Highly Selective Aptamer Based Ultrasensitive Nanogold Colorimetry-Smartphone Readout for Detection of Cd (II)

Lu Xu^{1,2}, Jun Liang², YongHui Wang¹, ShuYue Ren¹, Jin Wu¹, HuanYing Zhou^{1,*}, and Zhixian Gao^{1*}

- ¹ Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050, China
- ² State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300222, China
- * Correspondence: zhouhytj@163.com; gaozhx@163.com.; Tel.: +86-022-84655191

Figure S1 (A) Secondary structure of Cd (II) aptamer predicted using Mfold software. The part marked with red line had folded into a stem-loop structure. (B) CD spectra of (a) 10 μ M aptamer solutions, (b) 10 μ M aptamer and 50 μ g/mL Cd (II) solution, (c) 50 μ g/mL Cd (II) solution.

Method	Rice(mg/kg)	Water(ng/mL)
Nation Standard method	0.488	15.969
This method	0.455	15.200

Table S1. Detection of Cd (II) in rice and drinking water