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Supplementary Figure 1: An alternative model for the fecundity distribution is a mixture of a discrete exponential
distribution and a discrete delta distribution p(k|θ) = πhp(k|κh) + (1 − πh)δ0,k where πh is the probability that
a randomly chosen individual is a “have”, κh is the expected fecundity of a “have”, and δ0,k is Kronecker’s delta.
Parameters θ = {πh, κh} are estimated using expectation maximization. Grey shaded regions denote years for
which this description of the fecundity distribution can be rejected (see Methods). This description of the fecundity
distribution is rejected substantially more often than the mixture of discrete exponential distributions at the α = 0.05
significance level (Fig. 2), indicating that this description of the fecundity distribution is less appropriate.
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Supplementary Figure 2: Comparison of p(kc|tc) (black line) and p(kc|tc, kp) (solid circles) for different graduation
dates of the children tc. The visual similarity between the fecundity distributions p(kc|tc) and p(kc|tc, kp) for each
range of graduation dates tc suggests that there are no fecundity correlations between parent and child. We test this
similarity using Monte Carlo hypothesis testing in the main text.
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Supplementary Figure 3: Evaluation of the impact of academic lineage on mentorship fecundity. We use Monte Carlo
hypothesis testing to determine whether child fecundity kc is independent of parent fecundity kp compared with, a,
random networks from Ensemble I and, b, random networks from Ensemble II. We split the fecundity distribution
p(kc|tc, kp) into decade-long bins in tc and into quantiles with at least 50 children per bin for the parent fecundity
kp. Hatched red and solid blue bins denote whether the fecundity independence hypothesis is rejected or not rejected,
respectively, at the α = 0.05 significance level. During 1900–1960, the null hypothesis is not rejected more than
one would expect (see Supplementary Discussion) except during the 1930s for Ensemble I (p < 0.05) and the 1910s
for Ensemble II (p < 0.05), indicating that protégé fecundity is generally no more correlated with mentor fecundity
than expected by chance. The independence hypothesis is, however, systematically rejected (p < 10−5) for children
of parents with kp < 3 for Ensemble I, but that this effect is not present in Ensemble II. Difference between the
math genealogy network and, c, random networks from Ensemble I, d, and random networks from Ensemble II, as
quantified by the z-score of the average child fecundity �kc� (see Methods). Hatched bins denote z > 0. In comparison
with networks from Ensemble I, children of parents with kp < 3 systematically have larger than average fecundity, but
this effect is not present when the empirical network is compared with networks from Ensemble II. These differences
suggest that the average child fecundity �kc� may be dependent on kp and influenced by the age difference tc − tp,
since this is the only difference between networks from Ensembles I and II.
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Supplementary Figure 4: Effect of age difference tc − tp between mentor and protégé on protégé fecundity. a,
Fecundity distribution of children born during the 1910s from parents with kp < 3, 3 ≤ kp < 10, and kp ≥ 10
compared with the expectation from Ensemble II (grey line). We separate children into terciles (early, middle, late)
according to the time difference in birth dates tc − tp between parents and children. Note that the average fecundity
of children born from parents with kp < 3 is larger than expected, regardless of whether they were born during the
early, middle, or later part of their parent’s life. Note also that the average fecundity of children born from parents
with kp ≥ 10 decreases throughout their parent’s life. b, We quantify the significance of these trends during each
decade (colored symbols) by computing the z-score of the average child fecundity �kc� compared with the average
child fecundity in networks from Ensemble II. This information is summarized by identifying the linear regression
(solid black line). Note that the regression lines for networks from our null model (grey lines) vary around the
expectation of our null model (dashed black line). c, Significance of linear regressions in panel b. We compare the
slope and intercept of the empirical regression (black circle) with the distribution of the slope and intercept of the
same quantities computed from the null model. Since these quantities are approximately distributed as a multivariate
Gaussian, we compute the equivalent of a two-tailed P-value by finding the fraction of synthetically generated slope–
intercept pairs that lie outside of the equi-probability surface of the multivariate Gaussian (dashed ellipse). Note
that the slope and intercept of the regression for children from parents with small (p = 0.005) and large fecundity
(p < 0.001) are significantly different from the expectation for the null model, consistent with the data displayed in
panel a. Comparisons with expectations from random networks from Ensemble I yield the same conclusions (Fig. 4).
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Supplementary Discussion

Alternative models for fecundity distribution p(k|t)

We have presented evidence that a mixture of two discrete exponentials can not be rejected as a candidate
model for the fecundity distribution p(k|t) (Fig. 2). This model consists of a mixture of two populations,
“haves” and “have-nots”. By maximum likelihood assignment, we would classify an individual with fe-
cundity k as a “have” if p(k|κh) > p(k|κhn) and as a “have-not” otherwise. Assuming that κh = 9.8 and
κhn = 0.47, we would therefore classify an individual as a “have” if k ≥ 1 and a “have-not” if k = 0.

According to this assignment of individuals as “haves” and “have-nots”, another candidate description
of p(k|t) might be a mixture of a discrete delta distribution and a discrete exponential distribution

p(k|θ) = πhp(k|κh) + (1 − πh)δ0,k, (S1)

where πh is the probability that a randomly chosen individual is a “have”, κh is the expected fecundity of a
“have”, and δ0,k is Kronecker’s delta. While the parameter estimates of this model reveal similar patterns,
Monte Carlo hypothesis testing reveals that this description of the fecundity distribution is less appropriate
as it does not generalize beyond 1960 (see SI Fig. 1).
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Correlations in mentorship fecundity

Here, we test whether protégé fecundity is correlated with mentor fecundity; specifically, we test whether
we can reject the hypothesis that p(kc|tc, kp) = p(kc|tc). If we can reject the hypothesis that p(kc|tc, kp) =
p(kc|tc), then parent fecundity kp provides non-trivial information about child fecundity kc and we conclude
that the parent and child fecundities are correlated.

While visual inspection suggests that parent and child fecundities are uncorrelated (see SI Fig. 2), we
use Monte Carlo hypothesis testing to investigate whether the differences between p(kc|tc, kp) and p(kc|tc)
in the empirical data are significant when compared with the differences between ps(kc|tc, kp) and p(kc|tc)
expected from synthetic random networks belonging to Ensembles I and II. Our Monte Carlo hypothesis
testing procedure begins by quantifying the difference between the empirical distributions p(kc|tc, kp) and
p(kc|tc) with a test statistic S . Since the fecundity kc is a discrete variable, we use the chi-squared per data
point to quantify the deviations between p(kc|tc, kp) and p(kc|tc) where these distributions are binned such
that at least one observation is expected in each bin. We then compute the same test statistic Ss between the
synthetic distribution ps(kc|tc, kp) and p(kc|tc) for all 1,000 random networks in each of our ensembles. We
then compute a two-tailed P-value by comparing S with the distribution of synthetic test statistics Ss. If the
P-value is less than a threshold, in this case p = 0.05, we reject the hypothesis that p(kc|tc, kp) = p(kc|tc).
To test whether p(kc|tc, kp) significantly deviates from p(kc|tc) for all children born at time tc, it is important
to account for the fact that we are conducting our Monte Carlo hypothesis test for several different levels of
parent fecundity kp. Since we are rejecting at the p = 0.05 level, there is a 5% chance we will reject our
hypothesis for a particular parent fecundity kp, even if the hypothesis is true. More precisely, we expect to
reject n out of the N parent fecundity bins where n is drawn from a binomial model with p = 0.05. We can
therefore determine whether p(kc|tc, kp) is significantly different than p(kc|tc) if we observe n rejections
that are outside of the 95% confidence interval for the corresponding binomial model.

This Monte Carlo hypothesis testing procedure confirms that we can not reject the hypothesis that
p(kc|tc, kp) = p(kc|tc) for children born at time tc, regardless of the random ensemble under consider-
ation (see SI Fig. 3a–b). That is, the child fecundity kc for children born at time tc appear to be no more
correlated with the parent fecundity kp than expected by chance for our null models.

Our hypothesis testing also reveals that, when compared with networks from Ensemble I (see SI Fig. 3a),
we can reject the hypothesis that p(kc|tc, kp) = p(kc|tc) for children of parents with kp < 3. These children
systematically have a larger average fecundity �kc� than one would expect for networks from Ensemble
I (see SI Fig. 3c). Intriguingly, this effect is not present when we compare the empirical network with
networks from Ensemble II (see SI Fig. 3b,d). Since the only difference between networks from Ensemble
I and Ensemble II is that the latter ensemble preserves the age difference between parent and child, this
finding suggests that child fecundity may be influenced by the age difference between parent and child
tc − tp, but that this influence is dependent on the parent’s fecundity kp.


