The structure of a polygamous repressor reveals how phage-inducible chromosomal islands spread in nature.

J. Rafael Ciges-Tomas, Christian Alite, Suzanne Humphrey, J. Donderis, Janine Bowring, Xavier Salvatella, José R Penadés, Alberto Marina.

Supplementary Note 1. Trimeric and dimeric Duts are structurally unrelated proteins.

Trimeric Duts are all- β proteins with three independent active sites formed by the contribution of five conserved motifs (named I-V), with each subunit participating in the formation of each active site present in the trimer¹ (Supplementary Fig. 1). Conversely, dimeric Duts are all- α proteins and their active centers are also generated by five conserved motifs, although the sequences of these motifs are totally different from those on trimeric Duts^{2,3} (Supplementary Fig. 1). These differences are reflected in the alternative architectures of the corresponding active centers (Supplementary Fig. 1) and, consequently, different catalytic mechanisms for each family of Duts^{2,4,5}.

Supplementary Note 2. Changes induced after BovI-StI^{N-ter} Dut_{\$\phi\$}11 complex formation.

For Dut ϕ 11, the free (PDB 4GV8)⁶ and Stl-bound structures are virtually identical (RMSD of 0.16 Å for the superimposition of 161 residues) (Supplementary Fig. 6a). On the other hand, the BovI-Stl^{N-ter} shows a small rotational movement (around 18 degrees, calculated with DynDom 3D⁷) between the HTH and middle domains, in which the short α 6 acts as a hinge (Supplementary Fig. 6b), supporting some independence between both domains. Individual comparison of each BovI-Stl^{N-ter} domain in the free and bound structures showed that the HTH domain (RMSD of 1.19 Å for 55 residues) suffers a higher number of local re-organizations than the middle domain (RMSD of 0.58 Å for 60 residues), which mainly affects the DNA recognition helix α 3 and the following loop connecting α 4 that is partially disordered. As was observed in the free structure, the first nine and the last two residues of the BovI-Stl^{N-ter} were also disordered, indicating that the complex formation does not stabilize this part of the protein. Similarly, the fifteen C-terminal residues of Dut ϕ 11, which correspond to the conserved C-terminal P-loop motif V that acquires a stable conformation once the nucleotide binds the enzyme^{1.8}, were also disordered.

Supplementary Note 3. Stl belongs to HTH XRE-family, permitting modelling of an Stl-DNA complex.

DALI server⁹ screening using BovI-Stl HTH domain as a template revealed high structural homology with several members of the HTH XRE-family like proteins (SMART accession number SM00530 or PFAM HTH_3), for example, the 434 Cro repressor family. The superimposition of the

2

BovI-StI HTH domain with the corresponding HTH domains of these DNA-binding proteins (around 50 to 63 C α) showed root-mean-square deviations (RMSDs) between 1.3-2.3 Å. In particular, BovI-StI HTH domain superimposed well with the bacterial restriction-modification (R-M) controller proteins (Supplementary Fig. 3a). Superimposition of the HTH domain of BovI-StI^{N-ter} with the equivalent portion of the controller protein from the Esp1396I R-M system (C.Esp1396I) in complex with DNA (PDB 3CLC)¹⁰ allowed us to generate a model of the StI bound to its target DNA. Since StI and C.Esp1396I present similar DNA binding site architecture (a 4-5 nucleotide "spacer" separating two pseudo-palindromic recognition sites)^{11,12}, the superimposition of two BovI-StI^{N-ter} on the equivalent HTH domains of C.Esp1396I was used to generate a biological model of StI-DNA dimer (Fig. 2a and Supplementary Fig. 3b) that revealed residues predicted to be responsible for recognition and interaction with DNA (Fig. 2b).

Supplementary Discussion.

Induction of genes under the repression of several Cro family regulators, such as SinR or bacteriophage 434 Cl, involves disruption of the quaternary interactions mediated by the carboxyterminal domains^{13,14}. Prophage induction occurs as a result of the proteolytic cleavage between their N-terminal DNA-binding and C-terminal dimerization domains¹³. The proteolytically separated domains cannot dimerise and no longer bind the operator DNA cooperatively. Although the derepression of SaPIbov1 is also produced by the disruption of the StI repressor dimer, in this case the mechanism is different since it is mediated by an interaction with the Dut and not by the proteolysis of the repressor. Keeping the Stl repressor intact allows the process of de-repression to be transitory; repression could be reverted if the Stl-Dut heterodimer was broken, opening the possibility for finely tuned regulation of this process. Our and others' results support this idea, since we have shown that the dUTP substrate acts as an inhibitor of Stl binding to both dimeric and trimeric Duts, with the nucleotide being able to act as a switcher of SaPI de-repression^{15,16}. In addition, this mechanism of repression requires weak dimers that allow quick conversion to monomers and the consequent exposure of residues involved in anti-repressor recognition. Supporting this, and in difference to the canonical Cro family repressors, the Stl construct including the N-terminal and middle domains was monomeric in solution. This indicates that the middle

3

domain has a weak dimerization capacity that could be attributed to the high hydrophilic character of helix α 5. In canonical repressors the helix α 5 is the main dimerization element, but in the StI the presence of the additional C-terminal domain also contributes to dimerization, compensating for the weak capacity of the middle domain. By distributing multiple weak interaction areas along its dimerization surface, StI has been able to balance its activity as repressor, which requires a stable dimeric organization, with its promiscuity in activation involving the sensing of multiple unrelated protein inducers.

Supplementary Figure 1. Conserved catalytic motifs in trimerics and dimerics Duts. *Top.* The disposition of catalytic motifs of (left) trimeric and (right) dimeric Duts are highlighted on the structures of Dut80 α and Dut ϕ O11, respectively. dUTP and Mg molecules on the active sites are shown in cyan sticks and balls, respectively. *Bottom.* These motifs are also highlighted with the same colors and named in the alignment of representative Duts from *Staphylococus aureus* phages ϕ 80 α and ϕ 11, *Escherichia coli* and *Homo sapiens* for trimeric Duts and *S. aureus* phages ϕ O11 and ϕ DI, *Leishmania major* and *Campylobacter jejuni* for dimeric Duts. Note the presence of motif VI (red) characteristic of trimeric Duts encoded by *S. aureus* phages

Supplementary Figure 2. Interaction of Trimeric and Dimeric Duts with Stl and its N- and Cterminal portions. Native-PAGE assays were used to test the interaction of the trimeric and dimeric Duts from phages Φ 11 and Φ DI, respectively, with the full length Stl (Stl^{WT}), as well as with the Stl N-terminal (residues 1-156, Stl^{N-ter}) and C-terminal (residues 175-267, Stl^{C-ter}). The appearance of a new band (denoted with an asterisk coloured as the corresponding Stl) concomitant with the disappearance of the bands corresponding to the individual proteins confirms the formation of the Stl-Dut complex. For trimeric Dut Φ 11 the N-terminal portion is sufficient to form the complex, while the complex formation for dimeric Dut Φ DI requires the C-terminal portion. Source data are provided as a Source Data file.

В

Supplementary Figure 3. Comparison of the structure of Stl with the controller C-Esp1396I. (A) The superimposition of Stl^{N-ter} and C.Esp1396I (PDB 3CLC¹⁰), the controller protein of the restriction-modification system Esp1396I, shows that the structural identity between both proteins not only includes the HTH DNA-binding domains (purple and orange for Stl and C.Esp1396I, respectively) but also the following helix α 5 (green in Stl), which is used in Stl to connect the HTH with the middle domain (cyan). Both proteins are represented in ribbon and two orthogonal views are shown. The α helices composing the HTH domain are labelled. (B) *left*, the structure of the dimeric C.Esp1396I (protomers in orange and blue) bound to DNA ((white) PDB 3CLC) was used to generate a model of Stl^{N-ter}-DNA by superimposing two monomers (magenta and green) onto the equivalent regions of C.Esp1396I (*right*). The common structural elements are numbered and labelled. The asterisks denote the elements of the second protomer.

Supplementary Figure 4. Size exclusion chromatography of Stl^{WT}, Stl^{N-ter} and Stl^{C-ter}. Elution profiles of the proteins were monitored as UV absorption (black, red and blue curves) and plotted semilogarithmically (black, blue and red triangles) together with the elution positions of molecular mass standards (gray circles). The molecular weight was deduced from the elution volumes (inset) and supports a dimeric organization for Stl^{WT} and Stl^{C-ter} and monomeric for Stl^{N-ter}. Source data are provided as a Source Data file.

Supplementary Figure 5. **Nucleotide-residue contact map.** Schematic representation from DNAproDB¹⁷ showing the individual protein-nucleotide interactions observed in the StI-DNA model. The StI palindromic DNA recognition sequence (TATCTC) is highlighted in capital letters. Specific read-out through major groove (MG) interactions are highlighted in large markers filled-in cyan while nonspecific interactions with the DNA backbone (BB) are highlighted with pentagons filled-in orange. Protein helices and loop residues are depicted in red circles and blue squares, respectively.

Supplementary Figure 6. Conformational changes in Bovl-Stl^{N-ter} and Dutφ11 induced by complex formation. (A) The crystal structures of the trimer of Dutφ11 both in complex with Bovl-Stl^{N-ter} and in free form were overlaid, and two orthogonal views in cartoon representation are displayed, with the protomers of the free form in different tones of green and the protomers of the Dut in complex with Bovl-Stl^{N-ter} in different tones of magenta. (B) The structures of Bovl-Stl^{N-ter} obtained in its free form (green) or in complex with Dutφ11 (magenta) were overlaid and two orthogonal views are shown in cartoon representation. The HTH domain is coloured in a lighter tone.

Supplementary Figure 7. Phage spotting assay using the trimeric Dut encoding phages ϕ 11 and 80 α , and dimeric Dut encoding ϕ NM1 on bacterial lawns of RN4220 strains either without any SaPI, with the SaPlbov1 Stl^{WT}, or with SaPlbov1 mutants Stl^{Y112A} or Stl^{YY-AA}. Serially diluted (10-fold) lysates were spotted on the lawns of indicated *S. aureus*. The phage titre (PFU/mI) used for each spot is indicated. Source data are provided as a Source Data file.

Supplementary Figure 8. *In vivo* effects of Stl mutations on SaPlbov1 excision and replication following helper phage activation. Strains JP6774, JP17043, JP17706, JP18043, and JP17679 containing SaPlbov1^{WT}, Stl^{Y234A}, Stl^{Y112A}, Stl^{Y1-AA} and Stl^{HY-DA} respectively were lysogenised with either phage ϕ 11 (trimeric Dut), phage 80 α (trimeric Dut), or ϕ NM1 (dimeric Dut), or with their Δdut derivatives. Samples were isolated 90 mins post-induction with 2 µg/ml MC and Southern blots were performed using a SaPlbov1 integrase probe. The upper band is 'bulk' DNA, including chromosomal, phage, and replicating SaPl. CCC indicates covalently closed circular SaPl DNA. Source data are provided as a Source Data file.

Supplementary Figure 9. BovI-StI^{C-ter} mimics the partner protomer in dimeric Duts. *Left*, Cartoon representation of the structures of Dut ϕ O11 (PDB 5MIL; ¹⁸) (top) and BovI-StI^{C-ter} (bottom) homodimers and a BovI-StI^{C-ter}-Dut ϕ O11 heterodimer (middle) in identical orientation by overlaying one homodimer protomer on the corresponding component on the heterodimer structure. Notice that to form the BovI-StI^{C-ter} - Dut ϕ O11 heterodimer occupies an identical position to the second protomer of the Dut ϕ O11 homodimer, mimicking the interaction of this protomer in the complex formation. *Right*, Contact map of BovI-StI^{C-ter} and Dut ϕ O11. The contacts between Dut ϕ O11 (Y axis) and BovI-StI^{C-ter} (X axis) residues are denoted by coloured squares (contacts calculated with Contact Software). Magenta squares indicate contacts between residues that also mediate interactions in the homodimerization of both proteins. Pink squares denote contacts between residues that do not participate in homodimerization interactions of any of the proteins. Brown and blue squares are for contact of residues that also participate in the homodimerization of Dut ϕ O11 and BovI-StI^{C-ter}, respectively. The structural elements where the contacting residues are localized in each protein are indicated in the axis of the map.

Supplementary Figure 10. Phage spotting assay using the trimeric Dut encoding phages ϕ 11 and 80 α , and dimeric Dut encoding ϕ NM1 on bacterial lawns of RN4220 strains either without any SaPI, with the SaPIbov1 Stl^{WT}, or with SaPIbov1 mutants Stl^{Y234A} or Stl^{HY-DA}. Serially diluted (10-fold) lysates were spotted on the lawns of indicated *S. aureus*. The phage titre (PFU/mI) used for each spot is indicated on the plate. Source data are provided as a Source Data file.

Supplementary Figure 11. Crosslinked dimers of Stl. (A) BovI-Stl His 73 or 188 were mutated to Cys to facilitate the production of disulphide crosslinked dimers. The formation of crosslinked dimers was induced by the addition of the oxidizing reagent copper-phenantroline (Cu-P; 0.5 and 1 mM) and the production of disulphide bound dimers was evaluated by SDS-PAGE in the presence or absence of the reducing agent β -mercaptoethanol (β -me). (B) The formation of dimers induced by the mutation of His73 to Cys was also analysed in the context BovI-Stl^{N-ter} using an identical approach. (C) EMSA assays with Stl^{N-ter} and the H73C mutant of this construct show that the forced dimeric H73C mutant produces a shifted band corresponding to the DNA-Stl complex at lower concentrations of Stl protein, supporting a higher affinity for DNA of the Stl H73C mutant. Source data are provided as a Source Data file.

		α1		α2	()	α3	α4		
S.aureus SaPIBov1-Stl	MEGAGQMAELPT	HYGTIIKTI	RKYMKLT	SKLSERT	GFS <mark>QN</mark> T	TI <mark>SN</mark> H <mark>EN</mark> (GN <mark>R</mark> NIG <mark>VN</mark> EIEI	60	
A.indicus	MENK	YLGNVIKSF	R TALKMT	QKDVSQKT(GFS <mark>QN</mark> T	CI <mark>SN</mark> H <mark>EN</mark> (GN <mark>R</mark> SVG <mark>IN</mark> ELSK	52	
S.haemolyticus	MVERQN	TLGTVIKSI	RKARRIT	QKELSKLT(GFS <mark>QN</mark> T	TI <mark>SN</mark> H <mark>EN</mark> (GN <mark>R</mark> KID <mark>LN</mark> DLHI	54	
S.hominis	MADKYD	SLGEVIKCI	RKSRKIT	QTKLSKLT(GFS <mark>QN</mark> T	TI <mark>SN</mark> H <mark>EN</mark> (GN <mark>R</mark> KVK <mark>LN</mark> DINI	54	
S.pneumoniae	MTDKYD	SLGEVIKYI	RKFRKIT	QTKLSELT(GFS <mark>QN</mark> T	TI <mark>SN</mark> H <mark>EN</mark> (GN <mark>R</mark> KVK <mark>LN</mark> DINI	54	
S.simulans	MENQN	YLGDIIKSI	RKYKTMT	Q SDLSKTT(GFS <mark>QN</mark> T	TI <mark>SN</mark> H <mark>EN</mark> I	KK <mark>R</mark> NIG <mark>VN</mark> EVTT	53	
S.aureusC0673	MSENEK	QIGSIIKKI	RKFRKKT	2SQLSLDT	GFS <mark>QN</mark> T	TI <mark>SN</mark> H <mark>EN</mark> I	NN <mark>R</mark> SIG <mark>LN</mark> EIKI	54	
S.agnetis	MSELPT	HYGTIIKKI	. <mark>R</mark> KYMKLT	Q VEMSRLT(GFS <mark>QN</mark> T	TI <mark>SN</mark> H <mark>EN</mark> (GK <mark>R</mark> NIG <mark>VN</mark> EIEN	54	
S.pseudintermedius	MSELPT	HYGKIIKAI	RKYFNIT	Q SKLSKKT(GFS <mark>QN</mark> T	TI <mark>SN</mark> H <mark>EN</mark>	GK <mark>R</mark> NIG <mark>VN</mark> EIET	54	
S.saprophyticus	MLELPS	HYGTIIKTI	RKYMKLT	QNELSERT	GFS <mark>QN</mark> T	TI <mark>SN</mark> H <mark>EN</mark> G	GN <mark>R</mark> NIG <mark>VN</mark> EIET	54	
	() α4 — ()	α5		-(α6 -(α7	- α8 -		
S.aureus	YGKGLGIPS <mark>Y</mark>	ILH <mark>R</mark> IS	DEFKEKG	YSPTLNDF	GKFDKM	(<mark>y</mark> syv <mark>n</mark> k)	AY <mark>Y</mark> ND <mark>G</mark> DI <mark>YYS</mark> S	115	
A.indicus	YLNALTVND <mark>F</mark> RF	SOSTFF <mark>E</mark> IA	EDLKKNG:	SSVILNNI	KLFLK1	I <mark>y</mark> eyv <mark>t</mark> y/	AR <mark>N</mark> ND <mark>S</mark> DI YYY H	112	
S.haemolyticus	YAEKLNVSY <mark>N</mark>	–––LII <mark>R</mark> FS	EDLFHNG	YSKALDOF	ODFORI	I <mark>Y</mark> NYF <mark>L</mark> K	AY <mark>Y</mark> NE <mark>A</mark> DI <mark>YFY</mark> S	109	
S.hominis	YAEALGLSE <mark>Y</mark>	FIL <mark>K</mark> IN	DELNNN-	-NEFLESF	- HEFLRI	I <mark>Y</mark> NFV <mark>D</mark> K	AY <mark>y</mark> ke <mark>g</mark> di yfs s	107	
S.pneumoniae	YAKALGLSE <mark>Y</mark>	LIL <mark>K</mark> IN	DELNNN-	-NEFLESFI	HEFLRI	I <mark>Y</mark> NFV <mark>D</mark> K	AY <mark>y</mark> ke <mark>g</mark> di yfs s	107	
S.simulans	YSKGLDVPS <mark>Y</mark>	LIF <mark>K</mark> IN	EEMKNTG	OSDTLKNFI	PAFYKI	I <mark>Y</mark> OLA <mark>N</mark> K	AY <mark>lne</mark> gdi <mark>yfy</mark> s	108	
S.aureusC0673	YSKALGISE <mark>Y</mark>	IIL <mark>K</mark> IS	EEYDKEG	~ FSKTLENFI	EEFLKI	YNFV <mark>S</mark> E/	AY <mark>Y</mark> ND <mark>S</mark> DI YYY S	109	
S.agnetis	YSKGLGIPS <mark>Y</mark>	VIH <mark>R</mark> IS	DELKEKG	YSPTLNDF	SKFDKI	Y NYV <mark>K</mark> K	AY <mark>Y</mark> NE <mark>S</mark> DI YFS S	109	
S.pseudintermedius	YSKALGVPS		DETKGKG	YSPTLNDF	STEDKA		AYYNESDIYES	109	
S. saprophyticus	YSKGLGVPS <mark>Y</mark>	VVHRTS	DEFKEKG	YSPTLNDF	SKEDKN	YSYVRK	AYFNEGDTYFS	109	
bibapiophi cicus				101111011				105	
				α10	<u> </u>				
S. aureus	VD LVDETTKLLE	LLKESKINN		VLKLYKOT	LSTDTE	KSTINY	TLANTRESSDE	175	
A. indicus		TILGTKYNE	DNTTYFF	TUDIAROII	LSTEIN	IKSDPK-	LVED	163	
S. baemolyticus	TOFYKETLETLD	MLKNSNIDI	NSVSVEV	IKKLCIEI	LHKNDN	J		156	
S. hominis	VDKLEEALKIEN	LLRETNVDV	NNVSVEV	VTDLVKOT		WSKSSTI	KNTENKNMD	164	
S pneumoniae	VDKFFFALKIFN		NNVSVEV	VTDLVKOT		WSKNSTI	KNIFNKNMP	164	
S. simulans	VD TFDFALFTVN		VALANDARY	FLDLVKOL	SKENN	WISLE-	KKED	157	
S aurous C0673		TIKONNUDI	TNUTVDV					169	
S agnotis		LLNEGKIDI	CDTCVFV	VIDIVKOI		TOTANVI	STLADKEDLEK-	160	
S neoudintormodius		LIKDVKIDI	NNUGVEV	VIDIVKOI	CONCEN	IKCKUNN	ET LAKKKKKLNEQ	169	
S.pseudincermedius		LIKDAKIDU	NDVQVEV	VLDLIKQI	LONDIT	NUCLINIA	ET LAKKKKLNDN	160	
S. Saprophyticus	ID HIDEIIKLLD	LIKEAKIDV	NDVSIEI	VIDLIKÖII	LONDEL	JKSIKNII	LITRUKKONDI	109	
		x11		0		r 12			
S ourous	KDENTERTOFF	 UFVVIVII	ידא דרידי	UNDERRAT		VEFETV	CERTPIND	222	
A indique			NE DET		TUTENT	FEOSIE		220	
S bacmolutious	GEAUCT FETUAF		NEPKII		ZENETI	RUNGIN.		220	
S. hominis	VD VUTTETI DE	NEV V CEI M	KAL IDAN		REALLI	KÖVSTV.		273	
S phoumoniae	VDVVTERT	NEV V GELMI	KILEDKS		TRALQI	KEIGLEI	GERTOVADNY	223	
S. simulans	IPRVILEELLDF VNCVCTNFTTFT		CECKIKS	NIDANALI.	IKALQI	INGIGUTI.	LSEKLQIAPNI	223	
	FRENT WETTEE		CESKIKS	DEDIENAII	PROPET	FERETAI		210	
S.aureuscoo/3	EVENTINET DE		KKIES	TEDRERAI	VETECT	TEVESTAN		220	
S.agnetis S.agnetis	LGIVIFEELIEF		KNLDS	UDNDVVAL	RETEOL	VEEVIN		220	
S.pseudintermedius	LSKVI LEE LAEF		ENLEI	IDNEKKALI	SELEČI	VEEALN.		220	
s.saprophyticus	ESEVITEETTKF	LEKI LALM F	SDLET	HUNRKKALI	SELEKI	KEETITI	LGKKLKLVP <mark>NI</mark>	220	
	Latch	α13				Hor	t choose of the BICI		Sti like accession
6			LEUOKKT		267	Stanhulou	St Specie of the Fich	hov(l)	
D. aureus A indiaus			TDEADEV	LLEKUTN-	207	Staphylo	COCCUS aureus (SaPII	5001)	F7X20759 1
A. Indicus C. hoomolutions	SVENTRONDWAT	UVVETVDV	I DEFIEC	ENNCY ENNCY	200	Stanhylo	coccus aureuscub/3	edius	PKW51996 1
S. naemolyticus	DILAIR GRPMYL	VIKETIPK	LDEFIEQ.	TENCE	248	Stanhula		cuius	AMC06700.0
S.nominis	TIDAIKGEPMYV		LDEFIEQ.	IKNSK	250	Staphylo	coccus simulans		AIVIG90720.2
s.pneumoniae	TIDALKGEPMYV		LDEFIEQ.	LKNSK	250	Stanhylo			WP 052024052 4
S.SIMUIANS	FYDAIKGEPMYT	VIEFKIPQF	LKEFRER.	LINLKQGD	252	Staphylo	coccus naemolyticus		U53031052.1
s.aureuscus/3	QTULIEGEPMSD		LQEFRNN.	LNLK	257	Staphylo	coccus sapropnyticus	э́	OEK45527.1
s.agnet1s	HYDAIKGEPMYK		LEDHKNF.	LLEKENN-	261	Streptoco	occus pneumoniae		DNV97670.1
s.pseudintermedius	HYDAIDGEPMYK	T A L A K A ÖD P	LEEHRKF	LLGQENN-	261	Staphylo	coccus agnetis		PINY8/6/9.1
s.saprophyticus	HYD <mark>AIK</mark> GEPMYK	TTLYT <mark>T</mark> PD F	LETHKNF	LLEKENN-	261	Auriococo	cus indicus		AQL56990.1

Supplementary Figure 12. Clustal alignment of SaPlbov1 Stl with homologous Stl repressors from PICIs of different species. *Auriococcus indicus* Stl sequence is included as external genus within the *Staphylococcaceae* family and *Streptococcus pneumoniae* representing a more distanced species from the *Lactobacillales* order. The residues participating in DNA recognition (highlighted with blue background) are completely conserved, whereas the residues involved in the recognition of trimeric (yellow) or dimeric (green) Duts are partially conserved among Stl repressors. Secondary structural elements are represented above the SaPlbov1 Stl sequence and coloured in blue, yellow and green for the HTH DNA binding, middle and C-terminal domains, respectively. Data base accession code for the corresponding Stl sequences are indicated in the inset table.

Supplementary Figure 13. Omit maps for interacting residues in the complexes of Stl with trimeric and dimeric Duts. The electron-density omit map (contour level: 1σ) are shown in (*left*) magenta and (*right*) green around (2 Å) the interacting residues of the complexes of Stl with trimeric and dimeric Duts showed in Figures 3c and 5c, respectively. Structures are represented as in the corresponding Figures.

Stl ^{C-ter} Subunit A			Stl			
Structural element	Residue	Atom type	Structural element	Residue	Atom type	Distance (Å)
		CG2	α11	181 (ILE)	CG2	3.53
		0	α13	242 (MSE)	CE	3.47
	181 (ILE)	CB	α11	184 (II E)	CD1	3.45
		CG2	un		CD1	3.88
		CD1	α12	226 (LEU)	CD2	3.81
		CG2		184 (ILE)	CG2	3.55
	184 (ILE)	CD1	α11	181 (II E)	CB	3.45
		CD1			CG2	3.88
	185 (GLY)	CA	α13	242 (MSE)	CE	3.55
		CB			CG	3.50
		CB			ND1	3.51
		CB			CD2	3.69
	188 (HIS)	CB	a11		CE1	3.69
	100 (ПІЗ)	CB		100 (1113)	NE2	3.79
~11		CG			CG	3.43
un		CG		CD2	3.76	
		CD2	1		CD2	3.79
		OE1		250 (TYR)	OH	2.19
	189 (GLU)	OE1	α13	252 (ADC)	NH2	3.73
		OE2		253 (ARG)	NH2	2.95
	191 (TYR)	ОН	α11	196 (PHE)	CZ	3.73
		CD1	01 01 α13	250 (TYR)	CE1	3.51
	192 (LEU)	CD1			CZ	3.80
		CD2	α11	195 (LEU)	CD1	3.71
	193 (LYS)	NZ	α13	253 (ARG)	NH2	3.87
	195 (LEU)	CD1	α11	192 (LEU)	CD2	3.71
		CD2			NH1	3.37
		CE2	α13	253 (ARG)	CD	3.27
	190 (FIIE)	CE2			NH1	3.29
		CZ		191 (TYR)	OH	3.73
α12	226 (LEU)	CD2		181 (ILE)	CD1	3.81
	242 (MSE)	CE		185 (GLY)	CA	3.55
	245 (LEU)	CD2		180 (CLU)	OE1	3.64
		OH		103 (OLO)	OE1	2.19
	250 (TYR)	CE1		102 (I ELI)	CD1	3.51
		CZ	~11	192 (LEU)	CD1	3.80
or12		CD			CE2	3.27
uis		NH1		196 (PHE)	CD2	3.37
		NH1		(CE2	3.29
	253 (ARG)	CZ			OE2	3.83
		NH2		189 (GLU)	OE1	3.73
		NH2			OE2	2.95
		NH2		193 (LYS)	NZ	3.87

Supplementary Table 1. Intersubunit interactions for Stl^{C-ter} dimer

Protein	Molecular Weight (kDa) ^a	Tm (°C)⁵
Stl	61,4 ± 1,23	54,7 ± 0,18
Stl	66,3 ± 2,12	55,6 ± 0,11
Q29A Stl	65,8 ± 1,58	52,9 ± 0,17
S44A Stl	64,1 ± 3,53	55,1 ± 0,10
Stl	63,4 ± 3,74	55,4 ± 0,08
Stl	66,7 ± 1,93	54,6 ± 0,12
Stl	70,2 ± 1,26	54,1 ± 0,19
R51A Stl	65,1 ± 1,37	54,8 ± 0,16
R74A Stl	69,0 ± 2,21	50,8 ± 0,22
Stl	68,6 ± 1,99	54,8 ± 0,18
Stl	68,8 ± 1,38	55,5 ± 0,09
Stl	69,4 ± 2,91	58,1 ± 0,24
Y116A Stl	72,7 ± 4,29	55,9 ± 0,16

Supplementary Table 2. Molecular weight and thermostability of BovI-Stl WT and mutants

^aMolecular weight of each protein was calculated by SEC-MALS ^bThermostability of each protein was calculate by Thermofluor

Stl ^{N-ter}												
Structural element	Residue	Atom type	Structural element	Residue	Atom type	Distance (Å)						
	55 (VAL)	СВ			CD	3.89						
α4		OD1	β11	149 (GLU)	N	2.85						
	50 (ASN)	ND2			0	2.85						
		OH		20 (ASN)	ND2	3.72						
	70 (TYR)	CB			CD	3.46						
		00			CG	3.78						
α5				18 (GLU)	OE1	2.41						
7	74 (ARG)	NH1			OE2	3.39						
		0.5.4			CD	3.27						
	77 (ASP)	OD1		15 (ARG)	NH1	3.69						
		OD2	Lβ1β2	- (- /	NH2	3.04						
	<u>98 (TYR)</u>	OH		20 (ASN)	OD1	3.11						
	102 (ASN)	OD1			054	3.49						
		CE2			GET	3.00						
a 6		07		21 (HIS)		3.72						
uo		02			NDT	3.70						
	100 (1110)	ОН		L	001	2 78						
		OIT		24 (ASP)		2.70						
		0		85 (HIS)	N	3.14						
	109 (GLY)	N	Lβ7β8	84 (TYR)		3.62						
		100 (021)		β7	79 (LYS)	0	3.50					
		ОН	P·	10 (210)	N	3.11						
			-	81 (ASP)	OD2	2.81						
		СВ			054	3.37						
		00			CE1	3.27						
		CG				3.36						
	112(11K)	CD1	Lβ7β8			3.51						
		CD2		84 (TYR)	CDT	3.47						
α7		CE2				3.57						
ur					CG	3.73						
								CZ				3.71
					CB	3.78						
		0		65 (SER)	0	3.49						
		0	α1	66 (GLY)	N	3.55						
	113 (TYR)			69 (SER)	ÜĞ	3.05						
	, , , , , , , , , , , , , , , , , , ,		po		NI	3.01						
			ро	09 (GL1)	IN	3.39						
	114 (SED)					2.90						
	114 (SER)					3.00						
		0	α1			2.65						
		C	ur	64 (ARG)	NH2	3.54						
		CD1				3 40						
l α7α8	116 (TYR)	CF1		110 (II F)	CG2	3 59						
_0.100		CF2	Lβ8β9	111 (LYS)	 CF	3.83						
					N	3.81						
		CZ	Lß9B10	133 (LYS)	CB	3.96						
	117 (ASP)	OD1	r - p		NZ	2.76						
α9	152 (LEU)	0	α1	70 (TYR)	NZ	3.03						

Supplementary Table 3. Intermolecular interactions for Stl^{N-ter} – Dut ϕ 11 complex

Supplementary Table 4. Interactions of dUTP-Mg with residues of trimeric DutΦ11 (PDB 4GV8) and dimeric DutΦO11 (PDB 5MIL) and interactions of these residues with StI in the corresponding complexes.

	DutΦ11-Stl	^{N-ter} complex	
DutΦ11-dUTP (PDB 4G)	complex V8		
dUTP	DutΦ11	Stl ^{N-ter}	
Structural element	Residue	Residue	
Pv	20 (ASN)	70 (TYR)	
Ρβ	64 (ARG)	116 (TYR)	
Pα Deoxyribose Uracil	65 (SER)	113 (TYR)	
Ρβ	66 (GLY)		
Uracil	78 (GLY)	-	
Deoxyribose	79 (LYS)		
Uracil	80 (ILE)	112 (TYR)	
Pa	81 (ASP)		
Deoxyribose	84 (TVD)	109 (GLY)	
Liracil	04 (11K)	112 (TYR)	
Uracli	89 (GLY)	Y113 (TYR)	
Ρα	136 (GLN)	-	

DutΦ11-Stl ^{C-ter} complex			
DutΦO11-dUTP PDB 5M	complex L		
dUTP	DutO11	Stl ^{C-ter}	
Structural element	Residue	Residue	
	17 (GLN)	233 (HIS)	
	20 (PHE)	237 (ILE)	
Deoxyribose		236 (ALA)	
	21 (ASP)	233 (HIS)	
	27 (LEU)		
Mg ion	39 (GLU)	238 (LYS)	
		234 (TYR)	
Ργ Majon	-	245 (LEU)	
Pv			
Ma ion	42 (GLU)	250 (TYR)	
Ρβ			
Ργ		253 (ARG)	
Mg ion			
		191 (TYR)	
Ργ	45 (ASN)	250 (TYR)	
		253 (ARG)	
Mg Ion	67 (GLU)	238 (LYS)	
Deoxyribose		237 (II E)	
Mg ion		207 (ILL)	
Deoxyribose	70 (ASP)		
Ρβ		238 (LYS)	
Mg ion			
Deoxyribose	73 (ALA)	237 (ILE)	
Deoxyribose		237 (II E)	
Uracil	74 (PHF)		
Uracil	(233 (HIS)	
Deoxyribose			
Deoxyribose	153 (ASN)	237 (ILE)	

				SaPI titre ^a		
Dut family	Helper phage	Stl	Stl	Stl	Stl	StI
Trimeric	φ 11	10.06	9.81	2.38****	9.97	10.11
	φ11 _{₄dut}	2.35****	2.37****	2.49****	2.54****	2.82****
Trimeric	80α	8.05	1.63****	1.71****	8.60	9.02*
	80α _{⊾dut}	1.87****	1.89****	1.87****	1.90****	2.01****
Dimeric	φNM1	9.40	9.90	9.76	7.94***	7.61****
	φNM1 _{≜dut}	2.91****	2.85****	2.82****	2.85****	2.97****

Supplementary Table 5. Effect of Stl mutations on SaPlbov1 titre.

^aNumbers refer to the log₁₀ number of transductants in RN4220 recipient per 10⁹ phage particles.

The means of results from three independent experiments are presented. Variation was within $\pm 5\%$ in all cases.

A 2-way ANOVA with Tukey's multiple comparisons test was performed to compare mean differences between the phage_{dut+} Stl^{WT} control and the mutants for each phage and Stl type. Significant adjusted *p* values were as follows: $\phi 11 \text{ Stl}^{YY-AA} = <0.0001^{****}$, $\phi 11_{adut} \text{ Stl}^{WT} = <0.0001^{****}$, $\phi 11_{adut} \text{ Stl}^{WT} = <0.0001^{****}$, $\phi 11_{adut} \text{ Stl}^{WT} = <0.0001^{****}$, $\phi 11_{adut} \text{ Stl}^{Y12A} = <0.0001^{****}$, $\delta 0 \propto \text{ stl}^{Y12A} = <0.0001^{****}$, $\delta 0 \propto_{adut} \text{ Stl}^{Y234A} = <0.000$

Stl ^{C-ter}			Dut			
Structural element	Residue	Atom Type	Structural element	Residue	Atom Type	Distance
	178 (GLU)	OE2		31 (ASP)	OD1	3.49
	179 (VAL)	0	α2		CD1	3.80
	· · ·/	CG1		34 (ILE)	CG1	3.59
	181 (ILE)	CG2	_		CE1	3.57
		0	α5	115 (PHE)	CZ	3.68
	184 (ILE)	CG2	α2	38 (VAL)	CG2	3.88
	185 (GLY)	CA	α5	115 (PHE)	CZ	3.85
	()	CG)	CB	3.87
		ND1			CB	3.59
α11		CB			CG	3.52
	188 (His)	CG		41 (PHE)	CG	3.81
	- ()	CB		、 ·,	CD1	3.81
		CB			CD2	3.59
		CG			CD2	3.73
		CE2			OD1	3.14
	191 (TYR)	OH		45 (ASN)	OD1	3.83
		CE1			C	3.49
	196 (PHE)	CZ		49 (THR)	C	3.84
	()	CE1			0	3.61
		CG			CB	3.57
		OD1			CB	3.34
		ND2			CB	3.50
		ND2			CA	3.55
		ND2		31 (ASP)	C	3.59
	231 (ASN)	CG	α2		0	3.73
		OD1	-		0	3.69
		ND2			0	2.93
		ND2	-		OD1	3.77
		ND2		34 (ILE)	CB	3.79
		ND2		35 (ALA)	N	3.76
	<u> </u>	ND1		(· ·=/ ·/	CB	3.56
		CB			0G1	3.25
		CG			OG1	3.05
		ND1		26 (THR)	OG1	2.57
		CE1		- ()	OG1	3.43
	232 (HIS)	ND1		27 (LEU)	CG2	3.74
	(CE1			CG2	3.82
		CG			CD1	3.67
latch		CD2			CD1	3.59
		NE2		()	CD1	3.87
		ND1		32 (SER)	OG	3.37
		CE1			NE2	3.58
		NE2		17 (GLN)	NE2	3.43
		NE2			CG	3.34
		NE2	α1		OD1	3.05
		CE1		21 (ASP)	OD2	3.44
		NE2			OD2	3.16
		CD2		24 (ILE)	CD1	3.43
	233 (HIS)	ND1			CD1	3.35
		CE1			CD1	3.46
		0		74 (PHE)	CE1	3.75
		ND1	α3	77 (SER)	CE1	3.38
		CE1			CE1	3.68
		CE1			CB	3.70
		CE1			OG	3.55
		CE2			OE2	3.45
	234 (TYR)	0H	α2	39 (GLU)	0E2	3.71

Supplementary Table 6. Intermolecular interactions for Stl^{C-ter} – Dut ΦΟ11

		0			CE2	3.74
	226 (AL A)	СВ		20 (PHE)	CE2	3.85
	236 (ALA)	0	a1		CZ	3.45
		CB	αı	24 (ILE)	CD1	3.63
		CD1			CD2	3.62
		CD1		20 (FNE)	CE2	3.59
		0			OD1	3.78
		CG2		70 (ASP)	OD1	3.86
		CG2	a3	73 (ALA)	CB	3.83
	227 (II E)	CB	us		CZ	3.73
	237 (ILE)	CB		74 (PHE)	CE1	3.80
		CG1			CE1	3.48
		CD1		150 (MET)	CE	3.84
		CG	a7		0	3.82
		OD1	u7	153 (ASN)	0	3.76
		ND2			0	3.31
	-			39 (GLU)	CD	3.82
		CE	α2		OE1	3.87
					OE2	3.20
		NZ		67 (GLU) 70 (ASP)	CD	3.72
	238 (LYS)	CE	α3		OE1	3.73
		NZ			OE1	3.30
		NZ			OE2	3.40
		CD			OD2	3.75
		CE			OD2	3.30
	242 (MSE)	CE		34 (ILE)	CG2	3.68
		CD2		38 (VAL)	CG1	3.70
	245 (LEU)	CD2		42 (GLU)	OE2	3.73
		CD1		42 (OLO)	OE2	3.80
	246 (TYR)	OH		38 (VAL)	CG1	3.86
	210 (1110)	OH		00 (1712)	CG2	3.27
		CE2		42 (GLU)	OE2	3.64
α13	250 (TYR)	OH	α2	12 (020)	OE2	3.33
		OH		45 (ASN)	OD1	3.55
		NH1			CD	3.84
		NH2			CD	3.77
	253 (ARG)	CZ		42 (GLU)	OE1	3.18
		NH1			OE1	3.03
		NH2			OE1	2.53
		NH1		45 (ASN)	ND2	3.66

Supplementary Table 7. Bacterial strains used in this study.

Strains	Description	Reference
DH5a	Host for DNA cloning	
RN4220	Restriction-defective derivate of RN450	19
BL21 (DE3)	E. coli expression strain	Stratagene
Rosetta2	E. coli expression strain	Novagen
JP6774	RN4220 Δ <i>spa</i> SaPlbov1 <i>tst∷tet</i> M	20
JP12666	RN4220	This work
RN10616	RN4220 80α	21
JP8487	RN4220	This work
JP10280	JP6774 pJP1927	2
JP14649	JP6774 pJP1928	2
JP11742	JP6774 pJP2040	2
JP15291	JP6774 pCN51	2
JP18042	JP6774 pJP653	This work
JP19591	JP6774	This work
JP19593	JP6774 ∲NM1 _{₌dut}	This work
JP19592	JP6774	This work
JP19598	JP6774	This work
JP19785	JP6774 80α	This work
JP19780	JP6774 80αdut	This work
JP18043	JP6774 Stl ^{Y234A}	This work
JP18044	JP18043 pJP653	This work
JP18045	JP18043 pJP1927	This work
JP18046	JP18043 pJP1928	This work
JP18047	JP18043 pJP2040	This work
JP18048	JP18043 pCN51	This work
JP18049	JP18043	This work
JP19596	JP18043	This work
JP18050	JP18043 80α	This work
JP19783	JP18043 80α. <i>_{adut}</i>	This work
JP18051	JP18043	This work
JP19601	JP18043	This work
JP17679	JP6774 Stl ^{HY-DA}	This work
JP18052	JP17679 pJP653	This work
JP18053	JP17679 pJP1927	This work
JP18054	JP17679 pJP1928	This work
JP18055	JP17679 pJP2040	This work
JP18056	JP17679 pCN51	This work
JP18057	JP17679	This work

JP19597	JP17679	This work
JP18058	JP17679 80α	This work
JP19784	JP17679 80α _{∽dut}	This work
JP18059	JΡ17679 φ11	This work
JP19602	JP17679	This work
JP17043	JP6774 Stl ^{Y112A}	This work
JP18060	JP17043 pJP653	This work
JP18061	JP17043 pJP1927	This work
JP18062	JP17043 pJP1928	This work
JP18063	JP17043 pJP2040	This work
JP18064	JP17043 pCN51	This work
JP18065	JP17043	This work
JP19594	JP17043	This work
JP18066	JP17043 80α	This work
JP19781	JP17043 80α _{∗dut}	This work
JP18067	JP17043	This work
JP19599	JP17043	This work
JP17706	JP6774 Stl ^{YYAA}	This work
JP18068	JP17706 pJP653	This work
JP18069	JP17706 pJP1927	This work
JP18070	JP17706 pJP1928	This work
JP18071	JP17706 pJP2040	This work
JP18072	JP17706 pCN51	This work
JP18073	JP17706 øNM1	This work
JP19595	JP17706	This work
JP18074	JP17706 80α	This work
JP19782	JP17706 80α _{∝dut}	This work
JP18075	JΡ17706 φ11	This work
JP19600	JP17706	This work
JP19771	RN4220 pJP2085	This work
JP19772	RN4220 pJP2086	This work
JP19773	RN4220 pJP2087	This work
JP19774	RN4220 pJP2172	This work
JP19775	RN4220 pJP2094	This work
JP19776	RN4220 pJP2090	This work
JP19777	RN4220 pJP2091	This work
JP19778	RN4220 pJP2173	This work
JP19779	RN4220 pJP2097	This work
JP14101	JP12666 pJP2085	This work
JP15719	JP12666 pJP2104	This work
JP14668	JP12666 pJP2100	This work
JP14661	JP12666 pJP2101	This work

JP13910	JP12666 pJP2105
JP13907	JP12666 pJP2106
JP17063	JP12666 pJP2176
JP17064	JP12666 pJP2177
JP17065	JP12666 pJP2178
JP14103	RN10616 pJP2085
JP15718	RN10616 pJP2104
JP14666	RN10616 pJP2100
JP14659	RN10616 pJP2101
JP13911	RN10616 pJP2105
JP13908	RN10616 pJP2106
JP17057	RN10616 pJP2176
JP17058	RN10616 pJP2177
JP17059	RN10616 pJP2178
JP14423	JP8487 pJP2085
JP15717	JP8487 pJP2104
JP14785	JP8487 pJP2100
JP14786	JP8487 pJP2101
JP14424	JP8487 pJP2105
JP14425	JP8487 pJP2106
JP17051	JP8487 pJP2176
JP17052	JP8487 pJP2177
JP17053	JP8487 pJP2178

This work This work

Supplementary Table 8. Plasmids used in this study.

Plasmid	Description	Reference
pPROEX HTa	Expression vector	Invitrogen
pLIC-SGC1	Expression vector	Invitrogen
pCN41	Expression vector	22
pCN51	Expression vector	22
pJP653	pCN51 3xflag 11 Dut ^{w1}	20
pJP1927	pCN51 3xflag ФNM1 Dut ^{wi}	2
pJP1928	pCN51 3xflag ФО11 Dut ^{WT}	2
pJP2040	pCN51 3xflag ФDI Dut ^{wт}	2
pJP2085	pCN41 pInt-20 ^{WT} -19-18blaZ (SaPlbov1)	This work
pJP2086	pCN41 pInt-20 ^{R22A} -19-18blaZ (SaPIbov1)	This work
pJP2087	pCN41 pInt-20 ^{Q29A} -19-18blaZ (SaPIbov1)	This work
pJP2172	pCN41 pInt-20 ^{S44A} -19-18blaZ (SaPIbov1)	This work
pJP2094	pCN41 pInt-20 ^{N45A} -19-18blaZ (SaPIbov1)	This work
pJP2090	pCN41 pInt-20 ^{E47A} -19-18blaZ (SaPIbov1)	This work
pJP2091	pCN41 pInt-20 ^{N48A} -19-18blaZ (SaPIbov1)	This work
pJP2173	pCN41 pInt-20 ^{R51A} -19-18blaZ (SaPIbov1)	This work
pJP2104	pCN41 pInt-20 ^{Y112A} -19-18blaZ (SaPIbov1)	This work
pJP2100	pCN41 pInt-20 ^{Y113A} -19-18blaZ (SaPIbov1)	This work
pJP2101	pCN41 pInt-20 ^{Y116A} -19-18blaZ (SaPIbov1)	This work
pJP2105	pCN41 pInt-20 ^{Y106A} -19-18blaZ (SaPIbov1)	This work
pJP2106	pCN41 pInt-20 ^{YY-AA} -19-18blaZ (SaPIbov1)	This work
pJP2176	pCN41 pInt-20 ^{Y234A} -19-18blaZ (SaPIbov1)	This work
pJP2177	pCN41 pInt-20 ^{HY-DA} -19-18blaZ (SaPlbov1)	This work
pJP2178	pCN41 pInt-20 ^{GGGS} -19-18blaZ (SaPIbov1)	This work
pJP2097	pCN41 pInt-20 ^{R74A} -19-18blaZ (SaPIbov1)	This work
pJP666	pET28a Dut11	23
pJP753	pET28a Dut80a	23
pJP2046	pET28a DutDI	2
pJP2048	pET28a DutO11	18
pETNKI-Stl	pETNKI 1.10 Stl ^{WT}	15
pAM1	pETNKI 1.10 Stl ^{N-ter}	This work
pAM2	pETNKI 1.1 Stl ^{C-ter}	This work
рАМ3	pLIC-SGC1 Stl ^{R22A}	This work
pAM4	pLIC-SGC1 Stl ^{Q29A}	This work
pAM5	pLIC-SGC1 Stl ^{S44A}	This work
pAM6	pLIC-SGC1 Stl ^{N45A}	This work
pAM7	pLIC-SGC1 Stl ^{E47A}	This work
pAM8	pLIC-SGC1 Stl ^{N48A}	This work
pAM9	pLIC-SGC1 Stl ^{R51A}	This work
pAM10	pLIC-SGC1 Stl ^{H73C}	This work

pAM11 pLIC-SGC1 Stl ^{R74A}	This work
pAM12 pLIC-SGC1 Stl ^{Y112A}	This work
pAM13 pLIC-SGC1 Stl ^{Y113A}	This work
pAM14 pLIC-SGC1 Stl ^{YY-AA}	This work
pAM15 pLIC-SGC1 Stl ^{Y116A}	This work
pAM16 pLIC-SGC1 Stl ^{H188C}	This work
pAM17 pLIC-SGC1 Stl ^{Y234A}	This work
pAM18 pLIC-SGC1 Stl ^{HY-DA}	This work
pAM19 pLIC-SGC1 Stl ^{GGGS}	This work
pAM20 pETNKI 1.10 Stl ^{Nter-H73C}	This work

Plasmid	Oligonucleotides	Sequence	
	orf32-phi80alpha-23mS	ACGCGTCGACATTATGGCAGGTCAAGTTGTCTATAAATATGAG	
		GAGGAATAGGAAAATGGATTATAAAGATCACGATGGCGATTAT	
		AAAGATCACG	
pJP653	orf32-phi80alpha-20m	TATAAAGATCACGATGGCGATTATAAAGATCACGATATCGATT	
		ATAAAGATGATGATGATAAAATGACTAACACATTACAAGTAAG	
		GCTATTATCAGAA	
	orf25-phi11-39cB	CGCGGATCCCTTTACACTCCGCTACTTCCG	
		ACGCGTCGACATTATGACGGGTCAAGTTGTCTATAAATATGAG	
	dutNM1-1mS	GAGGCACAGGAAAATGGATTATAAAGATCACGATGGCGATTAT	
		AAAGATC	
pJP1928			
pJP1927		CACGATGGCGATTATAAAGATCACGATATCGATTATAAAGATG	
pJP2040	dutNM1-2m	ATGATGATAAAATGACTAACACATTAACAATTGATCAG	
		000000000000000000000000000000000000000	
	dut-DI-2cB	(These plasmids were constructed using the same primers with	
		different templates.)	
	SaPlbov1-149cB	CGCGGATCCGATCAGTACCTAAATATGCG	
pJP2085	NY-24mK	CGG <u>GGTACC</u> CACTCGGTTATAACCTT	
	SaPlbov1-orf20-34c	GTTAATTTCATGTATTTTGCAAGAGTTTTAATAATTG	
pJP2086*	SaPlbov1-orf20-35m	CAATTATTAAAACTCTTGCAAAATACATGAAATTAAC	
n.IP2087*	SaPlbov1-orf20-36c	CACTCAATTTGCTTGCAGTTAATTTCATG	
por 2007	SaPlbov1-orf20-37m	CATGAAATTAACTGCAAGCAAATTGAGTG	
pJP2172*	SaPlbov1-orf20-80c	GCCGTTCTCGTGATTTGCAATGGTGTTTTGAC	
	SaPlbov1-orf20-81m	GTCAAAACACCATTGCAAATCACGAGAACGGC	
pJP2094*	SaPlbov1-orf-20-60c	GTTGCCGTTCTCGTGAGCTGAAATGGTGTTTTG	
	SaPlbov1-orf-20-61m	CAAAACACCATTTCAGCTCACGAGAACGGCAAC	
pJP2090*	SaPlbov1-orf20-40c	GTTTCTGTTGCCGTTCGCGTGATTTGAAATGG	
	SaPlbov1-orf20-41m	CCATTTCAAATCACGCGAACGGCAACAGAAAC	
pJP2091*	SaPlbov1-orf20-30c	GTTTCTGTTGCCGGCCTCGTGATTTG	
	SaPlbov1-orf20-31m	CAAATCACGAGGCCGGCAACAGAAAC	
pJP2173*	SaPlbov1-orf20-78c	CATTTACTCCAATGTTTGCGTTGCCGTTCTCGTG	
20.2110	SaPlbov1-orf20-79m	CACGAGAACGGCAACGCAAACATTGGAGTAAATG	

pJP2104*	SaPlbov1-orf20-50c	CGTATGATGAATAAGCAATGTCGCCGTC
	SaPlbov1-orf20-51m	GACGGCGACATTGCTTATTCATCATACG
pJP2100*	SaPlbov1-orf20-52c	
	SaPlbov1-orf20-53m	GAUGGUGAUATTIATGUTTUATUATAUGATTIATATG
pJP2101*	SaPlbov1-orf20-54c	GTTTCATCATATAAATCGGCTGATGAATAATAAATG
	SaPlbov1-orf20-55m	CATTTATTATTCATCAGCCGATTTATATGATGAAAC
pJP2105*	SaPlbov1-orf20-16c	ATAAATGTCGCCGTCATTTGCATAGGCTTTATTAACATAA
	SaPIbov1-orf20-15m	TTATGTTAATAAAGCCTATGCAAATGACGGCGACATTTAT
pJP2106*	SaPlbov1-orf20-18c	
		TATAAATCGTATGATGATGCTGCAATGTCGCCGTCATTAT
	SaPlbov1-orf20-17m	ATAATGACGGCGACATTGCAGCATCATCATACGATTTATA
pJP2176*	SaPlbov1-orf20-90c	CCTTTAATAGCATCAGCATGATGGTTAGGAACC
	SaPlbov1-orf20-91m	GGTTCCTAACCATCATGCTGATGCTATTAAAGG
pJP2177*	SaPlbov1-orf20-97c	CCTTTAATAGCATCAGCATGATCGTTAGGAACC
	SaPlbov1-orf20-96m	GGTTCCTAACGATCATGCTGATGCTATTAAAGG
n.IP2178*	SaPlbov1-orf20-106c	CATTGGGCTACCTCCAGGAACC
por 2170	SaPlbov1-orf20-107m	GGTTCCTGGAGGAGGTAGCCCAATG
pJP2097*	SaPIbov1-orf20-42c	CTTTAAACTCATCTGATATCGCGTGTAGAATATAGCTGGG
	SaPIbov1-orf20-43m	CCCAGCTATATTCTACACGCGATATCAGATGAGTTTAAAG
pAM1	Stl_Nter_STOP_Fw	CACTGATACATAAAAATCAATAATAAATTACG
Υ. 111 I	Stl_Nter_STOP_Rv	GAAAGGATTTGTTTGTACAAC
pAM2	FwStl1-8_K175-N267	CAGGGACCCGGTAAAAAAAGAGAAGTAACAATAGAAG
ρητικ	RvStlpETNKI1-8	CGAGGAGAAGCCCGGTTAATTAGTGTCTTTTTCAAGTATG
pAM3 to pAM15		TACTTCCAATCCATGATGGAAGGAGCTGGTCAAATG
	Stl_OFA_Fw	TATCCACCTTTACTGTCATTAATTAGTGTCTTTTTCAAGTATG
	Stl_OFA_Rv	(These plasmids were constructed using the same primers with different templates.)
pAM16	Stl_H188C_Fw	TGGTGAATTTTGCGAAAAATATTTAAAACTATTATTC
	Stl_H188C_Rv	ATTTCTTCTATTGTTACTTCTC

pAM17 to pAM19	SaPlbov1-orf20-102m SaPlbov1-orf20-103c	TACTTCCAATCCATGATGGAAGGAGCTGGTCAAATGGC TATCCACCTTTACTGTTAATTAGTGTCTTTTTCAAGTATG (These plasmids were constructed using the same primers with different templates.)
pAM20	Stl_NterH73C_Fw	TATATTCTATGCAGAATATCAGATGAGTTTAAAGAAAAAG
	Stl_NterH73C_Rv	CTGGGTATACCTAAACCTTTAC
Probe	Oligonucleotides	Sequence
SaPlbov1	SaPlbov1-112mE	CCG <u>GAATTC</u> AATTGCTGAGGCAAAACTTC
	SaPlbov1-113cB	CGC <u>GGATCC</u> TAATTCTCCACGTCTAAAGC
SaPlbov1	StI_DNA_BR1	AAACATATTCTCACCTCCTCG
	STI DNA BR2	ТАААТССТӨТССТТТСАСТСАА

Supplementary References

- 1 Vertessy, B. G. & Toth, J. Keeping uracil out of DNA: physiological role, structure and catalytic mechanism of dUTPases. *Acc Chem Res* **42**, 97-106, doi:10.1021/ar800114w (2009).
- 2 Donderis, J. *et al.* Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization. *PLoS Pathog* **13**, e1006581, doi:10.1371/journal.ppat.1006581 (2017).
- 3 Moroz, O. V. *et al.* Dimeric dUTPases, HisE, and MazG belong to a new superfamily of allalpha NTP pyrophosphohydrolases with potential "house-cleaning" functions. *J Mol Biol* **347**, 243-255, doi:10.1016/j.jmb.2005.01.030 (2005).
- 4 Barabas, O. *et al.* Catalytic mechanism of alpha-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling. *Nucleic Acids Res* **41**, 10542-10555, doi:10.1093/nar/gkt756 (2013).
- 5 Hemsworth, G. R., Gonzalez-Pacanowska, D. & Wilson, K. S. On the catalytic mechanism of dimeric dUTPases. *Biochem J* **456**, 81-88, doi:10.1042/BJ20130796 (2013).
- 6 Leveles, I. *et al.* Structure and enzymatic mechanism of a moonlighting dUTPase. *Acta Crystallogr D Biol Crystallogr* **69**, 2298-2308, doi:10.1107/S0907444913021136 (2013).
- 7 Poornam, G. P., Matsumoto, A., Ishida, H. & Hayward, S. A method for the analysis of domain movements in large biomolecular complexes. *Proteins* **76**, 201-212, doi:10.1002/prot.22339 (2009).
- 8 Pecsi, I. *et al.* Nucleotide pyrophosphatase employs a P-loop-like motif to enhance catalytic power and NDP/NTP discrimination. *Proc Natl Acad Sci U S A* **108**, 14437-14442, doi:10.1073/pnas.1013872108 (2011).
- 9 Holm, L. & Laakso, L. M. Dali server update. *Nucleic Acids Res* 44, W351-355, doi:10.1093/nar/gkw357 (2016).
- 10 McGeehan, J. E. *et al.* Structural analysis of the genetic switch that regulates the expression of restriction-modification genes. *Nucleic Acids Res* **36**, 4778-4787, doi:10.1093/nar/gkn448 (2008).
- 11 Papp-Kadar, V., Szabo, J. E., Nyiri, K. & Vertessy, B. G. In Vitro Analysis of Predicted DNA-Binding Sites for the Stl Repressor of the Staphylococcus aureus SaPIBov1 Pathogenicity Island. *PLoS One* **11**, e0158793, doi:10.1371/journal.pone.0158793 (2016).
- 12 Ball, N. J., McGeehan, J. E., Streeter, S. D., Thresh, S. J. & Kneale, G. G. The structural basis of differential DNA sequence recognition by restriction-modification controller proteins. *Nucleic Acids Res* **40**, 10532-10542, doi:10.1093/nar/gks718 (2012).
- 13 Dodd, I. B., Shearwin, K. E. & Egan, J. B. Revisited gene regulation in bacteriophage lambda. *Curr Opin Genet Dev* **15**, 145-152, doi:10.1016/j.gde.2005.02.001 (2005).
- 14 Lewis, R. J., Brannigan, J. A., Offen, W. A., Smith, I. & Wilkinson, A. J. An evolutionary link between sporulation and prophage induction in the structure of a repressor:anti-repressor complex. *J Mol Biol* **283**, 907-912, doi:10.1006/jmbi.1998.2163 (1998).
- 15 Maiques, E. *et al.* Another look at the mechanism involving trimeric dUTPases in Staphylococcus aureus pathogenicity island induction involves novel players in the party. *Nucleic Acids Res* **44**, 5457-5469, doi:10.1093/nar/gkw317 (2016).

- 16 Szabo, J. E. *et al.* Highly potent dUTPase inhibition by a bacterial repressor protein reveals a novel mechanism for gene expression control. *Nucleic Acids Res* **42**, 11912-11920, doi:10.1093/nar/gku882 (2014).
- 17 Sagendorf, J. M., Berman, H. M. & Rohs, R. DNAproDB: an interactive tool for structural analysis of DNA-protein complexes. *Nucleic Acids Res* **45**, W89-W97, doi:10.1093/nar/gkx272 (2017).
- 18 Bowring, J. *et al.* Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity island transfer. *Elife* **6**, doi:10.7554/eLife.26487 (2017).
- 19 Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. *J Mol Biol* **372**, 774-797, doi:10.1016/j.jmb.2007.05.022 (2007).
- 20 Tormo-Mas, M. A. *et al.* Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. *Nature* **465**, 779-782, doi:10.1038/nature09065 (2010).
- 21 Ubeda, C. *et al.* Specificity of staphylococcal phage and SaPI DNA packaging as revealed by integrase and terminase mutations. *Mol Microbiol* **72**, 98-108 (2009).
- 22 Charpentier, E. *et al.* Novel cassette-based shuttle vector system for gram-positive bacteria. *Appl Environ Microbiol* **70**, 6076-6085, doi:10.1128/AEM.70.10.6076-6085.2004 (2004).
- 23 Tormo-Mas, M. A. *et al.* Phage dUTPases control transfer of virulence genes by a protooncogenic G protein-like mechanism. *Mol Cell* **49**, 947-958, doi:10.1016/j.molcel.2012.12.013 (2013).