Supplementary Information

Molecular Mass Growth Processes through Ring Expansion in Polycyclic Aromatic Hydrocarbons via Radical-Radical Reactions

Zhao et al.

Supplementary Figure 1. Potential energy diagram for the indenyl + methyl reaction calculated at the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G(d,p) + ZPE[B3LYP/6-311G(d,p)] level of theory. All relative energies are given in kJ/mol.

Supplementary Figure 2. Potential energy diagram for unimolecular decomposition of methylindenyl radicals calculated at the G3(CC,MP2)/B3LYP/6-311G(d,p) + ZPE[B3LYP/6-311G(d,p)] level of theory. All relative energies are given in kJ/mol. For more detail on this PES and temperature- and pressure-dependent rate constants see Ref. 22 in the main text.

Supplementary Figure 3.

(a) High-pressure limit rate constants for CH₃ addition to C1/C3 vs. C2 in indenyl. In the entrance channel, the addition to C1/C3 is favored, by a factor of ~4 at *T* about 1400 K, i.e., in the reactor's temperature range.

(b) Total and individual channel rate constants at 30 Torr (the typical pressure inside the reactor). Fitted modified Arrhenius expressions for all relevant reactions in the indenyl + CH_3 system calculated at various pressures up to 100 atm (for combustion applications) are presented in Table S1. There is a competition between collisional stabilization of 1- and 2-methylindene and the formation of bimolecular 1-/2-methylindenyl + H products. The calculated product branching ratios at 30 Torr are shown in Table S2. In the 1375-1500 K temperature range, collisionally stabilized 1- and 2-methylindene are predicted to be the predominant products with nearly equal yields, whereas the contribution of 1-/2-methylindenyl + H via well skipping pathways is only few percent.

(c) Unimolecular rate constants for isomerization/dissociation of 1-methylindene at 30 Torr.

(d) Unimolecular rate constants for isomerization/dissociation of 2-methylindene at 30 Torr.

Both methylindenes preferably decompose back to the reactants and the second most probable channel for each is isomerization to one another followed by H loss to 1- and 2-methylindenyl radicals, respectively. According to the calculated rate constants, 2-methylindene is more stable with the equilibrium constant for 1-methylindene \rightarrow 2-methylindene being ~4.5 in the microreactor's temperature range. Therefore, 2-methylindene should be significantly more abundant on the exit from the reactor in agreement with the PIE fit for m/z = 131.

indenyl + methyl \rightarrow	р	A_1	α1	<i>E</i> 1	A2	α2	E 2	T-range, K
\rightarrow C1/C3	HP	1.3276E-09	-0.49466	-142.31	1.2287E-12	0.42337	1359.1	500-2500
\rightarrow C2	HP	1.4856E-13	0.44791	-1200.3	1.6922E-15	1.1692	1347.9	500-2500
indenyl + methyl \rightarrow	р	A_1	α1	E_1	A_2	α2	E_2	<i>T</i> -range, K
\rightarrow 1-methylindene	30Torr	-2.09E+76	-26.327	17489	8.34E+54	-19.763	12988	500-1500
	1atm	1.97E-12	0.41028	-588.75	-2.78E+25	-9.653	17680	500-1750
	10atm	2.05E-16	1.6227	-1423.2	-4.48E+10	-5.3914	13296	500-1800
	100atm	2.42E+53	-17.95	23881	41667	-4.6437	2523.8	500-2000
\rightarrow 2-methylindene	30Torr	2.85E+89	-29.108	30323	5.20E+22	-10.609	5400.4	500-1750
	1atm	9.73E+71	-23.607	28565	9.23E+11	-7.2004	3632.3	500-2000
	10atm	8.23E+67	-22.082	30750	1.91E+08	-5.9183	3613	500-2250
	100atm	5.88E+34	-12.738	18733	1.56E+07	-5.4336	4716	500-2500
\rightarrow 1-methylindenyl + H	30Torr	1.21E+16	-7.5678	16791	0.15850+104	-29.706	84154	500-2500
	1atm	1.22E+20	-8.4071	21679	0.39030+140	-47.71	35778	500-2500
	10atm	8.30E+17	-7.6401	23488				700-2500
	100atm	4.52E-22	3.0339	10497	7.74E+32	-11.55	33620	500-2500
\rightarrow 2-methylindenyl + H	30Torr	4.24E+11	-5.9831	19105				600-2500
	1atm	1.22E-28	4.9539	6759.3	4.02E+36	-12.735	32143	500-2500
	10atm	1.15E+39	-13.192	36951	2.49E-26	4.3031	7586.7	500-2500
	100atm	2.21E+15	-6.6829	28484	1.61E-23	3.5775	9232.5	500-2500
1-methyindene \rightarrow	р	A_1	α ₁	E_1	A_2	α2	E ₂	<i>T</i> -range, K
\rightarrow 2-methylindene	30Torr	0.13617+120	-30.879	58529				1000-1500

Supplementary Table 1. Rate constant parameterization using modified Arrhenius expressions $k = A_1 * T^{\alpha_1} * \exp(-E_1/T) + A_2 * T^{\alpha_2} * \exp(-E_2/T)$. Pre-exponential factors *A* are in cm³ molecule⁻¹ s⁻¹ for bimolecular reactions and in s⁻¹ for unimolecular reactions, *T* in K.

	1atm	0.81637+116	-29.309	62662	2.66E+74	-18.404	42241	800-1750
	10atm	-3.11E+56	-12.839	36689	1.11E+46	-9.7049	34166	800-1800
	100atm	2.98E+75	-17.472	51788	4.46E+36	-6.9006	35180	500-2000
→indenyl + methyl	30Torr	0.45451+109	-27.153	57707				800-1500
	1atm	6.79E+22	-1.6881	35695	-1.29E+64	-12.877	55919	500-1750
	10atm	8.26E+20	-1.1193	35240	-1.57E+75	-15.699	63794	500-1800
	100atm	2.61E+80	-17.954	57048	1.75E+38	-6.4844	38540	500-2000
\rightarrow 1-methylindenyl + H	30Torr	0.14432+129	-33.403	67269				900-1500
	1atm	0.42379+107	-26.563	64346				900-1750
	10atm	1.24E+12	1.0987	37683	-2.83E+52	-9.7794	58301	500-1800
	100atm	6.05E+09	1.8024	37196	-8.12E+33	-4.5608	51746	500-2000
\rightarrow 2-methylindenyl + H	30Torr	0.30003+145	-37.841	80110				1000-1500
	1atm	0.37180+119	-29.783	77225				1000-1750
	10atm	5.65E-04	5.3376	39628	-6.89E+13	0.86649	50239	500-1800
	100atm	3.75E+65	-14.42	62486	1.28E+28	-4.3178	46389	500-2000
2-methyindene \rightarrow	р	A_1	α1	E_1	A_2	α2	E_2	<i>T</i> -range, K
\rightarrow 1-methylindene	30Torr	0.31098+121	-31.333	60399				1000-1500
	1atm	0.58750 ± 124	31.56	(707)		10.0-1		000 1750
		0.007001121	-51.50	6/2/6	5.20E+77	-19.374	44883	800-1750
	10atm	0.21644+101	-24.772	67276 60424	5.20E+77 6.41E+39	-19.374 -8.0221	44883 35916	800-1750 500-1800
	10atm 100atm	0.21644+101 1.91E+08	-24.772 1.8675	67276 60424 31362	5.20E+77 6.41E+39 -4.33E+20	-19.374 -8.0221 -1.4118	44883 35916 38480	800-1750 500-1800 500-2000
→indenyl + methyl	10atm 100atm 30Torr	0.21644+101 1.91E+08 0.97281+113	-24.772 1.8675 -28.108	67276 60424 31362 64286	5.20E+77 6.41E+39 -4.33E+20	-19.374 -8.0221 -1.4118	44883 35916 38480	800-1750 500-1800 500-2000 1000-1750
→indenyl + methyl	10atm 100atm 30Torr 1atm	0.21644+101 1.91E+08 0.97281+113 2.36E+98	-24.772 1.8675 -28.108 -23.473	67276 60424 31362 64286 63235	5.20E+77 6.41E+39 -4.33E+20 3.93E+43	-19.374 -8.0221 -1.4118 -8.4978	44883 35916 38480 40662	800-1750 500-1800 500-2000 1000-1750 500-2000
→indenyl + methyl	10atm 100atm 30Torr 1atm 10atm	0.21644+101 1.91E+08 0.97281+113 2.36E+98 7.49E+91	-24.772 1.8675 -28.108 -23.473 -21.318	67276 60424 31362 64286 63235 63973	5.20E+77 6.41E+39 -4.33E+20 3.93E+43 5.45E+40	-19.374 -8.0221 -1.4118 -8.4978 -7.4667	44883 35916 38480 40662 40817	800-1750 500-1800 500-2000 1000-1750 500-2000 500-2000 500-2250
→indenyl + methyl	10atm 100atm 30Torr 1atm 10atm 100atm	0.21644+101 1.91E+08 0.97281+113 2.36E+98 7.49E+91 3.90E+63	-24.772 1.8675 -28.108 -23.473 -21.318 -13.328	67276 60424 31362 64286 63235 63973 53762	5.20E+77 6.41E+39 -4.33E+20 3.93E+43 5.45E+40 5.00E+40	-19.374 -8.0221 -1.4118 -8.4978 -7.4667 -7.325	44883 35916 38480 40662 40817 42062	800-1750 500-1800 500-2000 1000-1750 500-2000 500-2000 500-2250 500-2500
→indenyl + methyl → 1-methylindenyl + H	10atm 100atm 30Torr 1atm 10atm 100atm 30Torr	0.21644+101 1.91E+08 0.97281+113 2.36E+98 7.49E+91 3.90E+63 0.39384+133	-24.772 1.8675 -28.108 -23.473 -21.318 -13.328 -34.474	67276 60424 31362 64286 63235 63973 53762 76064	5.20E+77 6.41E+39 -4.33E+20 3.93E+43 5.45E+40 5.00E+40	-19.374 -8.0221 -1.4118 -8.4978 -7.4667 -7.325	44883 35916 38480 40662 40817 42062	800-1750 500-1800 500-2000 1000-1750 500-2000 500-2000 500-2250 500-2500 1000-1750
→indenyl + methyl → 1-methylindenyl + H	10atm 100atm 30Torr 1atm 10atm 30Torr 30Torr 1atm	0.21644+101 1.91E+08 0.97281+113 2.36E+98 7.49E+91 3.90E+63 0.39384+133 0.15172+127	-24.772 1.8675 -28.108 -23.473 -21.318 -13.328 -34.474 -31.885	67276 60424 31362 64286 63235 63973 53762 76064 80915	5.20E+77 6.41E+39 -4.33E+20 3.93E+43 5.45E+40 5.00E+40	-19.374 -8.0221 -1.4118 -8.4978 -7.4667 -7.325	44883 35916 38480 40662 40817 42062	800-1750 500-1800 500-2000 1000-1750 500-2000 500-2250 500-2500 1000-1750 1000-2000

	100atm	1.18E+90	-20.965	77544				1000-2500
\rightarrow 2-methylindenyl + H	30Torr	0.33759+126	-32.046	72923				1000-1750
	1atm	0.88645+106	-25.819	71035	1.28E+47	-9.718	47404	500-2000
	10atm	9.64E+90	-21.191	69088	7.79E+38	-7.103	46109	500-2250
	100atm	1.95E+67	-14.316	62473	9.91E+31	-4.9091	45212	500-2500

		<i>p</i> = 30	Torr	
	1-methylindene	2-methylindene	1-methylindenyl +H	2-methylindenyl +H
500 K	76.1	23.9	0.0	0.0
600 K	79.0	21.0	0.0	0.0
700 K	80.6	19.4	0.0	0.0
800 K	81.2	18.8	0.0	0.0
900 K	80.4	19.6	0.0	0.0
1000 K	77.8	22.2	0.0	0.0
1125 K	71.7	28.2	0.1	0.0
1250 K	62.9	36.5	0.3	0.2
1375 K	53.1	45.0	1.1	0.8
1500 K	43.1	50.5	3.5	3.0
1750 K		44.1	26.4	29.2
2000 K			43.5	56.5
2250 K			41.0	59.0
2500 K			39.4	60.6

Supplementary Table 2. The calculated branching ratios (%) for the main channels of indenyl + methyl reaction.

Supplementary Note 1. Synthetic Procedure:

1-Bromoindene was synthesized using the procedure described in detail in our previous publication.¹

Supplementary Figure 4. Complete mass spectra recorded at a photon energy of 9.50 eV; the source temperature was 1425 ± 10 K. (a) 1-indenyl/helium, (b) 1-indenyl/ methyl, (c) 1-indenyl/D3-methyl. Source data are provided as a Source Data file.

Supplementary Figure 5. Mass spectra recorded at a photon energy of 9.50 eV; the source temperature was 1425 ± 10 K. (a) acetone/helium, (b) D6-acetone/helium.

In both acetone – helium and D6-acetone – helium systems, helium was observed at m/z = 4, with a photoionization energy of 24.6 eV,² due to the high harmonics of VUV light and the high concentration of helium. In the acetone – helium system, another three strong peaks at m/z = 15, 43 and 58 are detected. Signal at m/z = 58 is attributed to acetone (CH₃COCH₃). With the C-C bond scission, acetone is decomposed to acetyl (CH₃CO[•]) and methyl (CH₃[•]) radicals, which are at m/z = 15 and 43. The species at m/z = 42 should be ketene (CH₂CO), the H-loss product of acetyl radical.

In the D6-acetone – helium system, strong signal at m/z = 18, 46 and 64 is observed. Similar as that in the acetone – helium system, these three peaks are attributed to D3-methyl (CD₃'), D3-acetyl (CD₃CO') and D6-acetone (CD₃COCD₃), respectively, with the previous two generated from the C-C scission of D6-acetone. Analogously, D2-ketene (CD₂CO, m/z = 44) is produced via D-loss of D3-acetyl. For other small signal masses, as the goal in this work is to investigate the indenyl – methyl reaction, they are not discussed in detail here.

Supplementary Figure 6: PIE curves of additional ion counts detected in the 1-indenyl – methyl system. The detected signals include: (a) m/z = 115, (b) m/z = 116, (c) m/z = 117, (d) m/z = 142, (e) m/z = 143, (f) m/z = 144 and (g) m/z = 145. Black: experimental PIE curves; blue/green/red: reference PIE curves. In case of multiple contributions to one PIE curve, the red line resembles the overall fit. The error bars consist of two parts: $\pm 10\%$ based on the accuracy of the photodiode and a 1 σ error of the PIE curve averaged over the individual scans.

Photon Energy (eV)

Supplementary Figure 7: PIE curves of additional ion counts detected in the 1-indenyl – D3-methyl system. PIE fits for signals at (a) m/z = 115, (b) m/z = 116, (c) m/z = 117, (d) m/z = 118, (e) m/z = 119, (f) m/z = 120, (g) m/z = 129, (h) m/z = 132, (i) m/z = 135, (j) m/z = 136, (k) m/z = 146, (l) m/z = 147, (m) m/z = 148, (n) m/z = 149, (o) m/z = 150, (p) m/z = 151 and (q) m/z = 152 are presented. Black: experimental PIE curves; blue/green/red: reference PIE curves. In case of multiple contributions to one PIE curve, the red line resembles the overall fit. The error bars consist of two parts: $\pm 10\%$ based on the accuracy of the photodiode and a 1 σ error of the PIE curve averaged over the individual scans.

Supplementary Figure 8: Schematic reaction pathways in the 1-indenyl – methyl system to account for ion counts from m/z = 142 to 145.

In the 1-indenyl - methyl system, ion signal from m/z = 142 to 145 was also observed. The analysis of the PIE curves reveals that m/z = 142 (C₁₁H₁₀⁺) and 143 (¹³CC₁₀H₁₀⁺) are attributed to 1-methylnaphthalene and ¹³C-1-methylnaphthalene, respectively (Supplementary

Figs. 6(d) and (e)). This species might be generated via the reaction of naphthalene with a methyl radical followed by hydrogen atom loss.³ Considering the ion counts at m/z = 144 (C₁₁H₁₂⁺) and 145 (¹³CC₁₀H₁₂⁺), the PIE curves overlap after scaling indicating that m/z = 145 is the ¹³C counterpart of m/z = 144 (Supplementary Figs. 6(f) and (g)). Considering the molecular weight, this species might be produced via the reaction of methylindene (C₁₀H₁₀, m/z = 130) and methyl (CH₃⁺, m/z = 15) followed by atomic hydrogen loss. However, due to the lack of any reference PIE data for dimethylated indene isomers, m/z = 144 and 145 remain unidentified.

Supplementary Figure 9: Schematic reaction pathways in the 1-indenyl – D3-methyl system.

The calculated branching ratios of benzofulvene versus naphthalene at the conditions of our reactor are nearly equal to 4 to 1. Therefore, we expected the bimolecular mechanism, i.e. deuterium (D) loss from methylindenyl to eventually form benzofulvene followed by Hassisted isomerization of the latter to naphthalene, to be the most favorable mechanism. This mechanism is consistent with the isotope-labeling result if benzofulvene re-reacts with D and isomerizes to naphthalene through such D-assisted isomerization. However, it is not consistent if benzofulvene reacts with H rather than with D - then the reaction would produce naphthalene with only one D incorporated (m/z = 129). The concentrations of hydrogen and deuterium are expected to be roughly equal because the dissociation of 1- or 2-methylindene produces hydrogen and the dissociation of D3-methylindenyl radicals produces deuterium. Therefore, technically these calculations show that 1/5 of naphthalene is produced via the unimolecular mechanism containing two deuterium atoms; 2/5 of naphthalene is likely produced via the bimolecular mechanism via a deuterium-assisted isomerization of benzofulvene containing also two deuterium atoms; finally, 2/5 of naphthalene are formed via a hydrogen-assisted isomerization of benzofulvene and contain only one deuterium. Therefore, qualitatively speaking, the intensity of the ion counts at m/z = 130 are expected to be higher than at m/z = 129, which agrees with our experimental findings. Further H/D isotope scrambling involving naphthalene itself, like H + $C_{10}H_6D_2$ (naphthalene) \Rightarrow D + $C_{10}H_7D_1$ (naphthalene) is favorable in reverse direction because a C-D bond is stronger than a C-H bond due to the effect of ZPE and thus, the H/D isotope scrambling will additionally boost the m/z = 130 peak over m/z = 129.

Recall that in the 1-indenyl – methyl system, signal is detected from m/z = 115 to 117 (1indenyl, ¹³C-1-indenyl/indene and ¹³C-indene); in the 1-indenyl – D3-methyl system (Supplementary Fig. 7), six distinct peaks were observable from m/z = 115 to 120. The fits of the PIE graphs indicate that – as detailed below – these ion counts can be connected with the formation of (deuterium substituted) 1-indenyl radicals and indenes including 1-indenyl, D1and D2-1-indenyls, D1-, D2- and D3-indenes, as well as their ¹³C-substitued counterparts (Supplementary Figs. 7(a)-(f)). The 1-indenyl radical (C₉H₇, m/z = 115, Supplementary Fig. 7(a)) is produced from the pyrolysis of the precursor 1-bromoindene via homolytic carbon – bromine bond (C-Br) scission. The deuterated 1-indenyl radicals might be generated from 1indenyl radical via two successive D-addition followed by H-loss. For instance, the Daddition to 1-indenyl generates 1D-indene (C₉H₇D, m/z = 117, Supplementary Fig. 7(c)), followed by H-loss via either bond scission or H/D-exchange leading to the formation of 1D- inden-1-yl (C₉H₆D[•], m/z = 116, Supplementary Fig. 7(b)). Furthermore, combination of 1Dinden-1-yl and D atom yields D2-indenes including 1,1-2D-indene and 1,3-2D-indene (C₉H₆D₂, m/z = 118, Supplementary Figs. 7(d) and S9).⁴ Analogously, 2D-indenyl radicals (C₉H₅D₂[•], m/z = 117, Supplementary Fig. 7(c)) and 3D-indene (C₉H₅D₃, m/z = 119, Supplementary Fig. 7(e)) are produced in the subsequent reactions. The signal at m/z = 120 is attributed to the ¹³C 3D-indene (¹³CC₈H₅D₃, Supplementary Fig. 7(f)).

The reactions of the 1-indenyl radicals with D3-methyl result in D2-, D3-, D4-naphthalenes $(C_{10}H_6D_2, m/z = 130, Fig. 3(e); {}^{13}CC_9H_6D_2/C_{10}H_5D_3, m/z = 131, Fig. 3(f); {}^{13}CC_9H_5D_3/$ $C_{10}H_4D_4$, m/z = 132, Supplementary Fig. 7(h)) and D3-, D4-, D5-substituted 1- and 2methylindenes (C₁₀H₇D₃, m/z = 133, Fig. 3(g); ${}^{13}CC_9H_7D_3/C_{10}H_6D_4$, m/z = 134, Fig. 3(h); 13 CC₉H₆D₄/C₁₀H₅D₅, m/z = 135, Supplementary Fig. 7(i)). Signal at m/z = 136 is related to ¹³C-D5-1-methylindene and ¹³C-D5-2-methylindene (¹³CC₉H₅D₅, Supplementary Fig. 7(j)). Note that D3-methylindenyl radical also contributes to the signal at m/z = 132 (Fig. S7(h)). Please also note the signal at m/z = 129 (Supplementary Fig. 7(g)) is attributed to D1naphthalene. The reaction of 1-indenyl plus deuterium forming D1-indene followed by decomposition to D1-indenyl plus atomic hydrogen is exoergic because the C-H bond is weaker than the C-D bond due to the effect of zero-point vibrational energy. The relatively strong signals of the deuterated indenyl radicals (Supplementary Figures 4c and 7) also suggest the existence of D1-1-indenyl radical, one of the precursors of D4-methylindene. These bimolecular reactions show the potential formation processes for deuterated indenyl radicals, and they do not go against the fact that naphthalene is formed via a 1-indenvl methyl recombination followed by H-loss steps. Just like the formation of D3-methylindene via the reaction of 1-indenyl with D3-methyl, D4-methylindene is produced via the reaction of D1-1-indenyl with D3-methyl. In conclusion, the major source of paramount 133 and 134 peaks may not be mainly from bimolecular reactions, but they should originate from different indenyl precursors.

Signal of m/z = 146 to 149 (Supplementary Figs. 7(k)-(n)) is attributed to D4-, D5- and D6-1methylnaphthalenes and their ¹³C counterparts (C₁₁H₆D₄, m/z = 146, Supplementary Fig. 7(k); ¹³CC₁₀H₆D₄/C₁₁H₅D₅, m/z = 147, Supplementary Fig. 7(l); ¹³CC₁₀H₅D₅/C₁₁H₄D₆, m/z = 148, Supplementary Fig. 7(m); ¹³CC₁₀H₄D₆, m/z = 149, Supplementary Fig. 7(n)). These deuterated methylnaphthalenes are proposed to be generated via the corresponding deuterated naphthalene with D3-methyl followed by H- or D-loss.³ Analogous to the 1-indenyl – methyl system, signal at m/z = 150 to 152 (Supplementary Figs. 7(o)-(q)) is attributed to products via the reaction of D3-, D4-, D5-methylindenes (C₁₀H₇D₃, m/z = 133; C₁₀H₆D₄, m/z = 134; C₁₀H₅D₅, m/z = 135) and D3-methyl after H- or D-loss. Due to the lack of reference PIE data, species at m/z = 150 to 152 remain unidentified. With deuteration in different carbon positions in the 1-indenyl radical, subsequent reactions lead to a variety of deuterated products.

Please note that we cannot differentiate between ¹³C-D3-methylindene and D4-methylindene. Based on the isotope ratio and the experimental findings, this would suggest that we are making copious amounts of D4-methylindene, which means that a deuterium atom is also substituting a hydrogen atom in the ring as described in Supplementary Figure 9 in the Supplementary Material. Here, the reaction of indenyl plus deuterium forming D1-indene followed by decomposition to D1-indenyl plus atomic hydrogen is exoergic because the C-H bond is weaker than the C-D bond due to the effect of zero-point vibrational energy. This process is followed by the reaction of D1-indenyl plus D3-methyl to give D4-methylindene (m/z = 134).

Supplementary Figure 10: Schematic hydrogen abstraction - methylacetylene/allene addition pathways leading to distinct cyclopentanaphthalenes isomers. Successive radical-radical mechanisms could form anthracene and phenanthrene. This pathway is presented schematically for interstellar environments (photon induced hydrogen loss); in combustion systems, the hydrogen atom can be lost via hydrogen abstraction by hydrogen atoms ubiquitous in flames.

Supplementary Figure 11: Schematic representation of the complementary nature of the novel radical-radical (red) and the hydrogen abstraction-acetylene addition (HACA) mechanisms (blue) leading to planar PAHs. This pathway is presented schematically for extraterrestrial environments (photon induced hydrogen loss); in combustion systems, the hydrogen atom can be abstracted by a hydrogen atom ubiquitous in flames.

Pyrene (C₁₆H₁₀) can be photolyzed by interstellar UV photons leading to the formation of the 4-pyrenyl radical (C₁₆H₉[•]), which reacts with allene/methylacetylene to yield 9H-cyclopenta(e)pyrene (C₁₉H₁₂). The latter can also be photolyzed yielding 9H-cyclopenta(e)pyren-9-yl (C₁₉H₁₁[•]), which then can react with the methyl radical leading to benzo[*e*]pyrene (C₂₀H₁₂). Similarly, benzo[*e*]pyrene is proposed to follow the sequence of photon induced hydrogen loss to benzo[*e*]pyren-4-yl, allene/methylacetylene addition to 4H-benzo[*e*]cyclopenta[*l*]pyrene, photon induced hydrogen loss to 4H-benzo[*e*]cyclopenta [*l*]pyren-4-yl, and finally the reaction with a methyl radical generating dibenzo[*fg,op*] tetracene (C₂₄H₁₄). Dibenzo[*fg,op*]tetracene undergoes the successive steps of photon induced hydrogen loss and hydrogen abstraction-acetylene addition (HACA) mechanisms leading eventually to the formation of a more complex two-dimension PAH ovalene (C₃₂H₁₄).

Supplementary Note 2: Cartesian coordinates, vibrational frequencies, relative energies and hindered rotor potentials for various species in the indenyl + CH_3 reaction in the form of MESS input file.

!c10h10_i1		
Well i1		
Species		
RRHO		
Geometry[angstron	m] 20	
C -0.148091887	0.0667582179	0.0862486347
C -0.0650659088	0.0525006918	1.4269282544
C 1.3433782457	0.0193898412	1.8329431884
C 2.1338586123	0.0116999981	0.6661694174
C 1.2268163446	0.0446139993	-0.5492213045
C 3.5168088264	-0.0210569114	0.7546997831
C 4.1142296668	-0.0462527784	2.0198278636
C 3.3316891988	-0.0362149898	3.1752959479
C 1.9386917056	-0.0029184267	3.0927248568
C 1.4363915606	-1.1221573368	-1.5315083074
H 4.1346204606	-0.0263288581	-0.1376558262
H 3.8120810089	-0.054898175	4.147362504
Н 1.3345926949	0.0053482231	3.9937796274
H -0.8991736513	0.0649976385	2.1176263531
H 1.2944694919	-2.0802185036	-1.0258149066
Н 2.4455962255	-1.1037443716	-1.9506716324
Н 0.7274201392	-1.0633232901	-2.3619297055
H -1.0611025561	0.0893026785	-0.4955377858
H 5.1949467987	-0.0732246806	2.1036174262
H 1.3847010226	0.9856870338	-1.0962333887
Core RigidRotor		
SymmetryFactor	1.0	
End		
Frequencies[1/cm]	54	
112.3226	164.2919	239.9941
274.1416	289.1277	410.1819
442.1065	526.5282	553.0530
576.4507	619.8479	726.3766
741.3991	750.6582	776.8943
808.1832	868.6441	882.2438
912.7021	943.7287	963.0817
986.3983	1011.8630	1041.9247
1074.9259	1089.3478	1098.8637
1135.4114	1177.0162	1187.9488
1223.0780	1250.6298	1300.5135
1312.5262	1344.8023	1390.5183
1408.6208	1486.9040	1489.5018
1499.6752	1499.9804	1603.1318
1636.3012	1649.5572	2989.3338

3028.0415	3091.5126	3101.3863
3155.3033	3161.8663	3172.9660
3184.8260	3185.8501	3207.6164
ZeroEnergy[kcal/	mol] -68.6	
ElectronicLevels[[1/cm] 1	
0 1		
End		
End		
!		
!c10h10_i2-		
Well i2		
Species		
RRHO		
Geometry[angstro	om] 20	0.051.0001.00
C -0.0029011396	0.038/383396	-0.0514920168
C -0.0831183421	-0.0061435877	1.38/27/5983
C 1.1/12104868	-0.03362/5838	2.1/680515/9
C 2.434/936/6	-0.014656955/	1.4828969973
C 2.4441410689	0.0252537098	0.12/2961815
C = 1.2101/40397	0.05214/9611	-0.0450584411
C = 0.63903/3302	-0.0757105014	3.498088/341
C = 0.0303138027 C = 1.141222002	0.02182820727	3.030231/309
C = 1.141522095 C = 1.2081260174	-0.0516562921	2.2392078172 4 5247722727
U = 1.2001209174 U = 2.2602554106	+ -1.1939000003	4.324/723727
П 3.3003334190	-0.055022419	2.0482270773
П 1.2920904292 Н 0.0128474783	0.0849084928	0.641510340598
H _2 100/67823/	1 -0.02/3953027	1 07/1015/5/
H _0.9581680662	-0.02+3733027	1.0741010404
H -2 296261798	-1 1203622387	4 595777996
H -0 7997410930	-1.1203022307	5 5377758584
H -0.9144264772	2 0 8993012272	4 1312423978
H 3.386825105	0.0390479988 -(0 4088962667
H 1.5519219304	-0.1063746517	4.3298306372
Core RigidRotor	011000710017	
SymmetryFactor	1.0	
End		
Frequencies[1/cm] 54	
95.8576	174.0117	233.4008
256.2487	299.5536	427.2551
450.6676	491.6671	528.2161
572.9764	583.0614	688.3405
695.9362	738.8543	774.8988
799.4304	838.2060	853.6435
894.8421	905.4379	965.7227
977.6229	978.2699	998.0150
998.5364	1066.6489	1081.9745
1142.7516	1178.6989	1188.2818
1222.7763	1230.4504	1278.7435
1292.1686	1382.1872	1397.6532
		S25

1403.7517 1500.4552 1614.7622 3029.1105 3156.6113 3185.3381 ZeroEnergy[kcal/n ElectronicLevels[1 0 1	1448.3535 1546.9577 1687.0165 3092.6984 3163.9509 3202.1543 nol] -47.1 /cm] 1	1498.5167 1579.2874 2956.4381 3103.8578 3176.2302 3204.7735
End		
!c10h10_i3 Well i3 Species RRHO		
Geometry[angstron	m] 20	
C -0.4632682478 C -0.4711089164 C 0.7373558429 C 1.9493041109 C 1.9554412876 C 0.7606152204 C 0.4179742609 C -1.0937976815 C -1.5696472161 C -1.8714905548 H 2.882453676 H 0.7839222755 H -1.3886175671 H -2.6152175677 H -1.5662427266 H -2.9430649125 H -1.7073585264 H 0.7572881495 H 2.8961287624 H 0.8985083308 Core RigidRotor	0.3020180051 0.0677434491 0.0431915009 0.2508211165 - 0.4859415471 - 0.5106851948 - 0.2296406865 - 0.3545705548 - 0.181141759 - 0.6301547807 0.2329128608 0. 0.6943059229 - 0.3225595008 - 0.2185989517 - 1.5778332775 - 0.6831971591 0.1497437076 0.5801833397 2 0.6502072554 - 1.1464642314 - 0	-1.9318365062 -0.5578767494 0.1677662476 0.4703354525 1.8500873458 2.570300028 1.6186219408 1.6261758738 0.3773960214 2.8727994971 0838146057 3.6389339256 -2.497720689 0.094775994 3.3317379214 2.6700355104 3.6256024448 2.2772135677 -2.3636455813 1.9836056529
End	1.0	
Frequencies[1/cm]	54	
119.5560	154.8879	211.0126
246.9788	296.4916	421.9985
427.1977	439.8495	475.8250
262.3912	607.8964 765.8561	654.55 <i>23</i> 801.3624
855 5672	703.8301 870 5050	801.3024
891.2822	932.4126	949.7980
984.8501	1009.8937	1041.8848
1054.7357	1117.8454	11 52.4559 S26

1161.3682	1178.3921	1186.3216
1229.3506	1241.2137	1327.3254
1331.6634	1378.1210	1415.8969
1439.1447	1480.2436	1485.6977
1492.4716	1496.4890	1618.6210
1649.9346	1663.5757	3006.6459
3013.0829	3035.1512	3047.4373
3098.8962	3154.6076	3160.9527
3172.3901	3184.3748	3185.5952
ZeroEnergy[kca	l/mol] -/1.5	
ElectronicLevels	s[1/cm] 1	
0 I End		
Ella		
Liiu !		
!ch3_c9h7	p0	
Bimolecular p0	_P*	
Fragment c9	9h7	
RRHO		
Geometry[angstr	rom] 16	
C 6.7251E-6 0	.0 -0.0067899103	
C 5.405214E-4	0.0 1.393038516	58
C 1.3782441902	2 0.0 1.8506967	711
C 2.206285024	5 0.0 0.68690286	529
C 1.3227626622	2 0.0 -0.4647541	128
C 3.587844915	5 0.0 0.80953258	346
C 4.1548633018	8 0.0 2.09505169	/ //
C 3.3480/82110	5 0.0 3.22915103	501 197
U = 1.94/380814	2 0.0 3.1134/14.	187
Н 4 226113427	4 0.0 -0.0678746	5418
H 3 804625748	2 0 0 4 21240220)47
H 1.328418884	7 0.0 4.00647252	223
Н -0.872483836	51 0.0 2.0319019	9107
Н -0.880438200	02 0.0 -0.633563	0148
Н 5.233448592	1 0.0 2.2038747	51
Core RigidRoto	r	
SymmetryFactor	:1	
End		
Frequencies[1/ci	m] 42	
199.1610	240.5161	391.8290
414.1648	534.9722	549.1649
560.3268 744 4267	5/8.85/1 754 1226	713.0492
/44.430/ 80/ 5/21	134.1330 861 1176	100.3310
004.J421 887 33/18	907 2059	0/4.20/0 9 <u>/</u> 3 001/
979.8202	1013.5489	1034 4682
1081.1772	1092.5515	1181.2233
1185.1137	1212.2337	1219.4915
1329.3270	1371.6508	1384.5319
		S27

1463.7594 1488.4738 1489.2815 1617.7974 1625.1073 3159.9688 3165.4443 3175.9796 3189.2696 3203.5608 3211.0357 3228.6412 ZeroEnergy[kcal/mol] 0.0 ElectronicLevels[1/cm] 1 0 2 End Fragment ch3 RRHO Geometry[angstrom] 4 C 0.0 1.995E-7 0.0 H 0.0 1.0804553795 0.0 H 0.9357017515 -0.5402277895 0.0 H -0.9357017515 -0.5402277895 0.0 Core RigidRotor SymmetryFactor 6 End Frequencies [1/cm] 6 505.1501 1403.0831 1403.0885 3103.6402 3282.6573 3282.6683 ZeroEnergy[kcal/mol] 0.0 ElectronicLevels[1/cm] 1 0 2 End GroundEnergy[kcal/mol] 0.0 End !-----h_c10h9_p1------Bimolecular p1 Fragment c10h9 **RRHO** Geometry[angstrom] 19 C 0.400357 0.954177 0.0 C -0.16028 -0.358173 0.0 C 0.666652 -1.472953 0.0 C 2.057725 -1.285784 0.0 C 2.604179 -0.004322 0.0 C 1.777006 1.129251 0.0 C -0.708489 1.890534 0.0 C -1.612436 -0.21536 0.0 C -2.593341 -1.337872 0.0 C -1.898651 1.161044 0.0 Н 0.254452 -2.476725 0.0 H 3.681307 0.119062 0.0 H 2.21253 2.123037 0.0 H -0.61916 2.968561 0.0 H -2.461241 -1.9801685 0.878959 H -2.462241 -1.9801685 -0.878959 H -3.621311 -0.971083 0.0 H -2.894708 1.582929 0.0

H 2.714047 -2.148703 0.0 Core RigidRotor SymmetryFactor 1 End Frequencies[1/cm] 51 102.2975 142.0659 205.5237 308.2155 229.3953 416.4227 459.6878 524.2789 556.6522 558.2369 597.5389 692.5842 724.0869 757.9911 756.5346 779.1648 864.1946 871.3037 886.9060 940.5644 957.4496 978.0569 1030.3384 1034.4476 1043.1175 1085.4469 1104.2817 1180.0009 1190.6339 1214.3339 1285.5876 1322.7418 1369.1508 1405.1409 1433.5558 1441.5595 1475.3238 1484.7390 1491.1617 1507.4846 1618.0643 1624.1122 3005.3032 3043.5726 3103.3542 3158.2164 3163.9754 3174.4908 3187.6888 3200.8656 3218.5419 ZeroEnergy[kcal/mol] 0.0 ElectronicLevels[1/cm] 1 0 2 End Fragment Η Atom Mass[amu] 1 ElectronicLevels[1/cm] 1 0 2 End GroundEnergy[kcal/mol] 7.1 End !-----h_c10h9_p2------Bimolecular p2 Fragment c10h9 **RRHO** Geometry[angstrom] 19 C 1.1640393806 1.1348827835 -1.065889E-4 C -0.2270401106 0.7140866126 -8.57467E-5 C -0.2284991681 -0.7140509708 9.01415E-5 C 1.1567908259 -1.1369662868 1.700585E-4 C 1.9854471733 0.0032929323 4.20454E-5 C -1.4259456412 -1.4141254205 1.668385E-4 C -2.6334792152 -0.6941729947 6.1729E-5 C -2.6314098853 0.6964669294 -1.120873E-4 C -1.4215775428 1.4150716772 -1.849803E-4 C 3.4876041184 -0.001835191 -1.7457E-6 H -1.4382409944 -2.4991244486 3.044896E-4 S29

H -3.5723598131 1.2349272034 -1.910518E-4 H -1.432977907 2.5000710984 -3.181619E-4 H 1.5075542035 2.1616769483 -2.069657E-4 H 3.8845717017 1.015395051 0.0012423636 H -3.5758044988 -1.2301182283 1.179947E-4 H 1.4976686195 -2.16482257 3.186176E-4 H 3.8869144233 -0.5156717345 0.8802608873 H 3.8868833303 -0.513475391 -0.8815678373 Core RigidRotor SymmetryFactor 1 End Rotor Hindered ! CH3 Group 15 18 19 Axis 5 10 Symmetry 3 Potential[kcal/mol] 4 $0.0 \ 0.019 \ 0.013 \ 0.025$ End Frequencies [1/cm] 50 126.9905 239.2772 248.0202 309.2232 420.2691 446.7713 484.7658 537.9351 560.5027 573.8546 654.2678 740.8150 742.8119 787.5784 798.7529 823.9302 870.9552 886.0648 939.5100 960.0946 974.6346 976.1699 1033.3524 1055.5575 1088.4750 1154.3733 1171.3032 1181.7303 1212.3972 1219.8208 1288.6825 1337.6311 1400.0241 1423.8380 1482.1685 1497.2997 1486.9546 1488.5235 1537.1147 1617.3793 1627.6591 3020.8336 3066.4202 3099.1409 3158.8814 3164.2822 3174.9782 3188.5274 3196.9769 3200.0597 ZeroEnergy[kcal/mol] 0.0 ElectronicLevels[1/cm] 1 0 2 End Fragment Η Atom Mass[amu] 1 ElectronicLevels[1/cm] 1 0 2 End GroundEnergy[kcal/mol] 9.7 End !-----barrier_ts3------Barrier ts3 i1 i2

RRHO

RRITO		
Geometry[angstro	m] 20	
C 0.0601426018	-0.0801791298	-0.0296681755
C 0.0720828017	-0.0254254241	1.3781515637
C 1.4355482756	-0.1319901587	1.8473238917
C 2.2675170695	-0.2452631126	0.7142667705
C 1.3983743697	-0.1940167886	-0.4646650116
C 1 7292119276	-0 1017950007	3 2299576803
C 0.6956822834	0.0161562086	A 1286403707
C = 0.6/83333803	0.1280577103	3 67/130550/
C = 0.0403333073	0.1209377193	2 226006266
C -0.9039907319	0.118//0483/	2.330900200
C 2.2945536109	1.495994/11/	-0.3128252407
H 2.7556722952	-0.1832811029	3.5735838069
H -1.4397637081	0.2275056719	4.4099889044
H -1.997781815	0.2114501073	2.0148020184
Н -0.8060522328	-0.0168565004	-0.671257961
H 1.6821432706	2.0930814669	0.3522130492
H 2.09818448 1	.7311104031 -1	.3574840281
Н 3.3599649302	1.6096808281	-0.1191237784
H 1.7086902747	-0.5240959113	-1.4463657779
H 0.8968358266	0.0257541087	5.1937415172
H 3 3101048596	-0 5249005802	0 7020805839
Core RigidRotor	0.5217005002	0.7020005055
SymmetryEactor	1.0	
End	1.0	
Ellu Tunnalina Ealr	out	
Tunnening Eck	ari	124
ImaginaryFrequen	$10^{10} \text{ [1/cm]} /48.02$	134
WellDepth[kcal/m	101] 54.6	
WellDepth[kcal/m	nol] 33.1	
End		
Frequencies[1/cm]] 53	
135.8540	188.8372	
223.3598	306.1774	379.9923
431.4193	473.0773	505.5166
556.3826	580.8540	599.6464
703.3276	753.3344	754.2485
780.8846	827.9242	858.1041
877.7790	885.8266	898,1922
950 6810	958 2176	985 9852
1015 5480	1019 3999	1057 2230
1015.5+00	1017.3777	1174 2022
1079.2300	1140.2317	1250 4576
1209.3403	1245.8500	1239.4370
1288.3791	1303.8022	13/6.4343
1388.6598	1418.1441	1442.8708
1481.3705	1488.7333	1534.9982
1569.9442	1653.8833	3054.1838
3131.1237	3152.0371	3157.5219
3171.3199	3183.8851	3201.7358
3211.1448	3224.6253	3231.1608
ZeroEnergy[kcal/n	mol] -14.0	

ElectronicLevels[1/cm] 1 0 1 End 1_____ !-----barrier ts5----ts5 i2 i3 Barrier **RRHO** Geometry[angstrom] 20 C 0.0499046104 0.0667334723 -0.0771857799 C 1.21426E-5 -0.1604125044 1.3261097654 C 1.2343138456 -0.1773510232 2.0763989669 C 2.4733632511 0.0282637916 1.4202006588 C 2.4819899108 0.2180135445 0.0610031078 C 1.2675241029 0.2395723584 -0.6844718469 C 0.9171509219 -0.388829472 3.4311817745 C -0.5702894234 -0.4704824672 3.5274421778 C -1.0768338561 -0.3438427298 2.2058081858 C -1.3110715529 -0.9986194253 4.728348102 H 3.3996022178 0.0195429257 1.9852659952 H 1.3160479334 0.4001137098 -1.7562140185 H -0.8666351805 0.0919989383 -0.6570045071 H -2.1261111103 -0.3572600097 1.9469467925 H -1.3319466616 -2.0920684572 4.7068913456 H -2.3430669685 -0.6413305162 4.7430147439 H -0.8344840416 -0.6947703084 5.6638762398 H -0.0164849055 0.6141082942 3.7870762519 H 3.4220354001 0.3580256798 -0.4608732763 H 1.5828643638 -0.5184438013 4.2723873208 Core RigidRotor SymmetryFactor 1.0 End Tunneling Eckart ImaginaryFrequency[1/cm] 1173.0932 WellDepth[kcal/mol] 15.4 WellDepth[kcal/mol] 39.8 End Frequencies [1/cm] 53 131.5075 173.2842 228.9907 260.9813 311.0955 440.0861 453.4274 492.8856 563.7043 600.1463 629.6141 665.4268 719.5628 746.2410 788.0228 805.2946 831.9715 941.5641 861.3245 906.6013 1000.6119 956.3488 988.2586 1019.1173 1059.7231 1126.2366 1145.5834 1179.1462 1184.9479 1211.9745 1246.6876 1299.4794 1365.7524 1379.9064 1380.6985 1492.1948 1421.7726 1465.3107 S32

1493.5279 1572.6042 3029.9319 3154.8319 3184.5163 ZeroEnergy[kc ElectronicLeve	1505.5064 1661.8275 3086.4130 3161.5373 3214.8331 cal/mol] -31.7 els[1/cm] 1	1543.2281 2137.7041 3101.3521 3173.3436 3225.2599
0 I End		
!	·1 0 //	
RRHO	11 p0 #	
Stoichiom	etrv C10H10	
Core Ro	otd	
File ts1_flux.o	out	
SymmetryFac	tor 1.0	
End		
Frequencies[1/	(cm] 48	
199.1610	240.5161	391.8290
414.1648	534.9722	549.1649
560.3268	578.8571	713.0492
744.4367	754.1336	760.5516
804.5421	864.4476	874.9078
887.3348	902.2059	943.0014
979.8202	1013.5489	1034.4682
1081.1772	1092.5515	1181.2233
1185.1137	1212.2337	1219.4915
1329.3270	1371.6508	1384.5319
1463.7594	1488.4738	1489.2815
1617.7974	1625.1073	3159.9688
3165.4443	3175.9796	3189.2696
3203.5608	3211.0357	3228.6412
505.1501	1403.0831	1403.0885
3103.6402	3282.6573	3282.6683
ZeroEnergy[kd	cal/mol] 0.0	
ElectronicLeve	els[1/cm] 1	
0 1		
End		
Barrier ts2	i1 p1 #	
Stoichiom	etry C10H10	
Core Ro	otd	
File ts? flux o		
SymmetryFac	tor 1.0	
End		
Frequencies[1]	(cm] 51	
102.2975	142.0659	205.5237
	1.2.0007	S33

229.3953	308.2155	416.4227
459.6878	524.2789	556.6522
558.2369	597.5389	692.5842
724.0869	756.5346	757.9911
779.1648	864.1946	871.3037
886.9060	940.5644	957.4496
978.0569	1030.3384	1034.4476
1043.1175	1085.4469	1104.2817
1180.0009	1190.6339	1214.3339
1285.5876	1322.7418	1369.1508
1405.1409	1433.5558	1441.5595
1475.3238	1484.7390	1491.1617
1507.4846	1618.0643	1624.1122
3005.3032	3043.5726	3103.3542
3158.2164	3163.9754	3174.4908
3187.6888	3200.8656	3218.5419
ZeroEnergy[kc	al/moll 7.1	
ElectronicLeve	ls[1/cm] 1	
0 1		
End		
!		
Barrier ts7	i2 p0 #	
RRHO	F •	
Stoichiome	etry C10H10	
Core Ro	td	
File ts7 flux o	ut	
SymmetryFact	or 10	
End		
Liid		
Frequencies[1/a	rml 48	
199 1610	240 5161	391 8290
414 1648	534 9722	549 1649
560 3268	578 8571	713 0/192
744 4367	754 1336	760 5516
204 5421	754.1550 864 4476	700.3310 874 0078
004.3421	002 2050	0/4.90/0
070 8202	902.2039	1024 4682
979.0202 1091 1772	1013.3409	11034.4002
1001.1772	1092.3313	1101.2255
1103.1137	1212.2337	1219.4913
1329.3270	13/1.0308	1384.3319
1403./594	1488.4738	1489.2815
1617.7974	1 (0 - 1 0 - 0)	/1 E/ //2 00
3165.4443	1625.1073	3159.9688
2202 5500	1625.1073 3175.9796	3159.9688 3189.2696
3203.5608	1625.1073 3175.9796 3211.0357	3159.9688 3189.2696 3228.6412
3203.5608 505.1501	1625.1073 3175.9796 3211.0357 1403.0831	3159.9688 3189.2696 3228.6412 1403.0885
3203.5608 505.1501 3103.6402	1625.1073 3175.9796 3211.0357 1403.0831 3282.6573	3159.9688 3189.2696 3228.6412 1403.0885 3282.6683
3203.5608 505.1501 3103.6402 ZeroEnergy[kc	1625.1073 3175.9796 3211.0357 1403.0831 3282.6573 al/mol] 0.0	3159.9688 3189.2696 3228.6412 1403.0885 3282.6683
3203.5608 505.1501 3103.6402 ZeroEnergy[kc ElectronicLeve	1625.1073 3175.9796 3211.0357 1403.0831 3282.6573 al/mol] 0.0 ls[1/cm] 1	3159.9688 3189.2696 3228.6412 1403.0885 3282.6683
3203.5608 505.1501 3103.6402 ZeroEnergy[kc ElectronicLeve 0 1	1625.1073 3175.9796 3211.0357 1403.0831 3282.6573 al/mol] 0.0 ls[1/cm] 1	3159.9688 3189.2696 3228.6412 1403.0885 3282.6683

Barrier ts4 i2 p2 #

Geometry[angstrom] 20 C 1.1640393806 1.1348827835 -1.065889E-4 C -0.2270401106 0.7140866126 -8.57467E-5 C -0.2284991681 -0.7140509708 9.01415E-5 C 1.1567908259 -1.1369662868 1.700585E-4 C 1.9854471733 0.0032929323 4.20454E-5 C -1.4259456412 -1.4141254205 1.668385E-4 C -2.6334792152 -0.6941729947 6.1729E-5 C -2.6314098853 0.6964669294 -1.120873E-4 C -1.4215775428 1.4150716772 -1.849803E-4 C 3.4876041184 -0.001835191 -1.7457E-6 H -1.4382409944 -2.4991244486 3.044896E-4 H -3.5723598131 1.2349272034 -1.910518E-4 H -1.432977907 2.5000710984 -3.181619E-4 H 1.5075542035 2.1616769483 -2.069657E-4 H 3.8845717017 1.015395051 0.0012423636 H -3.5758044988 -1.2301182283 1.179947E-4 H 1.4976686195 -2.16482257 3.186176E-4 H 3.8869144233 -0.5156717345 0.8802608873 H 3.8868833303 -0.513475391 -0.8815678373 H 20.000000 0.0000000 0.0000000 **RRHO** Stoichiometry C10H10 Core Rotd File ts4 flux.out SymmetryFactor 1.0 End Rotor Hindered ! CH3 Group 15 18 19 Axis 5 10 Symmetry 3 Potential[kcal/mol] 4 0.0 0.019 0.013 0.025 End Frequencies [1/cm] 50 126.9905 239.2772 248.0202 309.2232 420.2691 537.9351 446.7713 484.7658 560.5027 573.8546 654.2678 787.5784 740.8150 742.8119 798.7529 823.9302 870.9552 886.0648 939.5100 960.0946 974.6346 976.1699 1033.3524 1055.5575 1088.4750 1154.3733 S35

1171.3032 1219.8208 1400.0241 1486.9546 1537.1147 3020.8336 3158.8814 3188.5274 ZeroEnergy[kc ElectronicLeve 0 1 End	1181.7303 1288.6825 1423.8380 1488.5235 1617.3793 3066.4202 3164.2822 3196.9769 cal/mol] 9.7 els[1/cm] 1	1212.3972 1337.6311 1482.1685 1497.2997 1627.6591 3099.1409 3174.9782 3200.0597
Barrier ts6	i3 p2 #	
	r	
Stoichiome Core Ro File ts6_flux.o SymmetryFact End	etry C10H10 otd out tor 1.0	
Frequencies[1/	[cm] 51	
35.9	126.9905	239.2772
248.0202	309.2232	420.2691
446.7713	484.7658	537.9351
560.5027	573.8546	654.2678
740.8150	742.8119	787.5784
798.7529	823.9302	870.9552
886.0648	939.5100	960.0946
974.6346	976.1699	1033.3524
1055.5575	1088.4750	1154.3733
1171.3032	1181.7303	1212.3972
1219.8208	1288.6825	1337.6311
1400.0241	1423.8380	1482.1685
1486.9546	1488.5235	1497.2997
1537.1147	1617.3793	1627.6591
3020.8336	3066.4202	3099.1409
3158 8814	3164 2822	3174.9782
3188.5274	3196 9769	3200 0597
ZeroEnergy[kc	al/moll 97	5200.0571
ElectronicLeve	sls[1/cm] = 1	
End		
!=======		

End

Supplementary References

- 1 Zhao, L. *et al.* Reactivity of the indenyl radical (C_9H_7) with acetylene (C_2H_2) and vinylacetylene (C_4H_4) . *ChemPhysChem* **20**, 1437-1447 (2019).
- 2 Lide, D. R. Ionization potentials of atoms and atomic ions. *Handbook of chemistry and physics*, 10-211 (1992).
- 3 Colket, M. B. & Seery, D. J. Reaction mechanisms for toluene pyrolysis. *Proc. Combust. Inst.* **25**, 883-891 (1994).
- 4 Jin, H. *et al.* An experimental study of indene pyrolysis with synchrotron vacuum ultraviolet photoionization mass spectrometry. *Phys. Chem. Chem. Phys.* **21**, 5510-5520 (2019).