Supporting Information for:

Microbial dynamics of biosand filters and contributions of the microbial food web to effective

treatment of wastewater-impacted water sources

Tara M. Webster^a, Noah Fierer^{ab#}

^aCenter for Interdisciplinary Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, United States

^bDepartment of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, United States

11 pages, 8 Figures, 1 Table

Table of Contents	
Item	Page
Table S1. Influent water chemistry	S2
Figure S1. Comparison of DNA quantification	\$3
Figure S2. Relative abundance of the 19 most abundant classes	S4
Figure S3. Relative abundance of all Proteobacteria	S5
Figure S4. PCoA of influent microbial communities over time	S6
Figure S5. Evenness comparison between water sources for each sample type over time.	S7
Figure S6. Differential relative abundances between the influent and effluent over time for select bacterial classes	S8
Figure S7. Relative abundance of all Deltaproteobacteria	S9

Figure S8 Differential abundance between influent and sand	S10-S11
Figure 50. Differential abundance between influent and sand	510-511

Table S1. Influent water quality

Week	Water	average Total	average	average	pН	average	average
	Source	Phosphorous	Total	Total		Ammonia	Nitrate N
			Nitrogen	Organic		N	
				Carbon			
		ug/L	ug/L	mg/L		ug/L	ug/L
1	Low nutrient	57.5	185	0		27.1	15
1	High nutrient	214.2	2918	2.9		55.2	2070
2	Low nutrient	49.3	180	1.6		32.7	0
2	High nutrient	339.7	3521	3.4		33.8	2690
3	Low nutrient	47.1	176	0	7.08	30	17
3	High nutrient	149.5	2989	2.6	7.83	43.4	2100
4	Low nutrient	56.7	153	0	7.1	20.4	14
4	High nutrient	145.3	3271	2.3	7.9	43	2710
5	Low nutrient	30.1	305	2.6	7.8	18.4	0
5	High nutrient	646.8	5161	4.4	8.1	810	3930
6	Low nutrient	17.1	154	0	7	25.2	14
6	High nutrient	251.8	3005	3.1	7.7	141	1970
7	Low nutrient	31.6	382	2.8	7.62	39	4
7	High nutrient	231.5	3518	3.5	8.21	90	2480
8	Low nutrient	14.1	143	0	7.16	24.3	18
8	High nutrient	167.9	3283	3.3	7.93	103	2480

Numbers represent the averages between two replicate analyses for each sample. pH values are not available from the first two weeks.

Figure S1. Comparison of DNA quantification by Quant-iTTM PicoGreenTM dsDNA Assay and qPCR targeting the 16S rRNA gene with the primers 515F-806R. The grey line shows the linear regression, intercept = 0.78, slope = 6.5×10^{-7} , adjusted R² = 0.88, and p < 0.001.

Figure S2. Relative abundance of the 19 most abundant classes over time for the low nutrient (left) and high nutrient (right) water sources for samples from the influent (top), sand (middle), and effluent (bottom) over time. Each bar represents one replicate. * indicate that the low nutrient influent was from a different source during weeks 5 and 7.

Figure S3. Relative abundance of all Proteobacteria as a fraction of the total microbial community in both source waters for influent, sand, and effluent samples over time. The top 10 most abundant genera are shown by their respective colors with the remaining groups in grey. Each bar represents combined data from four to five replicates. * indicate that the low nutrient influent was from a different water source during weeks 5 and 7.

Figure S4. Principal coordinate analyses (PCoA) of microbial communities of influent samples based on pairwise Bray-Curtis dissimilarity over time for high nutrient influent (a) and low nutrient influent (b). Note that the low nutrient influent was from a different source during weeks 5 and 7, which cluster separately.

Figure S5. Boxplot of Pielou evenness calculated using a rarefied sequencing depth of 2,122 reads per sample for each water source, sample type, and week. * indicate that the low nutrient influent was from a different source during weeks 5 and 7.

Figure S6. Differential relative abundances between the influent and effluent over time for select bacterial classes from high and low nutrient influents (shown in different colors) and sand filter effluents. Classes that were found to be significantly (FDR <1%) more abundant in the influent (a) or effluent (b) over all time points in both water sources were included.

Figure S7. Relative abundance of all Deltaproteobacteria as a fraction of the total microbial community for each water source influent, sand, and effluent samples over time, colored by Order. Each bar represents combined data from four to five replicates. * indicate that the low nutrient influent was from a different water source during weeks 5 and 7.

Figure S8. Differential relative abundances between the sand and influent of the most abundant microbial classes (>0.01% relative abundance) for each water source across all time points, ordered by the average differential relative abundance for both water sources. Stars indicate statistically significant differences (FDR <1%).