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Supplementary Figures 

 

Supplementary Figure 1. Time series of deglacial meltwater melt fluxes separated into subglacial 

meltwater, runoff and iceberg fluxes from northern hemisphere ice sheets (North American ice sheet 

complex, Eurasian, Greenland) from the 25 kyr B.P. to the present day. HS = Heinrich Stadial, MP = 

Meltwater Pulse. 

 

 

 

  



Supplementary Figure 2. Map indicating the locations of sub-Antarctic marine cores presented in 

Figure 5 (main manuscript), along with the location of the EPICA Dome C core, the present day Polar 

Front position and the estimated LGM ice sheet extent. 

 

  



Supplementary Tables 

 
 

Supplementary Table 1. Estimated dissolved concentrations of nutrients and organic carbon associated 

with Greenland and Antarctic freshwater fluxes (all values to 3/4 sig. figs).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Concentrations Dissolved Species - Northern Hemisphere (Greenland)

RUNOFF ICEBERGS 

min mid max min mid max

FW Flux (km
3
 a

-1
) 404 545 728 494 498 501

DIN (µM) 0.500 1.50 7.50 0.500 1.40 2.30

DIP (µM) 0.160 0.230 0.300 n/a n/a n/a

DFe (µM) 0.232 0.706 4.74 n/a n/a n/a

DSi (µM) 0.800 9.60 41.4 n/a n/a n/a

DOC (µM) 6.46 29.6 97.2 0.833 5.83 15.8

Concentrations Particulate Species - Northern Hemisphere (Greenland)

RUNOFF ICEBERGS 

min mid max min mid max

Sediment Flux (Tg a
-1

) 260 604 2822 138 249 401

PIN (µM-runoff, % bergs) 0.300 1.40 3.70 0.0000110 0.000150 0.00389

PIP (%) 0.000710 0.00151 0.00072 0.000190 0.000690 0.00120

PFe (%) 0.110 0.150 0.180 0.0300 0.0760 0.194

PSi (%) 0.510 0.910 1.21 0.160 0.280 0.470

POC (%) 0.0250 0.0675 0.132 0.185 0.440 0.660

jemmawadham
Sticky Note
these units have been corrupted. They should be uM (where the u is the greek Mu)



Supplementary Table 2 Estimated sediment-bound concentrations of nutrients and organic carbon 

associated with Greenland and Antarctic freshwater fluxes (all values to 3/4 sig. figs).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Concentrations Dissolved Species - Southern Hemisphere (Antarctica)

RUNOFF ICEBERGS 

min mid max min mid max

FW Flux (km
3
 a

-1
) 41.0 65.0 79.3 1231 1562 1893

DIN (µM) 2.10 3.30 4.50 0.375 2.93 5.54

DIP (µM) 2.40 3.10 3.80 n/a n/a n/a

DFe (µM) 0.470 4.70 47.0 n/a n/a n/a

DSi (µM) 130 140 210 n/a n/a n/a

DOC (µM) 166 221 276 0.833 25.0 71.7

Concentrations Particulate Species - Southern Hemisphere (Antarctica)

RUNOFF ICEBERGS 

min mid max min mid max

Sediment Flux (Tg a
-1

) 26 72 307 345 781 1514

PIN (µM-runoff, % bergs) 0.300 1.400 3.70 0.0000110 0.000150 0.00389

PIP (%) 0.000710 0.00151 0.00072 0.000190 0.000690 0.00120

PFe (%) 0.110 0.150 0.180 0.0300 0.076 0.194

PSi (%) 0.510 0.910 1.21 0.160 0.280 0.470

POC (%) 0.100 0.461 1.00 0.100 0.461 1.00

jemmawadham
Sticky Note
same issue here with formatting of the units. Should be greek Mu and then "M".



Supplementary Table 3 Fluxes of nutrients and organic carbon associated with freshwater fluxes from 

present day (Greenland, Antarctic) and former (northern hemisphere only) ice sheets. All values quoted 

to 3 sig. figs. 

 

 

 

 

 

 
 

 

  

PRESENT DAY

Northern Hemisphere (Greenland)

Fluxes (Gg a
-1

) Fluxes (Gg a
-1

) Fluxes (Gg a
-1

) Fluxes (Tg a
-1

)

min mid max min mid max min mid max Runoff Icebergs Total Upwelling E Greenland

Runoff - dissolved Runoff - SPM Icebergs TOTAL (mid) Cape et al (2019)

N 2.83 11.4 57.2 1.45 9.16 32.3 3.52 10.2 31.7 0.0206 0.0102 0.0308 0.012-0.040

P 2.00 3.88 6.76 1.84 9.13 20.3 0.263 1.72 4.81 0.0130 0.0017 0.0147 0.002 - 0.009

Fluxes (Tg a
-1

) Fluxes (Tg a
-1

) Fluxes (Tg a
-1

) Fluxes (Tg a
-1

)

Fe 0.00523 0.0215 0.193 0.286 0.907 5.08 0.0415 0.189 0.778 0.928 0.189 1.12 n.d.

Si 0.00905 0.146 0.844 1.32 5.50 34.1 0.221 0.697 1.88 5.65 0.697 6.34 0.014-0.066

OC 0.0313 0.193 0.849 0.0649 0.408 3.72 0.261 1.13 2.74 0.601 1.13 1.73

Southern Hemisphere

min mid max min mid max min mid max

Runoff - dissolved Runoff - SPM Icebergs TOTAL (mid)

Fluxes (Gg a
-1

) Fluxes (Gg a
-1

) Fluxes (Gg a
-1

) Fluxes (Tg a
-1

)

N 1.21 3.00 5.00 0.172 1.27 4.11 6.50 65.2 147 0.00428 0.0652 0.0695

P 1.77 3.63 5.42 0.187 1.09 2.21 0.65 5.39 18.2 0.00472 0.00539 0.0101

Fluxes (Tg a
-1

) Fluxes (Tg a
-1

) Fluxes (Tg a
-1

) Fluxes (Tg a
-1

)

Fe 0.00108 0.0171 0.208 0.0290 0.108 0.55 0.103 0.594 2.94 0.125 0.594 0.719

Si 0.149 0.255 0.466 0.134 0.656 3.7 0.551 2.19 7.12 0.911 2.19 3.10

OC 0.0817 0.172 0.263 0.0264 0.332 3.1 0.71 4.07 15.7 0.505 4.07 4.57

Peak Deglaciation (14.5 kyr B.P.)

Northern Hemisphere (Greenland, Laurentide, European)

min mid max min mid max min mid max

Runoff - dissolved Runoff - SPM Icebergs TOTAL (mid)

N 61.9 251 1600 31.8 200 708 10.9 31.6 98.2 0.451 0.032 0.483

P 43.8 85.0 148 40.4 200 1850 0.81 5.32 14.9 0.285 0.005 0.290

Fluxes (Tg a
-1

) Fluxes (Tg a
-1

) Fluxes (Tg a
-1

) Fluxes (Tg a
-1

)

Fe 0.115 0.47 4.22 6.26 19.8 111 0.128 0.586 2.41 20.3 0.586 20.9

Si 0.198 3.21 18.5 29.0 120 748 0.685 2.16 5.83 124 2.16 126

OC 0.686 4.23 18.6 1.42 8.93 81.5 0.81 3.50 8.49 13.2 3.50 16.7



Supplementary Methods 

Laboratory Methods - nutrient concentrations in Greenland icebergs 

Concentrations of inorganic nitrogen (extractable NO3
-1 and NH4

+) loosely bound to iceberg entrained 

sediment were determined from 11 Greenland icebergs samples collected from Tunulliarfik Fjord, 

Greenland (61.1°N 45.4°W) in July 2013, using 2.0 M KCl1. These extractions gave mean 

concentrations of 1.5 g N g-1 (range 0.11-38.9 g N g-1). Loosely-bound P (MgCl2-extractable) and Fe-

/Al-bound phosphorous (NaOH-extractable) concentrations associated with sediments in icebergs were 

determined from 15 Greenland icebergs sampled from Tunulliarfik Fjord in July 2013 (as with 

exchangeable nitrogen species above)2. Both these P phases are taken to be bioavailable, and gave 

combined mean concentrations of 6.9 g P g-1 (range 1.9-12 g P g-1).  

 

Modelled freshwater fluxes over the last 25 kyr (Northern Hemisphere) 

To calculate freshwater fluxes from former northern hemisphere ice sheets, we employed the GLAC-

1D model, published in refs 3,4,5, and used for PMIP46. Tarasov et al. computed a posterior probability 

distribution for the deglacial evolution of the North American ice sheet complex by large ensemble 

Bayesian calibration of the 3D Glacial Systems Model (GSM). In short, 39 ensemble GSM parameters 

(attempting to account for uncertainties in climate forcing, basal drag, ice calving, and marginal surface 

mass-balance/extent) were calibrated against a large set of geophysical (relative sea level and present 

day vertical velocities) and geological (ice margin extent and strandline records of proglacial lake 

extent) constraints. This model was also used to compute freshwater flux time series for all northern 

hemisphere ice sheets (Greenland, North American ice sheet complex, European ice sheets), 

subsequently used to calculate past fluxes of nutrients and organic carbon (see Supplementary Figure 

1). Freshwater flux terms can be sub-divided into subglacial meltwater (generated by geothermal and 

strain heating of basal ice layers within the ice sheet), runoff (subglacially routed) and ice discharge due 

to iceberg calving.  

 

GLAC-1D replicates key features associated with the decreasing northern hemisphere ice volumes over 

the last deglaciation (Supplementary Figure 1). Peak northern hemisphere ice discharge via iceberg 

calving was apparent at the Last Glacial Maximum (LGM, c. 24-25 kyr B.P.), which is consistent with 

the presence of large ice sheets (and the accompanying extensive marine exposure of their margins) with 

a predominance of warm-basal conditions and high ice stream activity7. Modelled runoff fluxes from 

northern hemisphere ice sheets rose from the LGM onwards, and meltwater pulse events 1A at 14.5 kyr 

and 1B at c. 11 kyr are relatively well resolved in Glac1D, as is the fall to low freshwater fluxes by 7 

kyr B.P. Temporal trends in modelled freshwater fluxes compared well with previous work8. Subglacial 

melt fluxes were generally low, peaking around the LGM.  



 

Freshwater fluxes were not computed for the Antarctic Ice Sheet because of sensitivity to poorly 

constrained precipitation in the model. Hence, we rely on previously published values to estimate 

nutrient fluxes from the Antarctic Ice Sheet at the present day/past9.  

 

 

Calculations of ice sheet nutrient and carbon fluxes from northern and 

southern hemisphere ice sheets  

We present an envelope of what we consider to be bioavailable fluxes of nutrients, together with total 

organic carbon, from past (northern hemisphere) and present-day ice sheets (northern and southern 

hemisphere). Bioavailable dissolved fluxes include: Dissolved Inorganic Nitrogen (DIN), Dissolved 

Inorganic Phosphorus (DIP), Dissolved Silica (DSi) and Dissolved Fe (DFe, comprising filterable iron 

<45μm) and Dissolved Organic Carbon (DOC). Bioavailable nutrient fluxes associated with suspended 

sediment (SS) in glacial runoff include loosely-bound N (PN), loosely-bound P + NaOH-P (PP)2, labile 

Fe associated with ascorbate-extractable iron oxyhydroxide nanoparticles11 (PFe) and amorphous Si 

(PSi)10. Particulate organic carbon fluxes (POC) associated with suspended sediments (SS) in runoff 

were also computed.  

Nutrient and organic carbon fluxes for present day ice sheets are computed from the product of the 

concentration (min, max and mid-range values) of the nutrient species and the freshwater or sediment 

flux (also using min, max and mid-range values). We also present peak potential nutrient fluxes for 

northern hemisphere ice sheets, at 14.5 kyr B.P., which corresponded to Meltwater Pulse 1a 

(Supplementary Figure 1). Freshwater fluxes at this time were taken from simulations using the GLAC1-

D model3,4,5 (see Supplementary Figure 1). To calculate peak nutrient and organic carbon fluxes for 

northern hemisphere ice sheet runoff and icebergs we applied scaling factors to present day nutrient 

fluxes, assuming that the freshwater flux changes, but the nutrient concentration associated with this 

flux remains the same. The scaling factor was 22 for northern hemisphere runoff fluxes, assuming a 

northern hemisphere ice sheet runoff flux of 545 km3 a-1  12 at present (Greenland Ice Sheet) and 11,932 

km3 at 14.5 kyr B.P. (Greenland Ice Sheet and European/North American ice sheet complexes 

Supplementary Figure 1). For icebergs, the scaling factor was 3.1, assuming a present day ice discharge 

of 498 km3 a-1  12 and peak deglaciation fluxes of 1542 km3 a-1 (Supplementary Figure 1). We assume 

that the proportional uncertainty around these peak freshwater flux values is similar to the present day. 

 

Summarised concentrations and fluxes of nutrients are organic carbon are presented in Supplementary 

Tables 1-3. Details of how these were calculated are given in the next section.  

 



Northern Hemisphere ice sheet nutrient and organic carbon fluxes 

Glacial runoff 

The Greenland Ice Sheet is the only ice sheet in the northern hemisphere at the present day. We employ 

previously published concentrations (min, max, mid-range) of DIN/PN13, DIP/PP2, Fe/PFe14, Si/PSi10 

and DOC/POC15 in subglacially routed runoff from the Greenland Ice Sheet. Freshwater fluxes are taken 

from ref. 12 and include minimum, mean and maximum values for the period 2011-2016. For fluxes of 

nutrients and organic carbon associated with SS in runoff, we take SS concentrations from ref. 14 (1.1 g 

L-1, range = 0.64-3.9 g L-1). This gives typical SS fluxes of 604 Tg a-1 (range = 260-2822 Tg a-1). 

 

Icebergs 

Particulate nutrient and organic carbon fluxes associated with Greenland icebergs at the present day 

were calculated assuming iceberg debris concentrations of 0.5 g L-1 (range = 0.28-0.8 g L-1)16  and annual 

iceberg freshwater fluxes of 498 km3 a-1 (range = 494-501) km3 a-1 12. Thus, sediment fluxes associated 

with Greenland icebergs were 249 Tg a-1 (range = 138-401) Tg a-1.  

 

Dissolved fluxes (DIN and DOC only) associated with Greenland icebergs were calculated from the 

product of the freshwater flux and an estimate of the dissolved species concentration. DIN 

concentrations associated with Greenland icebergs were taken from ref. 13 (min and max concentrations 

measured in surface Greenland ice) and ref. 17 (mean concentrations in Greenland ice cores). For DOC 

concentrations in icebergs, we employ minimum, mean and maximum concentrations of DOC in 

Greenlandic ice reported in ref. 18. DIP, DFe and DSi concentrations associated with Greenland icebergs 

were considered to be negligible compared with particulate fluxes based on measured their 

concentrations in glacial ice and meltwaters10,19,20.  

 

Particulate fluxes of nutrients associated with Greenland icebergs were derived from the iceberg rafted 

debris flux and the estimated nutrient concentration associated with those sediments. Concentrations of 

loosely-bound N associated with iceberg entombed sediment from Tunulliarfik Fjord (Greenland), were 

1.5 ng g-1 (0.1 – 38.9 ng g-1 see first section). Loosely-bound P and NaOH-P concentrations associated 

with sediments entombed in icebergs in icebergs sampled from Tunulliarfik Fjord (see first section) 

were 1.8 (0.6-3.1) ng g-1 and 5.1 (1.3-8.9) ng g-1 respectively, the sum of which is considered to be equal 

to the bioavailable concentration. Bioavailable (ascorbic acid extractable) Fe fluxes associated with 

sediments hosted in Greenland icebergs at the present day were calculated using minimum, mean and 

maximum concentrations reported in ref. 21. PSi concentrations associated with iceberg rafted debris 

were taken from measured mean, minimum and maximum concentrations of amorphous Si associated 

with Greenland icebergs10. We employed POC concentrations reported for debris entombed in basal ice 



sampled from the ice sheet margins to calculate POC fluxes from icebergs, giving a mid-range 

concentration of 0.31 % (range 0.185 % - 0.44 %)22,23.  

 

Southern Hemisphere ice sheet nutrient and organic carbon fluxes 

Subglacial meltwater  

There is much greater uncertainty around Antarctic subglacial meltwater nutrient and organic carbon 

fluxes due to very limited data. We employed modelled estimations of the subglacial meltwater flux 

derived from ref. 9 (65 km3 a-1, range = 41-79 km3 a- 1 9). For sediment-bound nutrients and in the absence 

of Antarctic data, we assumed mean suspended sediment concentrations in Antarctic subglacial 

meltwater similar to Greenland (1.1 g L-1, range = 0.63-3.88 g L-1), giving a sediment flux of 72 Tg a-1 

(range = 26-307 Tg a-1). DIN, DIP, DSi and DOC concentrations (mid-range, max, min) were derived 

from concentrations reported from Subglacial Lake Whillans24,25. A mid-range DFe concentration for 

Antarctic subglacial meltwaters was taken from maximum values reported for Greenland Ice Sheet 

runoff 14, with minimum and maximum values calculated as 10x less or 10x greater than the mid-range 

value. This assumes that meltwater residence times would likely be enhanced beneath the Antarctic Ice 

Sheet compared with Greenland26. In the absence of data on the concentrations of nutrients associated 

with suspended sediment in Antarctic subglacial meltwater, we employed estimates of PN, PP, PSi and 

PFe concentrations in SS associated with Greenland subglacial runoff2,10,13,14. For OC concentrations 

associated with suspended sediments in Antarctic subglacial meltwater, we employed the POC 

concentrations reported in surface lake sediments in Subglacial Lake Whillans to give a mid-range value   

of 0.46 %24 and assumed minimum (0.1 %) and maximum (1%) values in line with concentrations 

measured from IODP cores from around Antarctica27.  

 

Icebergs 

Present day nutrient and organic carbon fluxes associated with Antarctic icebergs were calculated using 

published estimates of the freshwater flux (minimum =1321 km3 28, maximum = 1893 km3 29, with mid-

range calculated as the mean of the minimum and maximum values = 1562 km3), mid-range, minimum 

and maximum estimates of the iceberg sediment concentration16 and estimates of nutrient/organic 

carbon concentration in the ice (DIN and DOC only) and/or associated with iceberg entombed debris 

(PN, PP, PFe, PSi, POC). We assumed sediment concentrations of 0.28, 0.5 and 0.8 g L-1 in Antarctic 

icebergs16, yielding iceberg rafted debris fluxes of 345, 781 and 1514 Tg a-1 respectively. 

 

Dissolved nutrient and organic carbon fluxes associated with Antarctic icebergs were calculated for DIN 

and DOC, from the product of the freshwater flux and estimated dissolved concentration in the ice. 

Mean DIN concentrations in Antarctic icebergs were assumed to be similar to mean DIN in Antarctic 

ice cores17, with minimum and maximum values taken from measured concentrations of nitrate30 and 



ammonium31 in the EPICA Dome C ice core, Antarctica. DOC concentrations in icebergs were assumed 

to be similar to those reported for englacial Antarctic ice18. DIP, DFe and DSi fluxes associated with 

Antarctic icebergs were assumed to be negligible, since their concentrations in ice are generally low32,33.  

 

Particulate nutrient and organic carbon fluxes were derived from the sediment flux associated with 

Antarctic icebergs and the nutrient concentration associated with those sediments. In the absence of 

bioavailable N and P concentrations associated with Antarctic iceberg rafted debris, we employ loosely-

bound N/P and NaOH- P concentrations reported in this manuscript for Greenland icebergs (see first 

section). Bioavailable (ascorbate extractable) Fe concentrations associated with iceberg entombed 

debris were taken directly from ref. 21, which reports typical concentrations for Antarctic bergs. PSi 

concentrations of iceberg rafted debris were also assumed to be similar to those observed for Greenland 

Ice Sheet icebergs, in the absence of Antarctic data10. We assumed that concentrations of POC associated 

with iceberg entombed debris ranged from 0.1 % to 1% (typical minimum and mean Antarctic marine 

sediment concentrations)34, with a mid-range value of 0.46 % (Subglacial Lake Whillans 

concentrations24). 

 

A summary of the freshwater/sediment fluxes and concentrations of nutrients and organic carbon 

associated with runoff and icebergs in both hemispheres can be found in Supplementary Tables 1, 2 and 

3.  

  



Supplementary References 

 

1. Maynard DG, Kalra YP, Crumgaugh JA. Nitrate and exchangeable ammonium nitrogen. In: 

Soil Sampling and Methods of Analysis (ed^(eds Carter MR, Gregorich EG). CRC Press 

(2007). 

 

2. Hawkings J, et al. The Greenland Ice Sheet as a hot spot of phosphorus weathering and export 

in the Arctic. Global Biogeochem Cy 30, 191-210, (2016). 

 

3. Briggs RD, Pollard D, Tarasov L. A data-constrained large ensemble analysis of Antarctic 

evolution since the Eemian. Quaternary Sci Rev 103, 91-115, (2014). 

 

4. Tarasov L, Dyke AS, Neal RM, Peltier WR. A data-calibrated distribution of deglacial 

chronologies for the North American ice complex from glaciological modeling. Earth Planet 

Sc Lett 315–316, 30-40, (2012). 

 

5. Tarasov L, Richard Peltier W. Greenland glacial history and local geodynamic consequences. 

Geophys J Int 150, 198-229, 10.1046/j.1365-246X.2002.01702.x (2002). 

 

6. Ivanovic RF, et al. Transient climate simulations of the deglaciation 21–9 thousand years 

before present (version 1) – PMIP4 Core experiment design and boundary conditions. Geosci 

Model Dev 9, 2563-2587, 10.5194/gmd-9-2563-2016 (2016). 

 

7. Marshall S, Clarke PU. Basal temperature evolution of North American Ice Sheets and 

implications for the 100 kyr cycle. Geophys Res Lett 29(24), 2214, 

doi:10.1029/2002GL015192 (2002). 

 

8. Tranter M, et al. Direct effect of ice sheets on terrestrial bicarbonate, sulphate and base cation 

fluxes during the last glacial cycle: minimal impact on atmospheric CO2 concentrations. 

Chem Geol 190, 33-44, Pii S0009-2541(02)00109-2 (2002). 

 

9. Pattyn F. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. 

Earth Planet Sc Lett 295, 451-461, DOI 10.1016/j.epsl.2010.04.025 (2010). 

 

10. Hawkings J, et al. Ice sheets as a missing source of silica to the world’s oceans. Nature 

Communications 8, Doi:10.1038/ncomms14198, DOI:10.1038/ncomms14198 (2017). 

 

11. Raiswell R, et al. Contributions from glacially derived sediment to the global iron 

(oxyhydr)oxide cycle: Implications for iron delivery to the oceans. Geochim Cosmochim Ac 

70, 2765-2780, DOI 10.1016/j.gca.2005.12.027 (2006). 

 

12. Bamber JL, et al. Land Ice Freshwater Budget of the Arctic and North Atlantic Oceans: 1. 

Data, Methods, and Results. Journal of Geophysical Research: Oceans 123, 1827-1837, 

10.1002/2017JC013605 (2018). 

13. Wadham JL, et al. Sources, cycling and export of nitrogen on the Greenland Ice Sheet. 

Biogeosciences Discuss, 6339-6352, (2016). 

 

14. Hawkings J, et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to 

the oceans. Nature Communications 5, Doi:10.1038/ncomms4929, DOI:10.1038/ncomms4929 

(2014). 

15. Lawson E, et al. Greenland Ice Sheets exports labile organic carbon to the Arctic oceans. 

Biogeosciences Discussions 10, 19311–19345, (2013). 

 



16. Death R, et al. Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences 11, 2635-

2643, 10.5194/bg-11-2635-2014 (2014). 

 

17. Wolff EW. Ice sheets and nitrogen. Philos T R Soc B 368, Doi 10.1098/Rstb.2013.0127 

(2013). 

 

18. Hood E, Battin TJ, Fellman J, O'Neel S, Spencer RGM. Storage and release of organic carbon 

from glaciers and ice sheets. Nature Geosci 8, 91-96, 10.1038/ngeo2331(2015). 

 

19. Bhatia MP, Kujawinski EB, Das SB, Breier CF, Henderson PB, Charette MA. Greenland 

meltwater as a significant and potentially bioavailable source of iron to the ocean (vol 6, pg 

274, 2013). Nat Geosci 6, 503-503, Doi 10.1038/Ngeo1833 (2013). 

 

20. Kjaer HA, et al. Greenland ice cores constrain glacial atmospheric fluxes of phosphorus. 

Journal of Geophysical Research - Atmospheres 120, 10,810–810,822, (2015). 

 

21. Raiswell R, et al. Potentially Bioavailable Iron Delivery by Iceberg hosted Sediments and 

Atmospheric Dust to the Polar Oceans. Biogeosciences Discuss, Doi:10.5194/bg-2016-5120, 

doi:10.5194/bg-2016-20 (2016). 

 

22. Stibal M, et al. Methanogenic potential of Arctic and Antarctic subglacial environments with 

contrasting organic carbon sources. Global Change Biology 18, 3332-3345, 10.1111/j.1365-

2486.2012.02763.x (2012). 

 

23. Yde JC, et al. Basal ice microbiology at the margin of the Greenland ice sheet. Annals of 

Glaciology 51, 71-79, 10.3189/172756411795931976 (2010). 

 

24. Christner BC, et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 

310-313, 10.1038/nature13667 (2014). 

 

25. Michaud AB, et al. Solute sources and geochemical processes in Subglacial Lake Whillans, 

West Antarctica. Geology, Doi:10.1130/g37639.37631, 10.1130/g37639.1 (2016). 

 

26. Wadham JL, et al. Biogeochemical weathering under ice: Size matters. Global Biogeochem 

Cycles 24, Doi:10.1029/2009gb003688, 10.1029/2009gb003688 (2010). 

 

27. Wadham JL, et al. The potential role of the Antarctic Ice Sheet in global biogeochemical 

cycles. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 104, 

55-67, 10.1017/S1755691013000108 (2013). 

 

28. Depoorter MA, et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 

Doi:10.1038/Nature12567, Doi.10.1038/Nature12567 (2013). 

 

29. Rignot E, Mouginot J, Scheuchl B, van den Broeke M, van Wessem MJ, Morlighem M. Four 

decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National 

Academy of Sciences 116, 1095, 10.1073/pnas.1812883116 (2019). 

 

30. Wolff EW, et al. Changes in environment over the last 800,000 years from chemical analysis 

of the EPICA Dome C ice core. Quaternary Sci Rev 29, 285-295, (2010). 

 

31. Kaufmann P, et al. Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of 

biological activity in the Southern Ocean. Quaternary Sci Rev 29, 313-323, (2010). 

 



32. Kim I, Kim G, Choy EJ. The significant inputs of trace elements and rare earth elements from 

melting glaciers in Antarctic coastal waters. Polar Res 34, Doi:10.3402/polar.v3434.24289, 

10.3402/polar.v34.24289 (2015). 

 

33. Raiswell R, Hawkings J, Elsenousy A, Death R, Tranter M, Wadham J. Iron in Glacial 

Systems: Speciation, Reactivity, Freezing Behavior, and Alteration During Transport. 

Frontiers in Earth Science 6, 222, (2018). 

 

34. Wadham JL, et al. Potential methane reservoirs beneath Antarctica. Nature 488, 633-637, 

10.1038/nature11374 (2012). 

 

 

 




