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Fig. S1: Overview of the simulated base population. We aimed to capture the genomic landscape of chro-
mosome arm 2L of D. melanogaster . A) The recombination rate (top panel; from Comeron et al. (2012))
and the nucleotide diversity (bottom panel) of the base population. The nucleotide diversity mirrors the
level of polymorphism of a natural D. melanogaster population caught in Vienna (Bastide et al., 2013). The
window size size is 100kb. The shaded area shows the genomic subset used for slow tools (10 − 12Mbp). C)
Site frequency spectrum of derived alleles.
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Fig. S2: Overview of the effect sizes (left) and the starting allele frequency of the targets of selection for
the three simulated scenarios. The sum over all 100 replicates is shown (3, 000 loci; 30 ∗ 100). For the
sweep model all selected loci had an identical effect size whereas for the quantitative models (stabilizing and
truncating selection) the effect sizes were drawn from a gamma distribution with shape = 0.42 and scale = 1.
Note that all selected loci had an initial allele frequency between 5% and 95% (grey shades indicate excluded
regions).

3



−20

−10

0

10

p
h
e
n
o
ty
p
e

−4

−2

0

2

4

6

−4

0

4

p
h
e
n
o
ty
p
e

−5

0

5

−10

−5

0

5

10

p
h
e
n
o
ty
p
e

−4

−2

0

2

4

6

−10

−5

0

5

10

0 20 40 60

p
h
e
n
o
ty
p
e

−5

0

5

10

0 20 40 60

generations

Fig. S3: Boxplots showing phenotypic values for individuals of a population at different generations during
an E&R studies with stabilizing selection. Red dashed lines indicate the trait optimum. Eight randomly
drawn replicates are shown (out of 1000 simulated ones).
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Fig. S4: Trajectories of selected SNPs for the sweep model. Four randomly drawn replicates are shown (out
of 1000 simulated ones).
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Fig. S5: Trajectories of the quantitative trait loci for truncating selection. Trajectories are shown for strong
(dark blue; e > 1) and weak effect loci (light blue; e ≤ 1). Four randomly drawn replicates are shown (out
of 1000 simulated ones).
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Fig. S6: Trajectories of the quantitative trait loci for stabilizing selection. Trajectories are shown for strong
(dark blue; e > 1) and weak effect loci (light blue; e ≤ 1). Four randomly drawn replicates are shown (out
of 1000 simulated ones).
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Fig. S7: Performance of the tools under three scenarios with a subset of the data (a 2Mb region of chromosome
2L). The performance of tools supporting replicates (left panels) and not supporting (right panels) replicates
was analyzed separately. The performance of a random classifier is shown as reference (black doted line) A)
selective sweeps B) truncating selection C) stabilizing selection
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Fig. S8: Performance of FIT2 for truncating selection with (red) and without (black) a small Gaussian
random number (µ = 0, σ = 0.00001) added to the F60 allele frequencies.
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Fig. S9: Heterogeneity of the response to selection in the three scenarios. The boxplots display the coefficient

of variation (CV) defined as sd(dxr)

δ̂
for all targets of selection (3000; outliers not shown). The median CV

per scenario is as follows: CVstab. = 3.230, CVtrunc. = 2.518, CVsweep = 3.144.
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Fig. S10: Correlation of the test statistics for the data of Barghi et al. (2019), Papkou et al. (2019) and
Burke et al. (2014)
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Supplementary tables

Table S1: Technical difficulties encountered with different tools. We were thus unable to evaluate the
performance of these tools.

tool difficulty
Malaspinas et al. (2012) The tool could not be obtained because the author did not re-

spond.
Stern et al. (2019) Haplotype information is required for each time point
Ferrer-Admetlla et al. (2016) We were not able to find parameters that yield estimates of s that

differed from 0.
Steinrücken et al. (2014) We were not able to obtain positive likelihoods in all scenarios.
Bollback et al. (2008) Tool not available
Schraiber et al. (2016) Requirements not fulfilled. The sample size needs to be small

relative to the population size but in our simulations they are
identical.

Terhorst et al. (2015) Testing this tool exceeded our computing capacity: each replicate
took around 480h and required a large amount of memory (several
GBs) for a subset of the data (2MB region).

Sackman et al. (2019) This method is almost identical to WFABC. The only difference is
that this method allows for a skewed offspring distributions, which
is however not expected for our simulated scenarios (Wright-Fisher
simulations).
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Table S2: Links to tools used in this study. In case a version is not available we provide the date of the
download.

tool version link
CLEAR 01/24/2019 https://github.com/airanmehr/CLEAR

cmh 1201 https://sourceforge.net/p/popoolation2/

E&R-cmh 1.0.1 https://github.com/MartaPelizzola/ACER

LLS 0.3.5 https://github.com/ThomasTaus/poolSeq

LRT-1/2 03/27/2019 provided by the author (A. Feder)
GLM 03/20/2019 adapted from https://github.com/RAWWiberg/ER_PoolSeq_

Simulations

LM 03/20/2019 adapted from https://github.com/RAWWiberg/ER_PoolSeq_

Simulations

BBGP 0.1.4 https://github.com/PROBIC/GPrank

FIT1/2 03/27/2019 provided by the author (J. K. Kelly)
WFABC 1.1 http://jjensenlab.org/software

slattice 1.0 https://github.com/mathii/slattice/

χ2 0.3.5 https://github.com/ThomasTaus/poolSeq

E&R-χ2 1.0.1 https://github.com/MartaPelizzola/ACER
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