution we chose to
obtain.
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S5. Supplementary Figures
In this section we present the supplementary figures which are referenced in the main text.

Heterogeneous k and homogeneous a. Even though a is homogeneous, the resting cell length
is still a key factor as it determines whether the system is, on average, in extension or in
compression. This is determined by comparing the resting spring length, a(ν)i , with the critical
value, acrit =L/(mN), which is the average length of a spring. In Figure 3 we consider a< acrit
so that on average cells are in extension. We present other cases, where a= acrit and a> acrit,
in Supplementary Figures S3 and S4. We choose the initial cell stiffness distribution to be
k0(x) = 1 + 0.1[x− (L/2)]2. Figure S3, depicts how the system relaxes to a uniform density
distribution, due to the combination of a= acrit and the cell stiffness heterogeneity, as the velocity
field u tends to zero.

It is notable that even for lowmwe have excellent agreement between the discrete density and
the continuum density especially at the centre of each spring. However, agreement at the spring
boundaries does not hold as well for low m.

Heterogeneous a. We see similar discrete-continuum agreement when we consider examples
with homogeneous k and heterogeneous a, and heterogeneous k and heterogeneous a, see
Supplementary Figures S5 and S6, respectively. We observe higher cell density in regions of lower
a which agrees with the steady state solution to the coarse-grained model, Equation (3.2) in the
main paper.



8

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
.................................................

0.0 2.5 5.0 7.5 10.0
x

0.00

0.05

0.10

t

0.0 2.5 5.0 7.5 10.0

0

5

10

15

t

0.0 2.5 5.0 7.5 10.0

0

5

10

15

t

0.0 2.5 5.0 7.5 10.0
0

1

2

3

4

k

0.0 2.5 5.0 7.5 10.0
0

1

2

3

4

k

0.0 2.5 5.0 7.5 10.0
0

1

2

3

4

k

0.0 2.5 5.0 7.5 10.0
0

1

2

3

q

0.0 2.5 5.0 7.5 10.0
0

1

2

3

q

0.0 2.5 5.0 7.5 10.0
0

1

2

3

q

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

t=0.00

t=2.50

t=15.00

q k

1.5

2.0

2.5

3.0

0.6

0.8

1.0

1.2

1.4

0.0 2.5 5.0 7.5 10.0
x

-20

-10

0

10

20

u

-5

0

5

(i) (j)u

Figure S3. Results for heterogeneous cell stiffness and homogeneous cell spring length for cells in extension, with N =

10, k0(x) = 1 + 0.1(x− 5)2, and a0(x) = 1. (a,b) Characteristic diagram for spring boundary position evolution for

0.00≤ t≤ 16.25 with m= 4 so that every fourth trajectory represents a cell boundary. Colour denotes (a) cell density,

(b) cell stiffness. In (a,b) black lines and dots represent times for snapshots in (c-h). (c,e,g) Cell density snapshots at

t= 0.00, 2.50, 15.00. (d,f,h) Cell stiffness snapshots at t= 0.00, 2.50, 15.00. In (c-h) lines display results from m= 1

(blue), 2 (red), 4 (yellow), and continuum system (black). (i) Characteristic diagram for spring boundary position evolution

for 0.00≤ t≤ 0.10. Colour denotes velocity. (j) Velocity snapshots at t= 0.00 (blue), 0.05 (green), 2.50 (yellow), 15.00

(magenta). Dashed/solid line represent solutions from discrete model with m= 4 and continuum model, respectively.
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Figure S4. Results for heterogeneous cell stiffness and homogeneous resting cell length, for cells on average in

compression, with N = 10, k0(x) = 1 + 0.1(x− 5)2, and a0(x) = 2. (a,b) Characteristic diagram for spring boundary

position evolution for 0.00≤ t≤ 16.25 with m= 4 so that every fourth trajectory represents a cell boundary. Colour

denotes (a) cell density, (b) cell stiffness. In (a,b) black lines and dots represent times for snapshots in (c-h). (c,e,g) Cell

density snapshots at t= 0.00, 2.50, 15.00. (d,f,h) Cell stiffness snapshots at t= 0.00, 2.50, 15.00. In (c-h) lines display

results from m= 1 (blue), 2 (red), 4 (yellow), and continuum system (black).
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Figure S5. Results for homogeneous k and heterogeneous a for cells on average not in extension or compression,

with N = 10, k0(x) = 1, and a0(x) = 0.05x. (a,b) Characteristic diagram for spring boundary position evolution for

0.00≤ t≤ 16.25, with m= 4 so that every fourth trajectory represents a cell boundary. Colour denotes (a) cell density,

(b) resting cell length. In (a,b) black lines and dots represent times for snapshots in (c-h). (c,e,g) Cell density snapshots

at t= 0.00, 2.50, 15.00. (d,f,h) Resting cell length snapshots at t= 0.00, 2.50, 15.00. In (c-h) lines display results from

N = 10 with m= 1 (blue), 2 (red), and continuum system (black).
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Figure S6. Results for heterogeneous cell stiffness and heterogeneous resting cell length, with N = 10,

k0(x) = 1 + 0.1(x− 5)2 and a0(x) = 0.05x. (a,b,c) Characteristic diagram for spring boundary position evolution for

0.00≤ t≤ 16.25 with m= 4 so that every fourth trajectory represents a cell boundary. Colour denotes (a) cell density,

(b) cell stiffness, (c) resting cell length. In (a,b,c) black lines and dots represent times for snapshots in (d-l). (d,g,j)

Cell density snapshots at t= 0.00, 1.25, 15.00. (e,h,k ) Cell stiffness snapshots at t= 0.00, 1.25, 15.00. (f,i,l) Resting

cell length snapshots at t= 0.00, 1.25, 15.00. In (d-l) lines display results from m= 1 (blue), 2 (red), 4 (yellow), and

continuum system (black).
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